
Forum of Mathematics, Pi (2020), Vol. 8, e8, 144 pages
doi:10.1017/fmp.2020.7 1

THE EXACT MINIMUM NUMBER OF TRIANGLES IN
GRAPHS WITH GIVEN ORDER AND SIZE

HONG LIU1, OLEG PIKHURKO1 and KATHERINE STADEN2

1 Mathematics Institute and DIMAP, University of Warwick, Coventry CV4 7AL, UK;
email: h.liu.9@warwick.ac.uk, o.pikhurko@warwick.ac.uk

2 Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK;
email: staden@maths.ox.ac.uk

Received 2 December 2017; accepted 4 March 2020

Abstract

What is the minimum number of triangles in a graph of given order and size? Motivated by earlier
results of Mantel and Turán, Rademacher solved the first nontrivial case of this problem in 1941.
The problem was revived by Erdős in 1955; it is now known as the Erdős–Rademacher problem.
After attracting much attention, it was solved asymptotically in a major breakthrough by Razborov
in 2008. In this paper, we provide an exact solution for all large graphs whose edge density is
bounded away from 1, which in this range confirms a conjecture of Lovász and Simonovits from
1975. Furthermore, we give a description of the extremal graphs.

2010 Mathematics Subject Classification: 05C35

1. Introduction

The celebrated theorem of Turán [42] (with the case r = 3 proved earlier by
Mantel [27]) states that, among all Kr -free graphs with n > r vertices, the Turán
graph Tr−1(n), the complete balanced (r − 1)-partite graph, is the unique graph
maximizing the number of edges. Here, the r-clique Kr is the complete graph
with r vertices (and

(r
2

)
edges).

Let tr (n) := e(Tr (n)) denote the number of edges in Tr (n) and let an (n, e)-
graph mean a graph with n vertices and e edges. Thus the above result implies
that every (n, t2(n) + 1)-graph H contains at least one triangle. Rademacher in
1941 (unpublished; see [6]) showed that H must have at least bn/2c triangles.
This naturally leads to the following general question that first appeared in
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H. Liu, O. Pikhurko and K. Staden 2

print in a paper of Erdős [6] and is now called the Erdős–Rademacher problem:
determine

gr (n, e) := min{Kr (H) : (n, e)-graph H}, n, e ∈ N, e 6

(
n
2

)
,

where Kr (H) denotes the number of Kr -subgraphs in a graph H and N := {1,
2, . . .} consists of natural numbers.

Before discussing the history of this problem in some detail, let us present the
general upper bound h∗(n, e) on g3(n, e), which, as far as the authors know, may
actually equal g3(n, e) for all pairs (n, e). In fact, one of the main results of this
paper (stated in a stronger form in Theorem 1.6) is that g3(n, e) = h∗(n, e) if
n is large and e/

(n
2

)
is bounded away from 1. In order to define h∗, we need to

introduce some auxiliary parameters.

DEFINITION 1 (Parameters k, m∗ and h∗, vector a∗ and graph H ∗). Let n, e ∈ N
satisfy e 6

(n
2

)
. Define

k = k(n, e) := min{s ∈ N : e 6 ts(n)}, (1.1)

that is, k is the unique positive integer with tk−1(n) < e 6 tk(n).
Next, let a∗ = a∗(n, e) be the unique integer vector (a∗1 , . . . , a∗k ) such that

• a∗k := min{a ∈ N : a(n − a)+ tk−1(n − a) > e};

• a∗1 + · · · + a∗k−1 = n − a∗k and a∗1 > · · · > a∗k−1 > a∗1 − 1.

Further, define

m∗ = m∗(n, e) :=
∑

16i< j6k

a∗i a∗j − e, (1.2)

h∗(n, e) :=
∑

16h<i< j6k

a∗ha∗i a∗j − m∗
k−2∑
i=1

a∗i .

Also, let the graph H ∗ = H ∗(n, e) be obtained from K k
a∗1 ,...,a

∗

k
, the complete

k-partite graph with part sizes a∗1 , . . . , a∗k , by removing m∗ edges between the
last two parts (say, for definiteness, all incident to a vertex in the last part).

Let us rephrase the above definitions and also argue that H ∗ is well defined.
We look for an upper bound on g3(n, e), where we take a complete partite graph,
say with parts A∗1, . . . , A∗k , and remove a star incident to a vertex of A∗k . First, we
choose the smallest k for which such an (n, e)-graph exists and then the smallest
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The minimum number of triangles 3

possible size a∗k of A∗k . Then we let the first k − 1 parts form the Turán graph
Tk−1(n − a∗k ), that is, their sizes are a∗1 , . . . , a∗k−1. Since Tk−1(n − a∗k ) has at least
as many edges as any other (k − 1)-partite graph of order n − a∗k , it holds that
m∗ := e(K k

a∗1 ,...,a
∗

k
)− e is nonnegative. Furthermore, we have that

0 6 m∗ 6 a∗k−1 − a∗k (1.3)

because, if the upper bound fails, then

e(K k
a∗1 ,...,a

∗

k−2,a
∗

k−1+1,a∗k−1) = e(K k
a∗1 ,...,a

∗

k
)− (a∗k−1 − a∗k + 1) > e,

contradicting the minimality of a∗k (or the minimality of k if a∗k = 1). In particular,
we have m∗ 6 a∗k−1, so H ∗ is well defined. Thus H ∗ is an (n, e)-graph and

h∗(n, e) := K3(H ∗) > g3(n, e)

is indeed an upper bound on g3(n, e).
For example, if e 6 t2(n), then H ∗(n, e) is bipartite and h∗(n, e) = 0 (here

k = 2). Also, H ∗(n, tr (n)) = Tr (n). If 1 6 ` < dn/re, then H ∗(n, tr (n) + `) is
obtained from the Turán graph Tr (n) by adding the `-star K1,` into a largest part
(here, k = r + 1 and a∗k = 1) and so on.

Let us return to the history of the triangle-minimization problem. The problem
was revived by Erdős [6] in 1955, who in particular conjectured that for 1 6 ` <

bn/2c, it holds that g3(n, t2(n)+`) = `bn/2c. This is exactly the h∗-bound; also,
note that if n is even and ` = n/2, then h∗(n, t2(n) + `) is strictly smaller than
`n/2 (here, k = 3 and a∗3 = 2). So the Erdős conjecture cannot be extended here.
In the same paper, Erdős [6] proved the conjecture when ` 6 3; the same result
also appears in Nikiforov [31]. Erdős in [7] was able to prove his conjecture
when ` < γ n for some positive constant γ . The conjecture was eventually proved
in totality for large n by Lovász and Simonovits [25] in 1975, with the proof of
the conjecture also announced by Nikiforov and Khadzhiivanov [32].

Moon and Moser [28, page 285] and, independently, Nordhaus and
Stewart [33, Equation (5)] proved that

g3(n, e) >
e(4e − n2)

3n
, (1.4)

with equality achieved if and only if e = tk(n) with k dividing n. The bound
in (1.4) can be derived by using the triangle counting method from an earlier
paper by Goodman [13] and is often referred to as the Goodman bound.

In order to state some of the following results, it will be convenient to define
the asymptotic version of the problem. Namely, given λ ∈ [0, 1], take any integer-
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valued function 0 6 e(n) 6
(n

2

)
with e(n)/

(n
2

)
→ λ as n→∞ and define

gr (λ) := lim
n→∞

gr (n, e(n))(n
r

) .

It is easy to see from basic principles that the limit exists and does not depend
on the choice of the function e(n).

The upper bound on the function g3(λ) given by the graphs H ∗ from
Definition 1 is as follows. Let n →∞ and e = λn2/2 + o(n2). It always holds
that, for example, m∗ 6 n and a∗1 − a∗k−1 6 1. So these have negligible effect on
the limit and one can consider only complete partite graphs with all parts equal,
except at most one part of smaller size. Therefore, for λ ∈ [0, 1), let us define

k(λ) := min{k ∈ N : λ 6 1− 1/k}. (1.5)

Thus if λ ∈ (0, 1), then k(λ) is the unique integer k > 2 satisfying 1 − 1
k−1 <

λ 6 1 − 1
k , while k(0) = 1. Let k = k(λ) and let c = c(λ) be the unique root

with c > 1/k of the quadratic equation(
k − 1

2

)
c2
+ (1− c′)c′ = λ/2, (1.6)

where c′ := 1− (k − 1)c. The above equation is the limit version of the desired
equality e(K k

cn,...,cn,c′n) = λ
(n

2

)
+ o(n2). Explicitly,

c(λ) =
1
k

(
1+

√
1−

k
k − 1

· λ

)
, λ ∈ (0, 1), while c(0) = 1. (1.7)

Thus

g3(λ) 6 h∗(λ) := 3!
((

k − 1
3

)
c3
+

(
k − 1

2

)
c2c′

)
, λ ∈ [0, 1). (1.8)

(For λ = 1, we just let h∗(1) := 1.)
The upper bound in (1.8) coincides with the lower bound on g3(λ) given

by (1.4) when λ = 1− 1/k for all integers k > 1. Thus

g3(1− 1/k) =
(k − 1)(k − 2)

k2
, k ∈ N. (1.9)

Some of the early results on g3(λ) concentrated on finding good convex lower
bounds. McKay (unpublished; see [33, page 35]) showed that g3(λ) > λ − 1

2 .
Nordhaus and Stewart [33] conjectured that g3(λ) >

4
3 (λ −

1
2 ) and presented
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The minimum number of triangles 5

some partial results in this direction. This conjecture was proved by Bollobás [1],
who in fact established the best possible convex lower bound on g3, namely, the
piecewise linear function that coincides with g3 at all values in (1.9).

However, the upper bound h∗(λ) is a strictly concave function between any
two consecutive values in (1.9) for λ > 1/2. This is one of the reasons why the
triangle-minimization problem is so difficult.

After Bollobás [1], the first improvement ‘visible in the limit’ was achieved
by Fisher [10], who showed that g3(λ) = h∗(λ) for all 1/2 6 λ 6 2/3. (There
was a hole in Fisher’s proof, which can be fixed using the results of Goldwurm
and Santini [12]; see [4, Remark 3.3].) Then Razborov used his newly developed
theory of flag algebras first to give a different proof of Fisher’s result in [36] and
then to determine the whole function g3(λ) in [37] (see Figure 1 for a plot of the
function).

THEOREM 1.1 [37]. For all λ ∈ [0, 1], we have that g3(λ) = h∗(λ).

Nikiforov [30] presented a new proof of Razborov’s result and also determined
g4(λ) for all λ ∈ [0, 1]. More recently, Reiher [38] determined gr (λ) for all
λ ∈ [0, 1] and r > 5 (also reproving the case r ∈ {3, 4}).

Another property that makes this problem difficult is that in general there
are many asymptotically extremal (n, e)-graphs, as the following family
demonstrates.

DEFINITION 2 (Family H∗(n, e)). Given n, e ∈ N with e 6
(n

2

)
, let k = k(n,

e), a∗ = (a∗1 , . . . , a∗k ) and m∗ be as in Definition 1. The family H∗(n, e) :=⋃2
i=0 H∗i (n, e) is defined as the union of the following three families. Let T :=

K [A∗1, . . . , A∗k] be the complete partite graph with part sizes a∗1 > · · · > a∗k ,
respectively.

H∗1(n, e): If m∗ = 0, then take all graphs obtained from T by replacing, for
some i ∈ [k − 1], T [A∗i ∪ A∗k] with an arbitrary triangle-free graph with
a∗i a∗k edges. If m∗ > 0, take all graphs obtained from T by replacing
T [A∗k−1 ∪ A∗k] with an arbitrary triangle-free graph with a∗k−1a∗k − m∗

edges.

H∗0(n, e): Take the family H∗1(n, e) and, if a∗k = 1, add all graphs obtained from
Ka∗1 ,...,a

∗

k−2,a
∗

k−1+1 by adding a triangle-free graph with a∗k−1 − m∗ edges
such that each added edge lies inside some part of size a∗k−1 + 1.

H∗2(n, e): Take those graphs in H∗1(n, e) that are k-partite, along with the
following family. Take disjoint sets A1, . . . , Ak of sizes a∗1 , . . . , a∗k ,
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H. Liu, O. Pikhurko and K. Staden 6

Figure 1. The green function is g3(λ), as determined by Theorem 1.1. The
red curve is Goodman’s bound (1.4). The blue curve λ3/2 is asymptotically the
maximum triangle density in a graph of edge density λ. This follows easily from
the Kruskal–Katona theorem [20, 23].

respectively, and let m := m∗. If m∗ = 0 and a∗1 > a∗k + 2, then we
also allow (|A1|, . . . , |Ak |) = (a∗2 , . . . , a∗k−1, a∗1 − 1, a∗k + 1) and let
m := a∗1 − a∗k − 1. Take all graphs obtained from K [A1, . . . , Ak] by
removing m edges, each connecting Bi to Ai for some i ∈ I , where
I := {i ∈ [k − 1] : |Ai | = |Ak−1|} and (Bi)i∈I are some disjoint subsets
of Ak .

One can check by the definition that every graph in H∗(n, e) has e edges and
h∗(n, e) triangles. Also, the graph H ∗(n, e) belongs to H∗i (n, e) for each i ∈ {0,
1, 2}. Proposition 1.5 and Conjecture 1.8, to be stated shortly, will motivate the
above definitions.
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The minimum number of triangles 7

Note that every graph in H∗0(n, e) \ H∗1(n, e) has at most a∗k−1 − m∗ 6 n−1
k−1

more edges than the Turán graph Tk−1(n). In other words,

H∗0(n, e) = H∗1(n, e), for tk−1(n)+ n−1
k−1 < e 6 tk(n). (1.10)

In general, H∗(n, e) contains many nonisomorphic graphs. Nonetheless, a
‘stability’ result was established by Pikhurko and Razborov [34], who showed
that every almost extremal (n, e)-graph is within edit distance o(n2) from H∗1(n,
e) (or, equivalently, from H∗(n, e)).

THEOREM 1.2 [34]. For every ε > 0, there are δ, n0 > 0 such that, for every
(n, e)-graph G with n > n0 vertices and at most g3(n, e)+ δ

(n
3

)
triangles, there

exists H ∈ H∗1(n, e) such that |E(G)4 E(H)| 6 ε
(n

2

)
.

Although Theorems 1.1 and 1.2 deal only with the asymptotic values, they can
also be used to derive some exact results. Namely, if n = (k − 1)a + b, where
k, a, b ∈ N with a > b and e =

(k−1
2

)
a2
+ (k − 1)ab = e(K k

a,...,a,b), then

g3(n, e) = K3(K k
a,...,a,b) =

(
k − 1

3

)
a3
+

(
k − 1

2

)
a2b. (1.11)

Indeed, if some (n, e)-graph H violates the lower bound, then the uniform blow-
ups of H violate Theorem 1.1; furthermore, every extremal (n, e)-graph contains
the complete (k−1)-partite graph K k−1

a,...,a,a+b as a spanning subgraph, as otherwise
its blow-ups violate Theorem 1.2.

The above blow-up trick also shows that g3(n, e)> (n3/6) g3(2e/n2) for every
(n, e). Although, for e > t2(n), one can show that this bound is tight only when
the pair (n, e) is as in (1.11), it gives a rather good approximation to g3(n, e).
Namely, calculations based on the explicit formula for g3(λ) = h∗(λ) (see, for
example, [30, Theorem 1.3]) give that

0 6 g3(n, e)−
n3

6
g3

(
2e
n2

)
6

n3

n2 − 2e
, n, e ∈ N, e 6

(
n
2

)
. (1.12)

In a long and difficult paper, Lovász and Simonovits [26] established the exact
result for a large range of parameters. In order to state their main result, we have
to define some graph families (which will also appear in our results and proofs).

DEFINITION 3 (Families H0, H1, H2 and H). Given positive integers e, n with
e 6

(n
2

)
, let k = k(n, e) be as in (1.1) and define the following families.

H0(n, e): the family of (n, e)-graphs H obtained from adding a triangle-free
graph J to a complete (k − 1)-partite graph on n vertices.
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H. Liu, O. Pikhurko and K. Staden 8

H1(n, e): the family of (n, e)-graphs H with a partition V (H) = A1 ∪ · · · ∪

Ak−2 ∪ B such that |A1| > · · · > |Ak−2|; H [A1 ∪ · · · ∪ Ak−2] is the
complete partite graph K [A1, . . . , Ak−2]; H [B, V (H) \ B] is complete;
and H [B] is a triangle-free graph.

H2(n, e): the family of k-partite (n, e)-graphs H with a partition A1, . . . , Ak of
V (H) such that |A1| > · · · > |Ak |; H [A1 ∪ · · · ∪ Ak−1] = K [A1, . . . ,

Ak−1], and for every vertex x ∈ Ak there is at most one j ∈ [k − 1] such
that x is not complete to A j .

Also, let H(n, e) := H1(n, e) ∪H2(n, e) and define

h(n, e) := min{K3(H) : H ∈ H(n, e)}. (1.13)

Note that H1(n, e) ⊆ H0(n, e); this inclusion is in general strict as the added
edges in the definition of H0(n, e) can lie inside different parts.

The main result proved by Lovász and Simonovits [26] (first announced in
their 1975 paper [25]) is the following.

THEOREM 1.3 [25, 26]. For all integers k > 3 and r > 3, there exist α = α(r,
k) > 0 and n0 = n0(r, k) > 0 such that, for all positive integers (n, e) with
n > n0 and tk−1(n) < e 6 tk−1(n)+ αn2, we have that

gr (n, e) = hr (n, e) := min{Kr (H) : H ∈ H(n, e)}.

If r = 3, then every extremal graph lies in H0(n, e) ∪H2(n, e), and there is at
least one extremal graph in H1(n, e). If r > 4, then every extremal graph lies in
H1(n, e) ∪H2(n, e).

Although the proof of Theorem 1.3 does not use the regularity lemma,
the constant α(r, k) given by it is nonetheless so small that Lovász and
Simonovits [26, page 465] write that they ‘did not even dare to estimate’ α(3, 3).
In the same papers [25, 26], the following bold conjecture was stated.

CONJECTURE 1.4 [25, 26]. For all integers r > 3, there exists n0 = n0(r) > 0
such that gr (n, e) = hr (n, e) for all positive integers n > n0 and e 6

(n
2

)
.

Of course, the triangle-minimization problem for such a restricted class as any
of Hi(n, e) is much easier than the unrestricted function g3(n, e). In fact, we can
solve it exactly.
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The minimum number of triangles 9

PROPOSITION 1.5. For i ∈ {0, 1, 2} and all n, e ∈ N with e 6
(n

2

)
, we have that

min{K3(H) : H ∈ Hi(n, e)} = h∗(n, e) and H∗i (n, e) is the set of graphs in
Hi(n, e) that attain this bound.

In particular, we have that h(n, e) = h∗(n, e).

An interesting consequence of Proposition 1.5 that has not been observed
before is that, for r = 3, if Conjecture 1.4 is true, then its conclusion is in fact
true for all n > 1; see Lemma 10.1.

Apart from some cases when e is very close to
(n

2

)
, to the best of the authors’

knowledge, all established cases of the conjecture are confined to the direct
consequences of Theorem 1.1 via the blow-up trick and to Theorem 1.3 (the
latter superseding, as n → ∞, all remaining exact results that we mentioned).
The main contribution of this paper is to prove the conjecture when r = 3 and
e/
(n

2

)
is bounded away from 1, and to characterize the extremal graphs in this

range.

THEOREM 1.6. For all ε > 0, there exists n0 > 0 such that for all positive
integers n > n0 and e 6

(n
2

)
−εn2, we have that g3(n, e) = h(n, e). Furthermore,

the family of extremal (n, e)-graphs is precisely H∗0(n, e) ∪H∗2(n, e).

By Theorem 1.3 and Proposition 1.5, it is enough to prove Theorem 1.6 when
e > tk−1(n)+Ω(n2), where k = k(n, e). This is done in the next theorem. (Note
that H0 is irrelevant in this range by (1.10).)

THEOREM 1.7. For all ε, α > 0 and every integer 3 6 k 6 1/ε, there exists
n0 > 0 such that the following holds. For all integers n, e with n > n0 and
tk−1(n)+αn2 6 e < tk(n), we have g3(n, e) = h(n, e) and every extremal graph
lies in H(n, e) = H1(n, e) ∪H2(n, e).

We believe that the following strengthening of the case r = 3 of Conjecture 1.4
holds where, additionally, the exact structure of all extremal graphs is described.

CONJECTURE 1.8. For all positive integers n and e 6
(n

2

)
, an (n, e)-graph G

satisfies K3(G) = g3(n, e) if and only if G ∈ H∗0(n, e) ∪H∗2(n, e).

1.1. Organization of the paper. We collect some frequently used notation in
Section 2 (and there is a symbolic glossary at the end of the paper). Theorem 1.6
is formally derived from Theorem 1.7 in Section 5.1. Since the proof of
Theorem 1.7 is very involved and long, we provide a sketch in Section 3 and
also try to provide all details in calculations. In Section 4, we investigate the
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H. Liu, O. Pikhurko and K. Staden 10

function h(n, e) and provide some preliminary tools that will be used later on;
in particular, we prove Proposition 1.5. The proof of Theorem 1.7 begins in
Section 5. Sections 6–8 continue the proof in the ‘intermediate’ case, which,
roughly speaking, is when e is bounded away from any Turán density. The
remaining ‘boundary’ case is dealt with in Section 9. Some concluding remarks
can be found in Section 10.

2. Notation

Given a set X and k ∈ N, let
(X

k

)
denote the set of k-subsets of X . Also, [k] :=

{1, . . . , k}. We may abbreviate {a, b} to ab. We write x = y ± ε if y − ε 6 x 6
y + ε.

We use standard graph theoretic notation. Given a graph G and A ⊆ V (G),
we write A := V (G) \ A for the complement of A in G and G for the graph
with vertex set V (G) and edge set

(V (G)
2

)
\ E(G), which we call the complement

of G. Further, we write G[A] for the graph induced by G on A. Given disjoint
A, B ⊆ V (G), we write G[A, B] for the graph with vertex set A ∪ B and edge
set {ab ∈ E(G) : a ∈ A, b ∈ B}. For x ∈ V (G) and A ⊆ V (G), we set NG(x,
A) := {y ∈ A : xy ∈ E(G)} and dG(x, A) := |NG(x, A)|. Additionally, we write
NG(x) := NG(x, V (G)) and dG(x) := |NG(x)|. Given pairwise-disjoint vertex
sets A1, . . . , A`, we write K [A1, . . . , A`] for the complete partite graph with
parts A1, . . . , A`. When a1, . . . , a` are integers, we write K `

a1,...,a` (or Ka1,...,a`)
for the complete `-partite graph with parts of sizes a1, . . . , a`.

A partition of V (H) witnessing that H ∈ Hi(n, e) in Definition 3 will be
called Hi -canonical (or just canonical).

Given x ∈ V (G), we write K3(x,G) for the number of triangles in G that
contain x . That is,

K3(x,G) := e(G[NG(x)]).

Given A1, A2 ⊆ V (G)\{x}, we write K3(x,G; A1, A2) for the number of triples
{x, a1, a2} that span a triangle in G, where ai ∈ Ai for i ∈ [2]. (Note that we do
not double count when both a1, a2 lie in A1∩ A2.) If A1 = A2 = A, we let K3(x,
G; A) := K3(x,G; A, A). Similarly, given {x, y} ∈

(V (G)
2

)
, let P3(xy,G) be the

number of 3-vertex paths with endpoints x and y; that is,

P3(xy,G) := |NG(x) ∩ NG(y)|.

Let P3(xy,G; A) := |NG(x, A) ∩ NG(y, A)|. Given a graph G with vertex
partition A1, . . . , Ak , a cross-edge is any edge that lies between parts. Given
two graphs G, H on the same vertex set V and U ⊆ V , we say that G and H
only differ at U if E(G)4 E(H) ⊆

(U
2

)
.
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The minimum number of triangles 11

Given a family G(n, e) of (n, e)-graphs, we write Gmin(n, e) ⊆ G(n, e) for the
subfamily consisting of all graphs with the minimum number of triangles.

Since we are interested in the case r = 3, we will say that a pair (n, e) is valid
if n, e ∈ N are such that b n2

4 c < e 6
(n

2

)
(that is, there exist graphs with n vertices

and e edges, and every such graph contains at least one triangle).
Given ` ∈ N and α1, . . . , α` ∈ R, for convenience, we write

e(K `
α1,...,α`

) :=
∑

i j∈([`]2 )

αiα j and K3(K `
α1,...,α`

) :=
∑

hi j∈([`]3 )

αhαiα j

in analogy with the number of edges and triangles in the complete `-partite graph
K `

n1,...,n` , which is defined when the ni ’s are positive integers.
The edit distance between two graphs G and H on the same vertex set is
|E(G)4 E(H)|, and these graphs are said to be d-close if |E(G)4 E(H)| 6 d .

3. Sketch of the proof of Theorem 1.7

The asymptotic results of Fisher [10], Razborov [37], Nikiforov [30],
Pikhurko-Razborov [34] and Reiher [38] all use spectral or analytic methods.
Such techniques do not seem to be helpful for the exact problem, and indeed our
proof of Theorem 1.7 uses purely combinatorial methods. At its heart, our proof
uses the well-known stability method: Theorem 1.2 implies that any extremal
graph G is structurally close to some H in H∗(n, e) and hence some graph in
H1(n, e). Then the goal would be to analyse G and show that it cannot contain
any imperfections and must in fact lie in H1(n, e). The stability approach stems
from the work of Erdős [8] and Simonovits [40] and has been used to solve
many major problems in extremal combinatorics.

However, a major obstacle here is the fact that there is a large family of
conjectured extremal graphs. Given any H ∈ H1(n, e) with canonical partition
A1, . . . , Ak−2, B as in the definition, one can obtain a different H ′ ∈ H1(n, e)
such that K3(H ′) = K3(H) simply by replacing H [B] with another triangle-free
graph containing the same number of edges. In general, there are many choices
for this triangle-free graph.

An additional difficulty is that H1(n, e) does not in fact contain every extremal
graph, as in Theorem 1.3. So our goal as stated above must be modified.

Let us present a brief outline of the proof of Theorem 1.7. Suppose that
Theorem 1.7 is false. Let k be the minimum integer for which there is an
arbitrarily large integer n and some e with tk−1(n) < e 6 tk(n) such that H(n, e)
does not contain every extremal graph. Choose a fixed large n and then e as
above such that g3(n, e)−h(n, e) 6 0 is minimal, and let G /∈H(n, e) be an (n,
e)-graph with K3(G) = g3(n, e). We call such a G a worst counterexample. One
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H. Liu, O. Pikhurko and K. Staden 12

consequence of the choice of G is, for example, that no edge can lie in too many
triangles, and the endpoints of every nonedge have many common neighbours.

I: The intermediate case tk(n)− e = Ω(n2).

1. Approximate structure (Section 6)

Theorem 1.2 implies that G is close in edit distance to some graph H ∈H∗(n, e).
Note that H ∈H1(n, e′) for some e′, which is close to e. The first step is to show
that actually G is close to the specific graph H ∗(n, e) (namely, the edit distance
is o(n2); see Lemma 6.4). The i th part of H ∗(n, e) has size a∗i , which is roughly
cn for all i ∈ [k − 1] (Lemma 4.16). Since e is bounded away from tk(n), it is
not hard to see that n − (k − 1)cn < cn − Ω(n). So G is close to a complete
partite graph with one small part and the other parts equally sized. In fact, we
can show (Lemma 6.1) that every max-cut partition A1, . . . , Ak of G is such that
||Ai | − cn| = o(n) for i ∈ [k − 1] (and ||Ak | − (n − (k − 1)cn)| = o(n)) and
m + h = o(n2), where

m :=
∑

i j∈([k]2 )

e(G[Ai , A j ]) and h :=
∑
i∈[k]

e(G[Ai ]).

Following [26], we say that any pair of vertices in different parts that does not
span an edge is a missing edge, and any edge inside a part is bad. As usual, we
now identify some vertices that are atypical in the sense that they are incident
to many missing edges. Let Z be the set of vertices incident with Ω(n) missing
edges. Thus

|Z | = O(m/n) = o(n). (3.1)

It turns out that every bad edge is incident to a vertex in Z . Thus, if Z = ∅, then
G is k-partite and it is not hard to show (see Corollary 4.4(i)) that every extremal
k-partite (n, e)-graph lies in H2(n, e), a contradiction.

2. Transformations (Section 7)

Now we would like to make a series of local changes to G to obtain a new
n-vertex e-edge graph G ′ such that K3(G ′) − K3(G) = 0, but the structure of
G ′ is much simpler. Here, ‘simpler’ means ‘no bad edges’, so G ′ would be k-
partite, and we would obtain our desired contradiction. From the property of Z
above, these local changes would then only have to be made at Z . Unfortunately,
this is too ambitious as we do not have fine enough control on the structure of
the graph. Therefore we reduce our expectations and aim to find G ′ such that
K3(G ′) − K3(G) is small (Lemma 7.1). That is, we simplify the structure (and
thus it is easier to count triangles) at the expense of a few additional triangles. To
be more precise, small means o(m2/n). Although the transformations themselves
are easy to describe, this is the longest and most technical part of the proof.
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The minimum number of triangles 13

• Transformation 1 (Figure 3, Lemmas 7.3 and 7.4): Removing bad edges in the
large parts A1, . . . , Ak−1.

• Transformation 2 (Figure 4, Lemmas 7.5 and 7.6): Reassigning those vertices
in Z ∩ Ak incident to many missing edges to a large part.

• Transformations 3–6 (Figures 5–7, Lemmas 7.7–7.10 and the proof of
Lemma 7.1): Dealing with those vertices in Z ∩ Ak incident to few missing
edges.

3. Finishing the proof in this case (Section 8)

i. Suppose that m > Cn for some large constant C (Section 8.1). Write A′′1, . . . ,
A′′k for the parts of G ′. Keeping track of the transformation G → G ′ allows us to
use G ′ to obtain additional structural information about G. To do this, we apply
Lemma 4.19, which measures the difference in the numbers of triangles between
a k-partite (n, e)-graph (such as G ′) and an ‘ideal’ k-partite graph (which is
essentially H ∗(n, e)). Because the same is true in G in the intermediate case, the
difference in size between the smallest part of G ′ and the other parts is Ω(n). In
Lemma 8.2, this fact and K3(G ′)−K3(H ∗(n, e)) 6 K3(G ′)−K3(G) = o(m2/n)
imply via Lemma 4.19 that e(G ′[A′′i , A′′k ]) = Ω(m) for exactly one i ∈ [k − 1],
and the other A′′j satisfy ||A′′j | − cn| = o(m/n) and |Z ∩ A′′j | = o(m/n) (which
is much stronger than (3.1)).

Since we had fine control on the transformation G → G ′, similar statements
hold in G (Lemma 8.4): e(G[Ai , Ak]) = Ω(m) for exactly one i ∈ [k − 1],
and the other A j satisfy ||A j | − cn| = o(m/n) and |Z ∩ A j | = o(m/n). This
new information about G is substantial enough to show that most of the local
changes we did earlier actually decrease the number of triangles. This applies,
for example, to Transformation 1, and we conclude that Z ∩ A j = ∅ for all
j ∈ [k − 1] \ {i}. So A j contains no bad edges (Lemma 8.6). This analysis
requires tight ‘step-by-step’ control on the effect of the transformations, which
is what makes the proofs more technical than they would otherwise have to be.
Then a final global change (see Figure 8) brings us to a graph H ∈ H1(n, e),
which, if Z 6= ∅, satisfies K3(H)− K3(G) < 0, a contradiction.

ii. Suppose that m < Cn (Section 8.2). This case is different as the errors
stemming from G ′ are too large to allow us to glean any extra information.
Instead, we show directly that most of the transformations we did earlier do
not increase the number of triangles. This is possible since we now know that,
for example, Z has constant size (see (3.1)).

This case has a different flavour because we may enter the situation where, for
example, after performing Transformation 1 to obtain G1, we have K3(G1) =
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H. Liu, O. Pikhurko and K. Staden 14

K3(G) and G1 ∈ H(n, e). Then we have to argue that in fact this must imply
G ∈ H(n, e), a contradiction. This is the only part of the proof where we are not
able to obtain a contradiction by strictly decreasing the number of triangles, and
must actually analyse the extremal family H(n, e) (Section 8.2.1).

II: The boundary case tk(n)− e = r , where r = o(n2) (Section 9).

The proof in this case turns out to be much shorter than the intermediate case. We
now have that cn = n/k+O(

√
r). A different argument is required to determine

the approximate structure of G as we need better bounds in terms of r : we use
an averaging argument (Lemma 9.2), which is very similar to [26, Theorem 2].
Thus we obtain a rather strong structure property (Lemma 9.1): every max-cut
partition A1, . . . , Ak of G is such that ||Ai | − n/k| = O(

√
r) for all i ∈ [k], and∑

i j∈([k]2 )
e(G[Ai , A j ])+

∑
i∈[k] e(G[Ai ]) = O(r).

Again, we let Z be the set of vertices with Ω(n) missing edges, and show
that |Z | = o(n) and every bad edge is incident to a vertex in Z . In the
intermediate case, the most troublesome vertices were those in Z ∩ Ak dealt
with in Transformations 3–6. Now, Ak is not substantially smaller than the other
parts, so this is no longer the case and some difficulties from the intermediate
case disappear.

We show that, for every i ∈ [k], the set Ai \ Z is ‘significantly smaller’ than cn.
This then implies that G[A1 \ Z , . . . , Ak \ Z ] is complete partite (Lemma 9.9).
Finally, we show that Z = ∅, completing the proof as before. For these final
steps, we again build up a repository of structural information by performing
(much simpler) transformations that strictly decrease the number of triangles
unless a desired property holds.

4. Extremal families and preliminary tools

One of the main results of this section is to prove Proposition 1.5 that for all
i = 0, 1, 2, we have Hmin

i (n, e) = H∗i (n, e), and h(n, e) = h∗(n, e) for all valid
pairs (n, e). In order to do this, we present some auxiliary definitions and results
first.

4.1. Extremal k(n, e)-partite graphs. The main conclusion of this section
will be Corollary 4.4, which states that all extremal k(n, e)-partite (n, e)-graphs
lie in H2(n, e) and at least one such graph is in H1(n, e).

In order to prove it, we need to define a somewhat related family H′2(n, e).
Given a valid pair (n, e), let k := k(n, e). Define H′2(n, e) to be the family of
k-partite (n, e)-graphs H with parts A1, . . . , Ak of sizes |A1| > · · · > |Ak | such
that
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The minimum number of triangles 15

(1) for all i ∈ [k] and x ∈ Ai , there is at most one j ∈ [k] \ {i} such that
dH (x, A j) > 0;

(2) if |Ai | + |A j | > |Ak−1| + |Ak |, then H [Ai , A j ] is complete.
We say that A1, . . . , Ak is an H′2-canonical partition. The above definition is
motivated by the following easy lemma.

LEMMA 4.1. Let (n, e) be valid and let k = k(n, e). Let G(n, e) be the set of
k-partite (n, e)-graphs. Then Gmin(n, e) ⊆ H′2(n, e).

Proof. Let G ∈ Gmin(n, e). Let A1, . . . , Ak be the parts of G, where ai := |Ai |

for all i ∈ [k] and a1 > · · · > ak . Let m :=
∑

i j∈([k]2 )
e(G[Ai , A j ]).

We have that m 6 ak−1ak , for otherwise

e < e(Ka1,...,ak−2,ak−1+ak ) 6 tk−1(n)

and so k(n, e) 6 k − 1, a contradiction. Consider G∗ := K [A1, . . . , Ak] \ E∗,
where E∗ consists of some m edges of K [Ak−1, Ak]. Clearly, G∗ ∈ G(n, e). Thus,
by the minimality of G ∈ G(n, e), we have K3(G∗) > K3(G) . On the other hand,
since each pair of E∗ is in exactly a1 + · · · + ak−2 triangles of K [A1, . . . , Ak]

and no such triangle is counted more than once, we have

K3(G∗)− K3(G) = (K3(K [A1, . . . , Ak])− K3(G))
−(K3(K [A1, . . . , Ak])− K3(G∗))

6
∑

i j∈([k]2 )

e(G[Ai , A j ])

( ∑
h∈[k]\{i, j}

ah

)
− |E∗|(a1 + · · · + ak−2)

=

∑
i j∈([k]2 )

e(G[Ai , A j ])

( ∑
h∈[k]\{i, j}

ah − (a1 + · · · + ak−2)

)

=

∑
i j∈([k]2 )

e(G[Ai , A j ])
(
(ak−1 + ak)− (ai + a j)

)
6 0, (4.1)

so we have equality throughout. The sharpness of the first (respectively, second)
inequality in (4.1) implies the first (respectively, second) property from the
definition of H′2(n, e). Thus G ∈ H′2(n, e), as required.

We also need the following result concerning extremal graphs in H′2(n, e).

LEMMA 4.2. Let (n, e) be valid with k = k(n, e). Let H ∈ (H′2)min(n, e) with an
H′2-canonical partition A1, . . . , Ak having part sizes a1 > · · · > ak , respectively.
Let m :=

∑
i j∈([k]2 )

e(H [Ai , A j ]). Then the following statements hold.
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H. Liu, O. Pikhurko and K. Staden 16

(i) There exists G ∈ H1(n, e) ∩H′2(n, e) ∩H2(n, e) with K3(G) = K3(H).

(ii) If ak−2 = ak−1, then m 6 ak−1 − ak + 1.

Proof. If m > ak−1ak , then e < tk−1(n), a contradiction. Thus there exists G :=
K [A1, . . . , Ak]\E∗, where E∗ ⊆ K [Ak−1, Ak] and |E∗| = m. Clearly, G ∈H1(n,
e) ∩H′2(n, e) ∩H2(n, e). Also, the calculation as in (4.1) shows that K3(G) 6
K3(H). This is equality by the minimality of H , proving the first part of the
lemma.

Now, let us show (ii). Let a := ak−2 = ak−1. Suppose on the contrary that
s := m − a + ak − 1 is at least 1. Then (a + 1)(ak − 1)− (aak −m) = s > 1. If
s > a(ak − 1), then

e = e(Ka1,...,ak )− m = e(Ka1,...,ak−3,a+1,a,ak−1)− s < e(Ka1,...,ak−3,a+1,a+ak−1)

6 tk−1(n),

a contradiction to the definition of k. Thus there is an (n, e)-graph J obtained
from the complete k-partite graph Ka1,...,ak−3,a+1,a,ak−1 by removing s edges
between the last two classes (that have sizes a and ak−1). Note that J ∈H′2(n, e).
But then we have

K3(H)− K3(J ) > (a2ak − (s + a − ak + 1)a)− (a(a + 1)(ak − 1)− s(a + 1))
= s > 0.

This contradiction completes the proof of the second part.

LEMMA 4.3. Let (n, e) be valid with k = k(n, e). Then (H′2)min(n, e) =Hmin
2 (n,

e). Moreover, for all graphs in this family, an H′2-canonical partition is an H2-
canonical partition up to relabelling parts, and vice versa.

Proof. Throughout this proof, we omit (n, e) for brevity.
We first show that (H′2)min

⊆ Hmin
2 . Take any H ∈ (H′2)min with an H′2-

canonical partition A1, . . . , Ak . We claim that H ∈ H2, and some ordering of
{A1, . . . , Ak} is an H2-canonical partition. Assume that |Ak−2| = |Ak−1| = |Ak |

for otherwise e(H [Ai , A j ]) > 0 only if k ∈ {i, j} in which case H ∈ H2, as
desired. Lemma 4.2(ii) gives that∑

i j∈([k]2 )

e(H [Ai , A j ]) 6 |Ak−1| − |Ak | + 1 = 1.

Thus H has at most one missing edge, which (if exists) is incident to some
part Ai with |Ai | = |Ak |. In any case, H ∈ H2 with the same canonical
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The minimum number of triangles 17

partition, up to relabelling, as claimed. If H is not in Hmin
2 , then any H ′ ∈ Hmin

2
has fewer triangles than H . However, by Lemma 4.1 there is G ∈ H′2 with
K3(G) 6 K3(H ′) < K3(H), contradicting the extremality of H . In particular,
writing h2 := K3(F) and h′2 := K3(F ′), where F ∈ Hmin

2 and F ′ ∈ (H′2)min, we
see that h2 = h′2.

We now show the other direction, that is, (H′2)min
⊇ Hmin

2 . Let G(n, e) be
the set of k-partite (n, e)-graphs. By definition, H2 ⊆ G. As Gmin

⊆ H′2 due
to Lemma 4.1 and h2 = h′2, we have that Hmin

2 ⊆ Gmin
⊆ (H′2)min as desired.

Furthermore, if A1, . . . , Ak is an H2-canonical partition of G ∈ Hmin
2 , some

ordering of it is an H′2-canonical partition.

For ease of reference, let us summarize some facts that we will need later.

COROLLARY 4.4. Let (n, e) be valid with k = k(n, e). Then the following
statements hold.

(i) Every extremal k-partite (n, e)-graph lies in H2(n, e).

(ii) At least one extremal k-partite (n, e)-graph lies in H1(n, e).

(iii) Let H ∈ Hmin
2 (n, e) \H1(n, e) with an H2-canonical partition A∗1, . . . , A∗k .

Then ∑
i j∈([k]2 )

e(H [A∗i , A∗j ]) 6 |A
∗

k−1| − |A
∗

k | + 1 6 n.

Proof. Part (i) (respectively, (ii)) is a direct consequence of Lemma 4.1 when
combined with Lemma 4.3 (respectively, with Lemma 4.2(i)). To see (iii), let H
and A∗1, . . . , A∗k be as stated. We claim that |A∗k−2| = |A

∗

k−1|. Indeed, if |A∗k−2| >
|A∗k−1| + 1, then all the missing edges in H should lie in [A∗k−1, A∗k] as otherwise
moving all missing edges to [A∗k−1, A∗k] would result in a graph still in H2(n, e)
having strictly fewer triangles than H , contradicting the choice of H . But then if
all missing edges lie in [A∗k−1, A∗k], we have H ∈ H1(n, e), a contradiction. This
together with Lemma 4.2(ii) and Lemma 4.3 implies (iii).

For future reference, let us state here the following auxiliary lemma, which
implies that if the condition on a that defines a∗k in Definition 1 fails for some
a 6 n/k, then it fails for all smaller values of a ∈ N.

LEMMA 4.5. For any integers a > 1, k > 2 and n > ak, we have

a(n − a)+ tk−1(n − a) > (a − 1)(n − a + 1)+ tk−1(n − a + 1).
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Proof. Let a1 > · · · > ak−1 be the part sizes of Tk−1(n − a). If we increase its
order by 1, then the part sizes of the new Turán graph, up to a reordering, can
be obtained by increasing ak−1 by 1. Thus we need to estimate the following
difference:

e(Ka1,...,ak−1,a)−e(Ka1,...,ak−2,ak−1+1,a−1) = ak−1a−(ak−1+1)(a−1) = ak−1−a+1,
(4.2)

which is positive since ak−1 > b(n − a)/(k − 1)c is at least a by our assumption
a 6 bn/kc.

4.2. Proof of Proposition 1.5. First, we describe a transformation that
converts an arbitrary H0(n, e)-extremal graph G into another extremal graph
H ′ of a rather simple structure. Then, we argue in Lemma 4.6 that H ′ is in
fact isomorphic to the special graph H ∗(n, e) from Definition 1. Since H ∗(n,
e) ∈ H1(n, e) ⊆ H0(n, e), this determines the minimum number of triangles
for graphs in these two families. From here, it is relatively easy to derive all
remaining claims of Proposition 1.5.

Let (n, e) be valid and set k = k(n, e). Take an arbitrary graph G ∈Hmin
0 (n, e)

with a vertex partition B1, . . . , Bk−1 such that G consists of the union of K [B1,

. . . , Bk−1] and an edge-disjoint triangle-free graph J . We say that a part B j , j ∈
[k − 1], is partially full (in G) if 0 < e(G[B j ]) < t2(b j), where b j := |B j |.
Since we can move edges in both directions between such parts (keeping the
parts triangle-free and thus staying within the family H0(n, e)), we have by the
minimality of G that

bi = b j , for all i, j ∈ [k − 1] such that Bi and B j are partially full. (4.3)

We construct another graph H ′ = H ′(G) in Hmin
0 (n, e) using the following

steps.

Step 1 For each partially full part B j , replace G[B j ] by a balanced bipartite
graph of the same size (which is possible by Mantel’s theorem).

Step 2 Move edges between partially full parts (keeping them balanced
bipartite), until at most one remains. By (4.3), the current graph
(denote it by G1) is still in Hmin

0 (n, e).

Step 3 If there is a part Bi which is partially full in G1, then let B := Bi ;
otherwise, let B := Bi for some i ∈ [k − 1] with e(G1[Bi ]) = t2(bi)

(such i exists since e(G1) = e > tk−1(n)).

Step 4 As V (G)\ B induces a complete partite graph in G1, let A1, . . . , At−2 be
its parts of sizes a1 > · · · > at−2, respectively. Thus each part Bi of G is
equal to either B, or some A j , or the union of some two parts A j ∪ A`.
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Step 5 Choose integers at−1 > at > 1 such that at−1 + at = |B| and (at−1 +

1)(at − 1) < e(G1[B]) 6 at−1at , which is possible since G1[B] is
bipartite. Let At−1, At be a partition of B with |Ai | = ai for i ∈ {t−1, t}.
If e(G1[B]) = t2(|B|), then we additionally require that the parts At−1

and At are given by the bipartition of G1[B] ∼= T2(|B|).

Step 6 Let H ′ be obtained from K [A1, . . . , At ] by removing a star centred at At

with m ′ leaves all of which lie in At−1, where m ′ :=
∑

i j∈([t]2 )
ai a j − e =

at−1at − e(G1[B]). This is possible because, like in (1.3), we have

0 6 m ′ 6 at−1 − at . (4.4)

LEMMA 4.6. For every valid (n, e) and G ∈ Hmin
0 (n, e), the graph H ′ produced

by Steps 1–6 above is isomorphic to H ∗(n, e).

Proof. We will use the notation defined in Steps 1–6 (such as the sets Bi

and Ai and so on). As H ′ is obtained from G1 ∈ Hmin
0 (n, e) by replacing a

bipartite graph on B with another bipartite graph of the same size (while B is
complete to the rest in both graphs), we have that K3(H ′) = K3(G1) and thus
H ′ ∈ Hmin

0 (n, e).

CLAIM 4.7. If m ′ = 0, then e(H ′[Ah ∪ Ai ∪ A j ]) > t2(|Ah|+ |Ai |+ |A j |) for all
hi j ∈

(
[t]
3

)
. If m ′ > 0, then the stated inequality holds for every triple {h, t−1, t}

with h ∈ [t − 2].

Proof of Claim. Let W := Ah ∪ Ai ∪ A j . Suppose on the contrary that
e(H ′[W ]) 6 t2(|W |). Then one can obtain a new graph G2 from H ′ by replacing
H ′[W ] with a bipartite graph of the same size. Note that H ′ is complete between
W and W . (Indeed, this is trivially true if m ′ = 0 as then H ′ = K [A1, . . . , At ];
otherwise, the only noncomplete pair is [At−1, At ], but both of these sets lie
inside W .)

As H ′ is t-partite, the graph G2 is (t−1)-partite (with at most one noncomplete
pair of parts). By Steps 4–5, we have t 6 2(k−1). So we can represent G2 as the
union of complete (k − 1)-partite and triangle-free graphs, that is, G2 ∈ H0(n,
e). We have that K3(G2[W ]) = 0 and W is complete to W in both H ′ and G2.
Thus the fact that H ′ ∈ Hmin

0 (n, e) implies that K3(H ′[W ]) = 0. However, if
{t − 1, t} 6⊆ {h, i, j}, then H ′[W ] is complete tripartite and so clearly contains
at least one triangle. Otherwise, if, say, {i, j} = {t − 1, t}, then H ′ spans at least
one edge between At−1 and At (since there are m ′ 6 at−1 − at < at−1at missing
edges by (4.4)). Each such edge lies in |Ah| > 0 triangles in H ′[W ]. So in either
case, we obtain a contradiction.
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CLAIM 4.8. If m ′ > 0, then at−2 > at−1.

Proof of Claim. Suppose the claim is false. Now, make a new graph G3 from
H ′ by replacing [At−2, At ]-edges with [At−1, At ]-edges until this is no longer
possible. Let W := At−2 ∪ At−1 ∪ At . If At−2 ∪ At is an independent set in G3

(that is, if m ′ > at−2at ), then e(H ′[W ]) = e(G3[W ]) 6 t2(|W |), contradicting
Claim 4.7 for the triple {t − 2, t − 1, t}. Thus G3[W ] is obtained from K [At−2,

At−1, At ] by removing m ′ edges from K [At−2, At ]. So G3 ∈ H0(n, e), and

K3(G3)−K3(H ′) = m ′((n−at−1−at)−(n−at−2−at)) = m ′(at−2−at−1) 6 −1,
a contradiction proving the claim.

If m ′ > 0, let Ci := Ai for i ∈ [t]. If m ′ = 0, then let C1, . . . ,Ct be a relabelling
of A1, . . . , At so that the sizes of the sets do not increase. Regardless of the value
of m ′, the following statements hold. First, c1 > · · · > ct , where ci := |Ci | for
i ∈ [t]. (Indeed, if m ′ > 0, this follows from Steps 4–5 and Claim 4.8.) Also, we
have

0 6 m ′ 6 ct−1 − ct . (4.5)

(Indeed, if m ′ > 0, this is the same as (4.4); otherwise, this is a trivial
consequence of m ′ = 0 and ct−1 > ct .) Also, Claim 4.7 applies to any triple
Ci ,Ct−1,Ct .

The rest of the proof is written so that it works for both m ′ = 0 and m ′ > 0.

CLAIM 4.9. We have that c1 6 ct−1 + 1.

Proof of Claim. Suppose that this is false. Let W := C1 ∪ Ct−1 ∪ Ct . Note that

e(Kc1−1,ct−1+1,ct )− e(H ′[W ]) = m ′ − ct−1 + c1 − 1 =: m ′′.

Now, m ′′ > m ′ + 1. We claim that additionally m ′′ < (ct−1 + 1)ct . Suppose
that this is not true. Then e(H ′[W ]) 6 (c1 − 1)(ct−1 + ct + 1) 6 t2(|W |),
contradicting Claim 4.7. Take a partition C ′1,C ′t−1,C ′t of W of sizes c1 − 1,
ct−1 + 1, ct , respectively, and let a graph HW be obtained from K [C ′1,C ′t−1,C ′t ]
by removing m ′′ edges between C ′t−1 and C ′t . Then e(HW ) = e(H ′[W ]). Obtain
H ′′ from H ′ by replacing H ′[W ] with HW . Note that H ′′ ∈ H0(n, e). By (4.5),
we have that

K3(H ′)− K3(H ′′) = K3(H ′[W ])− K3(HW )

=
(
c1ct−1ct − m ′c1

)
−
(
(c1 − 1)(ct−1 + 1)ct

− (m ′ − ct−1 + c1 − 1)(c1 − 1)
)

> (c1 − ct)(c1 − ct−1 − 2)+ 1 > 1,

a contradiction proving ct−1 + 1 > c1.
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It follows that C1, . . . ,Ct−1 induce a Turán graph in H ′. (Indeed, the sizes
of these independent sets are almost equal by Claim 4.9; furthermore, if m ′ >
0, then all missing edges in H ′ are between Ct−1 = At−1 and Ct = At while
otherwise there are no missing edges at all.)

Now, we can argue that t = k. By the definition of k, we have to show that
tt−1(n) < e 6 tt(n). Clearly, H ′ is t-partite, so e 6 tt(n). So it remains to show
tt−1(n) < e. Let T := H ′[C1 ∪ · · · ∪ Ct−1]

∼= Tt−1(n − ct). We can obtain both
H ′ and Tt−1(n) from T by adding ct vertices one by one. First, let us make H ′

from T . The number of additional edges is e − e(T ) = ct(n − ct) − m ′. If we
instead add vertices one by one to T to make Tt−1(n), each vertex must miss
an entire part of the current graph, so its degree is at most n − ct−1 − 1. Thus
tt−1(n)− e(T ) 6 ct(n − ct−1 − 1). By (4.5), we have

e − tt−1(n) > ct(ct−1 + 1− ct)− m ′ > (ct − 1)(ct−1 − ct)+ ct > 0.

Thus t = k, as stated.
Now we can show that H ′ has part sizes given by the vector a∗ = a∗(n, e)

from Definition 1, finishing the proof of the lemma. By Claim 4.9, we have that∑
i j∈([k−1]

2 )
ci c j = tk−1(n − ck). Note that m ′ = ck−1ck − e(H ′[Ck−1 ∪ Ck]). Thus

we have by (4.5) that e − tk−1(n − ck) = ck(n − ck)− m ′ 6 ck(n − ck).
So it remains only to show that ck is the smallest natural number a with

f (a) := a(n − a) + tk−1(n − a) > e. Note that ck 6 n/k as it is the smallest
among c1 + · · · + ck = n. Thus, by Lemma 4.5, it is enough to check that ck − 1
violates this condition. The calculation in (4.2), the estimates that we stated in
the previous paragraph and (4.5) give that

f (ck − 1) = f (ck)− (ck−1 − ck + 1) 6 e + m ′ − (m ′ + 1) < e,

as desired. This finishes the proof of the lemma.

Proof of Proposition 1.5. Let n, e ∈ N with e 6
(n

2

)
and let k := k(n, e).

Corollary 4.4 and Lemma 4.6 show that, for each i ∈ {0, 1, 2}, the minimum
number of triangles over the graphs in Hi(n, e) 3 H ∗(n, e) is K3(H ∗(n, e)) =
h∗(n, e). Thus it remains to describe the extremal graphs. Assume that k > 3 as
otherwise h(n, e) = h∗(n, e) = 0 and trivially Hmin

i (n, e) = H∗i (n, e) for i = 0,
1, 2.

First, we will prove that Hmin
i (n, e) = H∗i (n, e) for i = 0, 1. Let G ∈ Hmin

0 (n,
e) be arbitrary. Let G have vertex partition B1, . . . , Bk−1 such that G consists of
the union of K [B1, . . . , Bk−1] and an edge-disjoint triangle-free graph J . Write
bi := |Bi | for all i ∈ [k − 1]. Apply Steps 1–6 to G to obtain a t-partite graph
H ′ with parts A1, . . . , At . By Lemma 4.6, H ′ is isomorphic to H ∗ := H ∗(n, e).
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Thus t = k and, by relabelling parts, we can assume that |Ai | = a∗i for all i ∈ [k]
and that all missing edges, if any exist, are in H ′[Ak−1, Ak].

We will also need the following claim.

CLAIM 4.10. If a part Bi is not partially full in G (that is, if e(G[Bi ]) is 0 or
t2(bi)), then G[Bi ] = H ′[Bi ] (that is, no adjacency inside Bi is modified).

Proof of Claim. If e(G[Bi ]) = 0, then Bi = A j for some j ∈ [k − 2] and so
e(H ′[Bi ]) = 0 = e(G[Bi ]), giving the required. If e(G[Bi ]) = t2(bi), then by
construction, G1[Bi ] = G[Bi ] are maximum bipartite graphs and so H ′[Bi ] =

G[Bi ], as required.

Since t = k, exactly one part Bp of G is subdivided as Aq ∪ Ar in Steps 4–5
(that is, Bp = Aq ∪ Ar ), while the remaining parts of G correspond to the
remaining parts of H ′. In particular, bp = a∗q + a∗r , where, say, 1 6 q < r 6 k.

Let us show that e(G[Bp]) > 0. Indeed, if this is not true, then, by (1.3),
H ′[Bp] contains a∗q a∗r −m∗ > a∗q a∗r − (a

∗

k−1 − a∗k ) > 0 edges, and so is different
from the edgeless graph G[Bp]. Then Claim 4.10 implies that Bp is partially full,
a contradiction.

Case 1. There exists h ∈ [k − 1] \ {p} such that e(G[Bh]) > 0. In other words,
G ∈ Hmin

0 (n, e) \H1(n, e).

We claim that bh = bp. This follows from (4.3) if Bh and Bp are both partially full.
Note that Bh is an independent set in H ′ and so G[Bh] 6= H ′[Bh], and Claim 4.10
implies that Bh is partially full. So it suffices to show that Bp is partially full. If
not, then e(G[Bp]) = t2(bp) (as e(G[Bp]) = 0 is already excluded). Since G[Bi ,

B j ] = H ′[Bi , B j ] for all i j ∈
(
[k−1]

2

)
and e(H ′[Bh]) = 0 < e(G[Bh]), there is

some ` ∈ [k−1]\{h} such that e(H ′[B`]) > e(G[B`]). Since H ′[Bp] is bipartite
and e(G[Bp]) = t2(bp) > e(H ′[Bp]), we have that ` 6= p . But then B` = A j for
some j ∈ [k], and so B` is an independent set in H ′, a contradiction. This proves
that bh = bp.

Since Bp is the only part that was subdivided, there is s ∈ [k − 1] such that
As = Bh and thus a∗s = bh = bp = a∗q+a∗r . Since a∗1 > · · · > a∗k−1 > max{a∗1−1,
a∗k }, we have a∗s − a∗q = 1 and a∗r = 1. So a∗k = 1 and a∗q = a∗k−1. Since h was
arbitrary, we conclude that for all i ∈ [k − 1] such that e(G[Bi ]) > 0, we have
bi = a∗k−1 + 1. So G ∈ H∗0(n, e), as required.

Case 2. For all h ∈ [k − 1] \ {p}, we have e(G[Bh]) = 0. In other words, G ∈
Hmin

1 (n, e).

Suppose first that m∗ = 0. Then H ′ = K [A1, . . . , Ak], and G can be obtained
from it by replacing H ′[Aq ∪ Ar ] with G[Bp]. Moreover, G[Bp] is a triangle-
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free graph on a∗q + a∗r vertices with a∗q a∗r edges. If a∗r = a∗k , then G ∈ H∗1(n, e);
otherwise |a∗q − a∗r | 6 1, so G[Bp]

∼= T2(a∗q + a∗r ) and thus G ∼= H ′ ∈ H∗1(n, e),
getting the required in either case.

Suppose instead that m∗ > 0. Since G[Ai , A j ] is complete for all {i, j} 6=
{q, r}, and H ′[Ai , A j ] is complete if and only if {i, j} 6= {k − 1, k}, we have
{q, r} = {k − 1, k}. Thus G can be obtained from K [A1, . . . , Ak] by replacing
K [Ak−1 ∪ Ak] with a triangle-free graph with a∗k−1a∗k −m∗ edges. This gives that
G ∈ H∗1(n, e), as required.

Note that if G ∈ Hmin
1 (n, e), then the above argument always concludes that

G ∈H∗1(n, e), apart from Case 1 (that does not apply here). Thus we have proved
that Hmin

i (n, e) = H∗i (n, e) for i = 0, 1.

Now let G ∈ Hmin
2 (n, e) be arbitrary. If G ∈ H1(n, e), then, as we have just

established, G ∈ H∗1(n, e) (and also G is k-partite). So G ∈ H∗2(n, e), and thus
we may assume that G ∈ Hmin

2 (n, e) \H1(n, e).
Let G have an H2-canonical partition A1, . . . , Ak with part sizes a1 > · · ·> ak ,

respectively. By Lemma 4.3, we have that G ∈ (H′2)min(n, e), and A1, . . . , Ak is
an H′2-canonical partition. Since G /∈ H1(n, e), Corollary 4.4(iii) gives that

m :=
∑

16i< j6k

e(G[Ai , A j ]) 6 ak−1 − ak + 1. (4.6)

Since Hmin
2 (n, e) = (H′2)min(n, e) by Lemma 4.3, we see that if, for i in I :=

{ j ∈ [k − 1] : a j = ak−1}, we let Bi consist of those x ∈ Ak that have at least
one nonneighbour in Ai , then these subsets of Ak are disjoint and every missing
edge in G intersects one of them. So to prove that G ∈ H∗2(n, e), it suffices to
show that

(i) (a1, . . . , ak) = (a∗1 , . . . , a∗k ); or

(ii) m∗ = 0, a∗1 > a∗k + 2 and (a1, . . . , ak) = (a∗2 , . . . , a∗k−1, a∗1 − 1, a∗k + 1).

By (4.6), we can obtain a graph G ′ from G by moving all m missing edges
between parts Ak−1 and Ak . Then G ′ ∈ Hmin

1 (n, e), which equals H∗1(n, e) as we
have already shown. So G ′ has a partition A∗1, . . . , A∗k , where |A∗i | = a∗i , and
there is some i ∈ [k − 1] such that G ′ can be obtained from K [A∗1, . . . , A∗k] by
replacing K [A∗i ∪ A∗k] with a triangle-free graph with a∗i a∗k − m∗ edges. Thus
there is a bijection σ : [k − 1] \ {i} → [k − 2] such that

Aσ( j) = A∗j , for all j ∈ [k − 1] \ {i}, (4.7)

while Ak−1 ∪ Ak = A∗i ∪ A∗k and ak−1+ ak = a∗i + a∗k . Thus, by the monotonicity
of the involved sequences, if we remove the i th and kth entries from a∗, then we
obtain (a1, . . . , ak−2).
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By the minimality of a∗k , we have a∗k 6 ak . Suppose that a := ak − a∗k > 1 as
otherwise (ak−1, ak) = (a∗i , a∗k ) and the desired property (i) follows from (4.7).
Since a∗k + a = ak 6 ak−1 = a∗i − a, we have

m−m∗ = ak−1ak−a∗i a∗k = ak−1ak− (ak−1+a)(ak−a) > ak−1−ak+a2. (4.8)

By (4.6) and (4.8), we have a = 1, m∗ = 0, ak = a∗k +1 and ak−1 = a∗i −1. Also,
a∗1 − 1 > a∗i − 1 = ak−1 > ak = a∗k + 1. Recall that 0 6 a∗1 − a∗i 6 1 by the
definition of a∗. If a∗i = a∗1 − 1, then for all j ∈ [k − 1] \ {i}, by (4.7), we have
a j = a∗

σ−1( j) > a∗1 − 1 = a∗i = ak−1+ 1. But then the set I of indices of parts that
are not complete to Ak consists only of k − 1, so G ∈ H1(n, e), a contradiction.
Thus a∗i = a∗1 . This gives all the statements from (ii) by (4.7), finishing the proof
of the proposition.

4.3. Approximating the increment of the function h∗(n, ·). Let a pair (n,
e) be valid and let k = k(2e/n2), where the single-variable function k is defined
in (1.5). Also, define c(n, e) := c(2e/n2) to be the larger root of (1.6) for λ =
2e/n2; this root can be explicitly written as

c(n, e) := c(2e/n2) =
1
k

(
1+

√
1−

k
k − 1

·
2e
n2

)
. (4.9)

Let c := c(n, e). By definition,(
k − 1

2

)
c2
+ (k − 1)c(1− (k − 1)c) = (k − 1)c −

(
k
2

)
c2
=

e
n2

(4.10)

and so

e(K k
cn,...,cn,n−(k−1)cn) = e and

K3(K k
cn,...,cn,n−(k−1)cn) =

(
k − 1

3

)
c3n3
+

(
k − 1

2

)
c2(1− (k − 1)c)n3

=

(
k − 1

2

)
c2n3
− 2

(
k
3

)
c3n3. (4.11)

In this section, we show that the increment of the function h∗(n, ·) at e is very
closely approximated by (k − 2)cn.

First, we need the following standard estimate of the Turán number.

LEMMA 4.11. Let s, n be integers such that 2 6 s 6 n. Then(
1−

1
s

)
n2

2
−

s
8
6 ts(n) 6

(
1−

1
s

)
n2

2
. (4.12)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


The minimum number of triangles 25

Proof. Divide n by s with remainder: n = s`+ r with r ∈ {0, . . . , s − 1}. Then
the Turán graph Ts(n) has r parts of size `+ 1 and s − r parts of size `. Routine
calculations show that

ts(n) =
(

r
2

)
(`+1)2+

(
s − r

2

)
`2
+r(s−r)(`+1)` =

(
1−

1
s

)
(s`+ r)2

2
+

r 2
− sr
2s

.

For real r ∈ [0, s−1], the quadratic function r 2
−rs has its minimum at r = s/2

and its maximum at r = 0, giving the required bounds on ts(n).

Because of the gap in (4.12), the values of k(2e/n2) and k(n, e) may be
different when e is slightly above a Turán number. The following lemma implies
that this never occurs inside the proof of Theorem 1.7, where tk−1(n)+Ω(n2) <

e 6 tk(n); in particular, (4.9) holds then with k(2e/n2) replaced by k(n, e).

LEMMA 4.12. Let a pair (n, e) be valid. Then

(i) k(2e/n2) 6 k(n, e);

(ii) if tk−1(n)+ (k − 1)/8 6 e 6 tk(n), then k(2e/n2) = k = k(n, e).

Proof. Clearly, each of the functions k(n, e) and k(2e/n2) is nondecreasing in e.
Let s ∈ N. Recall that k(λ) jumps from s to s + 1 when λ becomes larger than
(s − 1)/s while k(n, e) jumps from s to s + 1 when e becomes larger than ts(n).
Now, both of the stated claims follow from Lemma 4.11.

LEMMA 4.13. For every λ ∈ [0, 1), we have (k(λ)− 1)c(λ) < 1.

Proof. Assume that s := k(λ) > 2, as otherwise there is nothing to prove. The
formula in (1.7) shows that c(x) is a strictly decreasing continuous function for
x ∈ ( s−2

s−1 ,
s−1

s ] and the limit of c(x) as x tends to s−2
s−1 from above is 1/(s − 1).

Thus c(x) < 1/(s − 1) in this half-open interval, as required.

LEMMA 4.14. For all valid (n, e), if c = c(n, e) is such that cn ∈ N, then k(n,
e) = k(2e/n2) =: k, and a∗ = a∗(n, e) is equal to (cn, . . . , cn, n − (k − 1)cn).

Proof. Let k := k(2e/n2) and a := n − (k − 1)cn. Since c > 1/k by definition,
we have that a 6 cn. Also, c < 1/(k − 1) by Lemma 4.13. Thus a is positive.
From e(Kcn,...,cn,a) = e, we conclude that k(n, e) 6 k. This must be equality by
the first part of Lemma 4.12.

Recall by Definition 1 that a∗k is the minimum s ∈ N with s(n − s) +
tk−1(n − s) > e, which is satisfied (with equality) for s = a. Thus a∗k 6 a. Now,
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Lemma 4.5 implies by the induction on a − s that for every s = a − 1, a − 2,
. . . , 1, we have s(n − s) + tk−1(n − s) < e. Thus indeed a∗k = a. This clearly
implies that a∗i = cn for each i ∈ [k − 1].

The following simple lemma describes the change in H ∗(n, e) when we
increase e by 1. Informally speaking, (i) one missing edge is added, (ii) the
smallest part increases by 1, or (iii) the number of parts increases by 1.

LEMMA 4.15. Let e, n ∈ N with e <
(n

2

)
. Let k = k(n, e), a∗ = a∗(n, e), m∗ =

m∗(n, e), k+ = k(n, e+ 1) and a+ = a∗(n, e+ 1) be as in Definition 1. Then the
following statements hold.

(i) If m∗ > 0, then k+ = k and a+ = a∗.

(ii) If m∗ = 0 and a∗1 > a∗k + 2, then k+ = k, a+k = a∗k + 1 and (a+1 , . . . , a+k−1)

is obtained from (a∗1 − 1, a∗2 , . . . , a∗k−1) by ordering it nonincreasingly.

(iii) If m∗ = 0 and a∗1 6 a∗k + 1, then k+ = k∗ + 1.

Proof. Let us consider Cases (i) and (ii) together. We can increase the size of
H ∗(n, e) without increasing the number of parts: namely, let H (i) and H (ii) be
obtained from H ∗ by, respectively, adding a missing edge or moving a vertex
from the first part to the last. Since k(n, ·) is a nondecreasing function, we have
that k+ = k in both cases. Furthermore, a∗k 6 n/k by (1.3). This and the equality
k+ = k imply by Lemma 4.5 that a+k > a∗k if m∗ > 0 and a+k > a∗k + 1 if m∗ = 0,
with the matching upper bounds on a+k witnessed by (the part sizes of) H (i) and
H (ii), giving the required.

The third case is also easy: k+ > k since H ∗(n, e) is the Turán graph Tk(n)
while k+ 6 k + 1 since k < n and tk+1(n) > tk(n)+ 1.

LEMMA 4.16. For all valid (n, e), if e ∈ [tk−1(n) + k, tk(n) − 1], then with
c = c(n, e) we have

|(h∗(n, e + 1)− h∗(n, e))− (k − 2)cn| 6 k and
|(h∗(n, e)− h∗(n, e − 1))− (k − 2)cn| 6 k.

Moreover, |a∗i − cn| 6 2 for all i ∈ [k − 1], where a∗ = a∗(n, e) is defined in
Definition 1.

Proof. For valid (n, f ) with k(n, f ) equal to k = k(n, e), let

L(n, f ) :=
∑

i∈[k−2]

a∗i (n, f ) = n − a∗k−1(n, f )− a∗k (n, f ),

where a∗(n, f ) = (a∗1(n, f ), . . . , a∗k (n, f )) is as in Definition 1.
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Note that if f + 1 6 tk(n) (that is, k(n, f + 1) = k(n, f ) = k), then

L(n, f + 1)− L(n, f ) ∈ {−1, 0}. (4.13)

Indeed, consider how the vector a∗ changes when we increase f by 1. Suppose
that m∗(n, f )= 0 as otherwise the vector stays the same by Lemma 4.15(i). Note
that a∗1(n, f ) > a∗k (n, f ) + 2 since f < tk(n), so Lemma 4.15(ii) applies. Here
the kth entry of a∗ increases by 1 while one of the other entries decreases by 1.
In any case, a∗k−1 + a∗k stays the same or increases exactly by 1, giving (4.13).

CLAIM 4.17. There exist integers e−, e+ such that

(i) e− 6 e 6 e+ and k(n, e−) = k(n, e+) = k;

(ii) L(n, e−) 6 (k − 2)dcne and L(n, e+) > (k − 2)bcnc.

Proof of Claim. Given some e− and e+ satisfying (i), we will write a∗(n, e−) =
(a−1 , . . . , a−k ) and similarly a∗(n, e+) = (a+1 , . . . , a+k ).

Let us consider e−. Suppose first that dcne > n/(k − 1). Then we let e− :=
tk−1(n)+1. Now k(n, e−) = k by definition, and a−k = 1, so a−k−1 = b(n−1)/(k−
1)c. Thus

L(n, e−) = n −
(⌊

n − 1
k − 1

⌋
+ 1

)
6

k − 2
k − 1

· n 6 (k − 2)dcne,

as desired.
So suppose that a := dcne < n/(k− 1). Let e− satisfy c(n, e−) = a/n, that is,

e− is the size of the complete k-partite graph K k
a,...,a,n−(k−1)a . Clearly, e− 6 tk(n).

Since a < n/(k−1), we have that e− > tk−1(n). Thus k(n, e−) = k. The explicit
formula in (4.9) shows that c(n, x) is a decreasing function of x , even when
k(n, x) jumps. Since c(n, e−) = a/n is at least c = c(n, e), it holds that e− 6 e.
For this e− we have that a−i = dcne for all i ∈ [k − 1], so Lemma 4.14 implies
that L(n, e−) = (k − 2)dcne, as required.

It remains to obtain e+. Suppose first that b := bcnc < n/k. Let e+ := tk(n).
Then k(n, e+) = k, a+k = bn/kc and a+k−1 = b(n − a+k )/(k − 1)c. Since b <
n/k 6 cn by definition, we have that bn/kc = b. Thus

L(n, e+) = n −
⌊n

k

⌋
−

⌊
n − bn/kc

k − 1

⌋
> (n − b)

(
1−

1
k − 1

)
> (k − 2)b,

as required.
So suppose that b > n/k. By our assumption e > tk−1(n)+k and Lemma 4.12,

we have that k(n, e) = k(2e/n2). By Lemma 4.13, we have that (k − 1)b 6
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(k − 1)cn < n. Thus, similarly as above, if we define e+ = e(Kb,...,b,n−(k−1)b),
then k(n, e+) = k, c(n, e+) = b/n is at most c = c(n, e) and thus e+ > e.
In this case, a+i = bcnc for all i ∈ [k − 1], so Lemma 4.14 implies that L(n,
e+) = (k − 2)bcnc, as required.

By (4.13), L(n, ·) is a nonincreasing function in the range between tk−1(n) + k
and tk(n). Together with the second part of Claim 4.17, this then implies that

(k − 2)bcnc 6 L(n, e+) 6 L(n, e) 6 L(n, e−) 6 (k − 2)dcne. (4.14)

From this we have that bcnc6 a∗i 6 dcne for all i ∈ [k−2]. Since a∗k−1 > a∗k−2−1,
the second part of the lemma is proved.

Now, we claim that

L(n, e)− 1 6 L(n, e + 1) 6 h∗(n, e + 1)− h∗(n, e) 6 L(n, e). (4.15)

If this holds, then

|h∗(n, e + 1)− h∗(n, e)− (k − 2)cn|
6 |h∗(n, e + 1)− h∗(n, e)− L(n, e)| + |L(n, e)− (k − 2)cn|
(4.14),(4.15)

6 1+ (k − 2)max{cn − bcnc, dcne − cn} 6 k − 1,

proving the first inequality. Similarly, noting that k(n, e − 1) = k(n, e) = k by
Lemma 4.12 and the fact that e > tk−1(n)+ k, we have that

|h∗(n, e)− h∗(n, e − 1)− (k − 2)cn|
6 |h∗(n, e)− h∗(n, e − 1)− L(n, e − 1)|
+|L(n, e − 1)− L(n, e)| + |L(n, e)− (k − 2)cn|

6 1+ 1+ (k − 2) = k,

where the last inequality follows from (4.13)–(4.15), proving the second.
So it suffices to prove (4.15). The first inequality follows from (4.13). If

m∗ > 0, then by Lemma 4.15(i), the difference h∗(n, e + 1) − h∗(n, e) is the
number of triangles created by adding one missing edge to H ∗(n, e), which is
exactly L(n, e). If m∗ = 0, then we are in the second case of Lemma 4.15, where
we add one more edge into the union of two parts of sizes a∗1 and a∗k , keeping
this graph bipartite. Clearly, this new edge creates n − a∗1 − a∗k triangles. This is
L(n, e) if a∗1 = a∗k−1 and L(n, e + 1) otherwise (that is, if a∗1 = a∗k−1 + 1).

Lemma 4.16 will imply that if there is a counterexample to Theorem 1.7, then
in an appropriately defined ‘worst counterexample’, no edge lies in more than
(k − 2)cn + k triangles and no nonedge lies in less than (k − 2)cn − k copies of
P3. This fact will be extremely useful in our proof of Theorem 1.7.
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COROLLARY 4.18. Let n ∈ N and e ∈ [tk−1(n) + k, tk(n) − 1] and let p > 0
and c = c(n, e). Suppose that g3(n, e)− h∗(n, e) 6 g3(n, e∗)− h∗(n, e∗) for all
e∗ with k(n, e∗) = k. Let G and G ′ be (n, e)-graphs such that K3(G) = g3(n,
e) > K3(G ′) − p. Then, for every f ∈ E(G), f ′ ∈ E(G ′), f ∈ E(G) and
f ′ ∈ E(G ′), we have that

(i) P3( f ,G) > (k − 2)cn − k and P3( f ′,G ′) > (k − 2)cn − k − p;

(ii) P3( f,G) 6 (k − 2)cn + k and P3( f ′,G ′) 6 (k − 2)cn + k + p.

Proof. Let f ∈ E(G). Then k(n, e + 1) = k and by the assumption on G, for
any (n, e + 1)-graph G ′′, we have that

K3(G)− h∗(n, e) 6 g3(n, e + 1)− h∗(n, e + 1) 6 K3(G ′′)− h∗(n, e + 1).

Thus, by Lemma 4.16,

P3( f ,G) = K3(G ∪ { f })− K3(G) > h∗(n, e+ 1)− h∗(n, e) > (k − 2)cn − k,

where G ∪ { f } denotes the graph G with the pair f added as an edge. Similarly,
for f ′ ∈ E(G ′), we have

P3( f ′,G ′)= K3(G ′∪{ f ′})−K3(G ′)> K3(G ′∪{ f ′})−K3(G)− p > (k−2)cn−k− p.

The second part can be proved similarly via the inequality |h∗(n, e) − h∗(n,
e − 1)− (k − 2)cn| 6 k from Lemma 4.16.

4.4. Comparing k-partite graphs. The next lemma will be used to compare
the number of triangles in two k-partite (n, e)-graphs G and F , in terms of their
part sizes and the number of edges missing between parts. It will later be applied
with ` := bcnc and F a graph in H1(n, e); and G a graph obtained by switching
a small number of adjacencies in a hypothetical counterexample to Theorem 1.7.
Informally speaking, the lemma can be used to derive a quantitative conclusion
of the form that, if the part sizes of G deviate from the almost optimal vector
(`, . . . , `, n − (k − 1)`), then K3(G) is larger than K3(F).

LEMMA 4.19. Let n > k > 3 and d > 0 be integers. Suppose that G and F are
n-vertex k-partite graphs with e(G) = e(F) such that the following hold.

(i) G has parts A1, . . . , Ak .

(ii) G[Ai , A j ] is complete whenever i j ∈
(
[k−1]

2

)
.
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(iii) F has parts B1, . . . , Bk with `i := |Bi | for i ∈ [k] satisfying `1 = · · · =

`k−1 =: ` > `k > 0.

(iv) F[Bi , B j ] is complete for all i j ∈
(
[k]
2

)
\{{k−1, k}}; also, e(F[Bk−1, Bk]) 6

d.

(v) For all i ∈ [k], we have that |di | 6
`−`k
12k3 , where di := si − `i and si := |Ai |.

Moreover, dk > 0.

Let m i := |Ai ||Ak | − e(G[Ai , Ak]) for all i ∈ [k− 1] and m := m1+ · · ·+mk−1.
Then

K3(G)− K3(F) >
∑

t∈[k−1]

m t

m
·
`− `k

4

(dt + dk)
2
+

∑
i∈[k−1]

i 6=t

d2
i

− 12d2

`− `k
.

Proof. Define d0 := e(F[Bk−1, Bk]) 6 d . Let H be the complete k-partite graph
with parts B1, . . . , Bk . As

∑
i j∈([k]2 )

si s j−m = e(G) = e(F) =
∑

i j∈([k]2 )
`i` j−d0,

we have

m ′ := m − (e(H)− e(F)) = m − d0 =
∑

i j∈([k]2 )

si s j −
∑

i j∈([k]2 )

`i` j .

CLAIM 4.20. For all t ∈ [k − 1], we have

∑
i jh∈([k]3 )

si s j sh − m ′
∑

i∈[k−1]
i 6=t

si −
∑

i jh∈([k]3 )

`i` j`h >
`− `k

3

(dt + dk)
2
+

∑
i∈[k−1]

i 6=t

d2
i

 .
(4.16)

Proof. For notational convenience, we prove this for t = k − 1 and observe
that the proof uses only properties (i)–(iii) and (v), which are all symmetric in
t ∈ [k − 1].

We have that the left-hand side of (4.16) (with t = k − 1) is equal to∑
i jh∈([k]3 )

di d j dh +
∑

i j∈([k]2 )

`i` j

∑
h∈[k]
h 6=i, j

dh +
∑

i j∈([k]2 )

di d j

∑
h∈[k]
h 6=i, j

`h

−

∑
i∈[k]

`i

∑
j∈[k]
j 6=i

d j +
∑

i j∈([k]2 )

di d j

 ∑
h∈[k−2]

(`h + dh). (4.17)
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This is a cubic polynomial in d1, . . . , dk . For each 0 6 t 6 3 and 1 6 i1 6 · · · 6
it 6 k, let Ci1...it denote the coefficient of di1 . . . dit . By a slight abuse of notation,
we assume a pair i j ∈

(
[k]
2

)
satisfies i < j (and similarly for triples). Note that

C∅ = 0. Now, for all i ∈ [k],

Ci =
∑

hj∈([k]\{i}2 )

`h` j −
∑
j∈[k]
j 6=i

` j

∑
h∈[k−2]

`h.

So C1 = · · · = Ck−1 since `1 = · · · = `k−1. Also

Ck =

(
k − 1

2

)
`2
− (n − `k)(k − 2)`

=

(
k − 2

2

)
`2
+ (k − 2)``k − (n − `)(k − 2)` = C1.

But ∑
i∈[k]

di = 0 (4.18)

and hence ∑
i∈[k]

Ci di = 0, (4.19)

that is, the linear part of (4.17) is zero.
Next, we simplify the quadratic part. Suppose that i j ∈

(
[k−2]

2

)
. Then

Ci j =
∑
h∈[k]
h 6=i, j

`h −
∑
h∈[k]
h 6=i

`h −
∑
h∈[k]
h 6= j

`h −
∑

h∈[k−2]

`h = `+ `k − 2n. (4.20)

Suppose that i ∈ [k − 2]. Then

Ci i = −
∑
h∈[k]
h 6=i

`h = `− n.

Suppose that i ∈ [k − 2] and j ∈ {k − 1, k}. Then

Ci j =
∑
h∈[k]
h 6=i, j

`h −
∑
h∈[k]
h 6= j

`h −
∑

h∈[k−2]

`h = `k − n. (4.21)

This implies that∑
i∈[k−2]

j∈{k−1,k}

Ci j di d j =
∑

i∈[k−2]

(`k − n)(dk−1 + dk)di
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(4.18)
= −(`k − n)

 ∑
i∈[k−2]

d2
i + 2

∑
i j∈([k−2]

2 )

di d j

 .
Note that if i, j ∈ {k − 1, k}, then Ci j = 0. So∑

i∈[k]

Ci i d2
i =

∑
i∈[k−2]

(`− n)d2
i . (4.22)

Thus the quadratic terms in (4.17) give∑
16i6 j6k

Ci j di d j =
∑
i∈[k]

Ci i d2
i +

∑
i j∈([k−2]

2 )

Ci j di j +
∑

i∈[k−2]
j∈{k−1,k}

Ci j di d j

=

∑
i∈[k−2]

(`− n)d2
i +

∑
i j∈([k−2]

2 )

di d j(`+ `k − 2n)

− (`k − n)

 ∑
i∈[k−2]

d2
i + 2

∑
i j∈([k−2]

2 )

di d j


= (`− `k)

 ∑
i j∈([k−2]

2 )

di d j +
∑

i∈[k−2]

d2
i

 . (4.23)

Now let us consider the cubic terms in (4.17). We have∑
i jh∈[k]3
i6 j6h

Ci jhdi d j dh =
∑

i jh∈([k]3 )

di d j dh −
∑

i j∈([k]2 )

di d j ·
∑

h∈[k−2]

dh

= dk−1dk

∑
i∈[k−2]

di + (dk−1 + dk)
∑

i j∈([k−2]
2 )

di d j

+

∑
i jh∈([k−2]

3 )

di d j dh −
∑

i j∈([k]2 )

di d j

∑
h∈[k−2]

dh

= dk−1dk

∑
i∈[k−2]

di −
∑

h∈[k−2]

dh ·
∑

i j∈([k−2]
2 )

di d j

+

∑
i jh∈([k−2]

3 )

di d j dh −
∑

i j∈([k]2 )

di d j

∑
h∈[k−2]

dh.

Note that, adding the first and the last terms, we get

dk−1dk

∑
i∈[k−2]

di −
∑

i j∈([k]2 )

di d j ·
∑

h∈[k−2]

dh
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(4.18)
=

( ∑
i∈[k−2]

di

) ∑
i∈[k−2]

d2
i +

∑
jh∈([k−2]

2 )

d j dh

 ,
which gives some cancellations when combined with the second term. Also, for
every {i, j, h} ∈

(
[k−2]

3

)
,

|di d j dh| 6 max
s∈[k−2]

|ds | ·
1
2
(d2

j + d2
h ) < max

s∈[k−2]
|ds | ·

∑
t∈[k−2]

d2
t .

These, together with maxi |di | 6
`−`k
12k3 , imply that∣∣∣∣∣∣∣∣

∑
i jh∈[k]3
i6 j6h

Ci jhdi d j dh

∣∣∣∣∣∣∣∣ 6
∣∣∣∣∣
( ∑

h∈[k−2]

dh

) ∑
i∈[k−2]

d2
i

∣∣∣∣∣+
∣∣∣∣∣∣
∑

i jh∈([k−2]
3 )

di d j dh

∣∣∣∣∣∣
6
`− `k

6
·

∑
i∈[k−2]

d2
i . (4.24)

Thus, combining (4.19), (4.23) and (4.24), we have that (4.17) is equal to∑
i∈[k]

Ci di +
∑

16i6 j6k

Ci j di d j +
∑

i jh∈[k]3

Ci jhdi d j dh

>
`− `k

2

(
(dk−1 + dk)

2
+

∑
i∈[k−2]

d2
i

)
−
`− `k

6
·

∑
i∈[k−2]

d2
i

>
`− `k

3

(
(dk−1 + dk)

2
+

∑
i∈[k−2]

d2
i

)
.

This completes the proof of the claim.

Now,

K3(G)− K3(F) = K3(G)− K3(H)+ d0(`1 + · · · + `k−2)

>
∑

i jh∈([k]3 )

si s j sh −
∑

h∈[k−1]

mh

∑
i∈[k−1]

i 6=h

si −
∑

i jh∈([k]3 )

`i` j`h + (k − 2)d0`

=

∑
t∈[k−1]

m t

m

 ∑
i jh∈([k]3 )

si s j sh − m ′
∑

i∈[k−1]
i 6=t

si −
∑

i jh∈([k]3 )

`i` j`h
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− d0

∑
i∈[k−1]

i 6=t

si + (k − 2)d0`



=

∑
t∈[k−1]

m t

m

 ∑
i jh∈([k]3 )

si s j sh − m ′
∑

i∈[k−1]
i 6=t

si −
∑

i jh∈([k]3 )

`i` j`h


−

∑
t∈[k−1]

d0m t

m

∑
i∈[k−1]

i 6=t

di

(4.16)
>

∑
t∈[k−1]

m t

m
·
`− `k

3

(dt + dk)
2
+

∑
i∈[k−1]

i 6=t

d2
i

+ ∑
t∈[k−1]

d0m t

m
(dt + dk).

Let I ⊆ [k − 1] be such that t ∈ I if and only if

`− `k

3
(dt + dk)

2
+ d0(dt + dk) >

`− `k

4
(dt + dk)

2.

If s ∈ [k − 1] \ I , then |ds + dk | 6 12d0/(`− `k). Thus∑
t∈[k−1]

m t

m

(
`− `k

3
(dt + dk)

2
+ d0(dt + dk)

)

>
∑
t∈I

m t

m
·
`− `k

4
(dt + dk)

2
+

∑
s∈[k−1]\I

m t

m
·
`− `k

3
(dt + dk)

2
−

12d2
0

`− `k

>
∑

t∈[k−1]

m t

m
·
`− `k

4
(dt + dk)

2
−

12d2

`− `k
.

Thus

K3(G)− K3(F) >
∑

t∈[k−1]

m t

m
·
`− `k

4

(dt + dk)
2
+

∑
i∈[k−1]

i 6=t

d2
i

− 12d2

`− `k
,

as required.

4.5. Partitions. The structure of the graphs G we will be working with is
somewhat complicated, and for much of the proof, we make a sequence of local
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changes to G to obtain a collection of new graphs. Therefore it is useful to define
some types of partition to record all the relevant structural information about
these graphs.

Let k, n, e ∈ N and β > 0 and let c = c(n, e). We say that an (n, e)-graph H
has a (V1, . . . , Vk;β)-partition if both of the following hold:

P1(H ): V1 ∪ · · · ∪ Vk is a partition of V (H) and∣∣|Vi | − cn
∣∣, ∣∣|Vk | − (1− (k − 1)c)n

∣∣ 6 βn

for all i ∈ [k − 1];

P2(H ): H [Vi , V j ] is complete for all i j ∈
(
[k−1]

2

)
.

Let δ > 0. We say that H has a (V1, . . . , Vk;U, β, δ)-partition if, in addition
to P1(H ) and P2(H ), U is a subset of V (H) such that the following properties
hold:

P3(H ): |U | 6 δn and every edge in
⋃

i∈[k] E(H [Vi ]) is incident with a vertex of
U ; also, ∆(H [Vi ]) 6 δn for all i ∈ [k];

P4(H ): U ∩ Vk has a partition U 1
k ∪ · · · ∪U k−1

k such that for all i j ∈
(
[k−1]

2

)
, we

have that G[U i
k , V j ] is complete.

If γ1, γ2 > 0 and in addition to P1(H )–P4(H ), the following property holds,
then we say that H has a (V1, . . . , Vk;U, β, γ1, γ2, δ)-partition.

P5(H ): If y ∈ Vi \ U then dm
H (y) := eH (y, Vi) < γ2n and if y ∈ Vi ∩ U then

dm
H (y) > γ1n, for all i ∈ [k].

If P1(H ), P3(H ) and P5(H ) hold, then we say that H has a weak (V1, . . . ,

Vk; U, β, γ1, γ2, δ)-partition. Observe that if β+ > β; γ −1 6 γ1; γ +2 > γ2 and
δ+ > δ, then a (V1, . . . , Vk;U, β, γ1, γ2, δ)-partition is also a (V1, . . . , Vk;U,
β+, γ −1 , γ

+

2 , δ
+)-partition. We call dm

H (y) the missing degree of a vertex y ∈
V (H) with respect to the partition V1, . . . , Vk . Let m = (m1, . . . ,mk−1), where
for all i ∈ [k − 1], we have m i := e(H [Vi , Vk]). We say that m is the missing
vector of H with respect to (V1, . . . , Vk). Observe that, by P2(H ),

m i =
∑
v∈Vi

dm
H (v).

An edge is bad if both of its endpoints lie in the same Vi . Let h :=∑
i∈[k] e(H [Vi ]) be the total number of bad edges.
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5. Initial steps in the proof of Theorem 1.7

We start by deriving Theorem 1.6 from Theorems 1.3 and 1.7 and
Proposition 1.5. The rest of the paper will concentrate on proving Theorem 1.7.

5.1. The proof of Theorem 1.6 given Theorem 1.7. Let ε > 0. Assume ε <
1/2. Theorem 1.3 gives α(3, k) > 0 and n0(3, k) for each integer 3 6 k 6 1/ε.
Let α > 0 be the minimum of the above constants α(3, k). Apply Theorem 1.7
with parameters ε, α to obtain n0(α, k) for each integer 3 6 k 6 1/ε. Let n0 be
the maximum of n0(3, k) and n0(α, k) over such k.

Now let n > n0 and e 6
(n

2

)
− εn2 be positive integers. Let k = k(n, e), so

tk−1(n) < e 6 tk(n). If k 6 2, then g3(n, e) = 0, and we are done as then

H∗2(n, e) ⊆ H∗0(n, e) = {K3-free (n, e)-graphs}.

So we may assume that k > 3. Further, Lemma 4.11 implies that k 6 1/(2ε) +
1 6 1/ε. Suppose first that tk−1(n) < e 6 tk−1(n) + αn2. Then, since α 6 α(3,
k), Theorem 1.3 applied with r := 3 implies that g3(n, e) = h(n, e) and every
extremal graph lies in H0(n, e) ∪ H2(n, e). Proposition 1.5 then implies that
the extremal value is h∗(n, e) = h(n, e) and the family of extremal graphs is
precisely H∗0(n, e) ∪H∗2(n, e).

Suppose instead that tk−1(n) + αn2 6 e 6 tk(n). Then Theorem 1.7 implies
that every extremal graph lies in H(n, e). Proposition 1.5 then implies that the
family of extremal graph is precisely H∗1(n, e) ∪H∗2(n, e) (and note that H∗0(n,
e) = H∗1(n, e) for this e by (1.10)). So certainly g3(n, e) = h(n, e).

5.2. Beginning the proof of Theorem 1.7. Let ε > 0. Suppose that
Theorem 1.7 does not hold for this ε. Then take the minimal integer k 6 1/ε
such that the conclusion is not true at this k for some α, and then choose such
an α. By decreasing α, we can assume that α � ε and that α 6 (α1.3)

5, where
α1.3 is the minimum constant α(3, k) obtained by applying Theorem 1.3 with
parameters k and r = 3, for all 3 6 k 6 1/ε.

By the minimality of k, we have that, for all ` ∈ [k − 1] and all α′ > 0, there
exists n0(`, α

′) > 0 such that every extremal (n, e)-graph with n > n0(`, α
′) and

t`−1(n)+ α′n2 6 e 6 t`(n) lies in H(n, e).
Note that k > 3 as when k(n, e) = 2, the family H(n, e) is the family of n-

vertex e-edge triangle-free graphs, and g3(n, e) = 0. (So we can set n0(2, α) = 1
for every α > 0.)
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Choose n0 = n0(k) ∈ N and additional constants such that the dependencies
between them are as follows:

0 <
1
n0
� ρ4 � · · · � ρ0 � η � δ � β � ξ � γ � α 6 (α1.3)

5

� δ′ � ξ ′ � ε 6
1
k
. (5.1)

In particular, we assume that Theorem 1.2 holds for n0 with ρ4 playing the role
of ε and that

n0 > max {2 · n0(k − 1, α/3), n1.2(ρ4), 2 · n1.3(k)} , (5.2)

where n1.2(ρ4) is the output of Theorem 1.2 applied with parameter ρ4; and
n1.3(k) is (along with α1.3) the output of Theorem 1.3 applied with k − 1 and
r = 3. For the reader’s convenience, the glossary at the end of the paper gives
an informal overview of the roles of the constants in (5.1). We may ignore floors
and ceilings where they do not affect our argument.

Now, suppose that Theorem 1.7 fails for this n0, k and α. Pick the smallest
n > n0 such that there is e with

tk−1(n)+ αn2 6 e 6 tk(n) (5.3)

for which at least one extremal (n, e)-graph is not in H(n, e). If there is more
than one choice for e then choose one with g3(n, e) − h(n, e) being smallest
possible. By Theorem 1.3, the inequality

g3(n, e)− h(n, e) 6 g3(n, e′)− h(n, e′) (5.4)

holds in fact for every e′ with k(n, e′) = k. (Indeed, if tk−1(n) 6 e′ < tk−1(n) +
αn2, then (5.4) holds as its right-hand side is zero.)

Next, choose an (n, e)-graph G according to the following criteria in the given
order:

(C1) G /∈ H(n, e) and G has the minimum number of triangles: K3(G) =
g3(n, e);

(C2) G has a maximum max-cut k-partition: If AG
1 , . . . , AG

k is a max-cut
partition of V (G), then for every (n, e)-graph J /∈H(n, e)with K3(J ) =
g3(n, e) and every (equivalently, some) max-cut partition AJ

1 , . . . , AJ
k of

V (J ), we have that∑
i j∈([k]2 )

e
(
G[AG

i , AG
j ]
)
>

∑
i j∈([k]2 )

e
(
J [AJ

i , AJ
j ]
)
.
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(C3) There exists a max-cut k-partition AG
1 , . . . , AG

k of V (G) such that for
every (n, e)-graph J satisfying (C1) and (C2) and every max-cut partition
AJ

1 , . . . , AJ
k of V (J ), we have

min
i∈[k]

∣∣AG
i

∣∣ 6 min
i∈[k]

∣∣AJ
i

∣∣ .
We say that such a graph G is a worst counterexample. From now on, G, n,

e and all the constants in (5.1) are fixed. Define c = c(n, e). Corollary 4.18,
Proposition 1.5 and (5.4) imply that

P3(wx,G) > (k − 2)cn − k and P3(yz,G) 6 (k − 2)cn + k (5.5)

for all wx ∈ E(G) and yz ∈ E(G). Since n and e satisfy (5.3), we have by (4.9)
and Lemma 4.11 that

1
k
6 c 6

1
k
+

√
1− 2αk(k − 1)

k(k − 1)
+ O(1/n) <

1
k − 1

− α. (5.6)

(Here we used
√

1− x < 1− x/2 for x ∈ (0, 1].) Thus

0 6 kc − 1 < c − (k − 1)α. (5.7)

Further, using Theorem 1.1 and the fact that e 6
(n

2

)
− εn2, we have

∣∣K3(K k
cn,...,cn,n−(k−1)cn)− K3(G)

∣∣ (1.8),(4.11)
=

∣∣∣∣n3

6
g3

(
2e
n2

)
− g3(n, e)

∣∣∣∣ (1.12)
6

n
2ε
.

(5.8)
Before splitting into cases depending on the size of the difference tk(n) − e,

we prove the following useful statement about some structural properties of G.

LEMMA 5.1. Let 0 < 1/n � ρ � 1/k, and let p, d > 0 be such that

p2 6 d 6 ρn2 and 2ρ1/6 6 1− (k − 1)c. (5.9)

Suppose that there is a partition V1, . . . , Vk of V (G) for which P1(G) holds with
parameter p/n and

|E(G)4 E(K [V1, . . . , Vk])| 6 d. (5.10)

Let A1, . . . , Ak be a max-cut partition of G, where |Ak | 6 |Ai | for all i ∈ [k−1].
Then

(i) P1(G) holds with respect to A1, . . . , Ak with parameter 2k2
√

d/n;
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(ii) we have

m :=
∑

i j∈([k]2 )

e(G[Ai , A j ]) 6 2k2
√

d(kc − 1)n + d 6 3k2√ρn2. (5.11)

Moreover, for all i ∈ [k],

(iii) if xy ∈ E(G[Ai ]), then dG(x, Ai)+dG(y, Ai)> (1−(k−1)c)n−3k2√ρn >
ρ1/6n;

(iv) ∆(G[Ai ]) 6 ρ1/5n;

(v) e(G[Ai ]) 6 ρ1/30m.

Proof. By (5.10), there is a partition V1, . . . , Vk of V (G) such that, defining
ni := |Vi | for i ∈ [k], we have

|ni − cn| 6 p for all i ∈ [k − 1] and |nk − (n − (k − 1)cn)| 6 p; (5.12)

and ∑
i∈[k]

e(G[Vi ])+
∑

i j∈([k]2 )

e(G[Vi , V j ]) 6 d.

The max-cut property implies that∑
i j∈([k]2 )

e(G[Ai , A j ]) >
∑

i j∈([k]2 )

e(G[Vi , V j ]) > e − d

and so
h :=

∑
i∈[k]

e(G[Ai ]) = e −
∑

i j∈([k]2 )

e(G[Ai , A j ]) 6 d. (5.13)

For i ∈ [k], choose j = j (i) ∈ [k] such that |Ai ∩ V j | is maximal. Suppose that
there exists h ∈ [k] \ { j} such that |Ai ∩ Vh| >

√
2d. Then

e(G[Ai ]) > |Ai∩V j ||Ai∩Vh|−|E(G)4E(K [V1, . . . , Vk])| > (
√

2d )2−d = d,

a contradiction to (5.13). Thus for each i ∈ [k], there exists at most one h ∈ [k]
such that |Ai ∩ Vh| >

√
2d . Suppose that there is some j ∈ [k] for which no

i ∈ [k] satisfies j (i) = j . Then, using (5.9), we get

2k
√

2d + p 6 3k
√

2d 6 3k
√

2ρ n < n − (k − 1)cn,
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and so

n j =
∑
i∈[k]

|Ai ∩ V j | < k
√

2d <
n − (k − 1)cn − p

2
.

Recall from (5.7) that c > 1− (k− 1)c, so this is a contradiction to (5.12). Thus,
the function j : [k] → [k] is a bijection and, for each i ∈ [k],

|Ai | > |V j (i)| −
∑

i ′∈[k]\{i}

|Ai ′ ∩ V j (i)| > n j (i) − k
√

2d,

and similarly |Ai | 6 n j (i) + k
√

2d . Suppose first that j (k) = k. Then∣∣ |Ak |−(n−(k−1)cn)
∣∣ 6 |nk−(n−(k−1)cn)|+k

√
2d 6 p+k

√
2d 6 2k

√
d

and similarly ||Ai | − cn| 6 2k
√

d for all i ∈ [k − 1]. Suppose instead that
j (k) 6= k. Then ||Ak | − cn| 6 k

√
2d , and since Ak is the smallest part, we have

that n =
∑

i∈[k] |Ai | > k(cn− k
√

2d). Thus cn− k2
√

2d 6 n− (k − 1)cn 6 cn,
where the last inequality follows from (5.7). So∣∣ |Ak | − (n − (k − 1)cn)

∣∣ 6 ∣∣|Ak | − n j (k)

∣∣
+ |n j (k) − cn| + |cn − (n − (k − 1)cn)|

6 k
√

2d + p + k2
√

2d 6 2k2
√

d,

and similarly ||Ai | − cn| 6 2k2
√

d for all i ∈ [k − 1]. Hence P1(G) holds
with parameter 2k2

√
d/n, proving (i). So it also holds with parameter 2k2√ρ >

2k2
√

d/n.
We now prove (ii). Write pi := cn for i ∈ [k − 1] and pk := n − (k − 1)cn;

and di := pi − |Ai | for all i ∈ [k]. Then
∑

i∈[k] di = 0, and we have

m (5.13)
=

∑
i j∈([k]2 )

|Ai ||A j | − e + h

=
1
2

(
n2
−

∑
i∈[k]

p2
i + 2

∑
i∈[k]

pi di −
∑
i∈[k]

d2
i

)
− e + h

(5.13)
6

1
2

(
n2
− (k − 1)c2n2

− (n − (k − 1)cn)2
)

+ cn
∑

i∈[k−1]

di + (n − (k − 1)cn)dk − e + d

(4.10)
= −dk(kc − 1)n + d

(i)
6 2k2

√
d(kc − 1)n + d
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(5.9)
6 3k2√ρn2, (5.14)

as required.
Next we prove (iii). For any i ∈ [k], and xy ∈ E(G[Ai ]),

(k − 2)cn + k
(5.5)
> P3(xy,G) > n − |Ai | − (dG(x, Ai)+ dG(y, Ai))

and so

dG(x, Ai)+ dG(y, Ai)
(i),(5.7)
> n − (k − 2)cn − k − cn − 2k2√ρn

> (1− (k − 1)c)n − 3k2√ρn
(5.9)
> ρ1/6n,

as required.
For (iv), suppose on the contrary that there exist i ∈ [k] and x ∈ Ai with dG(x,

Ai) > ρ1/5n. Suppose first that dG(x, Ai) > kρ1/5n. By averaging, there is some
` ∈ [k] \ {i} such that dG(x, A`) > ρ1/5n. For each j ∈ [k], let X j := NG(x, A j)

and x j := |X j |. By the max-cut property, for any j 6= i , we have x j > xi > ρ1/5n.
Let L be the number of triangles containing x and no other vertices from Ai ∪ A`.
Part (ii) implies that

K3(x,G) > L + x`xi + (xi + x`)(n − xi − x`)− 3k2√ρn2.

Obtain a new graph G ′ by choosing A′i ⊆ X i and A′` ⊆ A` \ X` with |A′i | =
|A′`| = ρ

1/5n and letting E(G ′) := (E(G)∪ {xy : y ∈ A′`}) \ {xz : z ∈ A′i}. Now

K3(x,G ′) 6 L + (x` + ρ1/5n)(xi − ρ
1/5n)+ (xi + x`)(n − xi − x`).

Thus

K3(G ′)− K3(G) 6 ρ1/5n(xi − x`)− ρ2/5n2
+ 3k2√ρn2 < −ρ2/5n2/2,

a contradiction. Thus dG(x, Ai) < kρ1/5n. But (ii) also implies that∑
y∈X i

dG(y, Ai) 6 e(G[ Ai , Ai ]) 6 3k2√ρn2,

so there exists y ∈ X i with dG(y, Ai) 6 3k2√ρn2/xi 6 3k2ρ3/10n. But then

dG(x, Ai)+ dG(y, Ai) 6 (kρ1/5
+ 3k2ρ3/10)n < ρ1/6n,

contradicting (iii).
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Finally, we prove (v). Using the previous parts, we have for all i ∈ [k] that

ρ1/5nm > ρ1/5n · e(G[Ai , Ai ])
(iv)
>

∑
xy∈E(G[ Ai ,Ai ])

x∈Ai

dG(x, Ai)

=

∑
uv∈E(G[Ai ])

(dG(u, Ai)+ dG(v, Ai))
(i i i)
> e(G[Ai ])ρ

1/6n,

giving the required.

6. The intermediate case: approximate structure

We will assume in this section and the succeeding two sections that

tk−1(n)+ αn2 < e < tk(n)− αn2 (6.1)

and say that we are in the intermediate case. (The remaining boundary case is
treated in Section 9.) Equations (1.7) and (6.1) imply that

c >
1
k
+

√
2α

k(k − 1)
>

1+
√

2α
k

. (6.2)

Thus we can improve one inequality in (5.7):
√

2α < kc − 1 6 c − (k − 1)α. (6.3)

The aim of this section is to prove the forthcoming lemma about the
approximate structure of G in the intermediate case. One consequence of the
statement is that, when A1, . . . , Ak is a max-cut partition of G, then actually G
is close to the complete partite graph K [A1, . . . , Ak]. Note that this is not true
for an arbitrary extremal graph H , so here we crucially use the fact that G is a
worst counterexample, that is, it satisfies (C1)–(C3).

LEMMA 6.1 (Approximate structure). Suppose that (6.1) holds. Let A1, . . . , Ak

be a max-cut partition of V (G) such that |Ak | 6 |Ai | for all i ∈ [k − 1]. Then
there exists Z ⊆ V (G) such that G has an (A1, . . . , Ak; Z , β, ξ, ξ, δ)-partition
with missing vector m =: (m1, . . . ,mk−1) such that m 6 ηn2 and h 6 δm, where
m := m1 + · · · + mk−1 and h is defined in (5.13).

To prove the lemma, we will use Theorem 1.2 together with a somewhat
involved series of deductions. Define a function f : V (G)→ R by setting

f (x) := (dG(x)−(k−2)cn)(k−2)cn+
(

k − 2
2

)
c2n2
−K3(x,G), x ∈ V (G).

(6.4)
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The intuition behind this formula is that it becomes the zero function if we apply
it to H := K k

cn,...,cn,(1−(k−1)c)n with c = c(n, e):

(dH (x)−(k−2)cn)(k−2)cn+
(

k − 2
2

)
c2n2
−K3(x, H)= 0 for all x ∈ V (H).

(6.5)
It turns out that f (x) is small in absolute value for every x ∈ V (G).

LEMMA 6.2. | f (x)| 6 6n/
√
α for all x ∈ V (G).

Proof. We first give a bound on the gradient of the function c(n, ·) that was
defined in (4.9). We will write c := c(n, e) as usual. Note that k(2e/n2) = k(n,
e) by Lemma 4.12. Setting s := 1/

√
α, we have

e(K k
cn,...,cn,cn−s,(1−(k−1)c)n+s)− e = s(kc − 1)n − s2

(6.3)
>
√

2αsn − 1/α

>
√
αsn = n. (6.6)

Let p := e(K k
cn− s

k−1 ,...,cn− s
k−1 ,(1−(k−1)c)n+s) and c′ := c(n, e + n). Then

p > e(K k
cn,...,cn,cn−s,(1−(k−1)c)n+s)

(6.6)
> e + n = e(K k

c′n,...,c′n,(1−(k−1)c′)n).

This, together with the fact that c(n, ·) is a nonincreasing function, implies that
c > c′ > c − s

(k−1)n , so

(k − 2)c′n > (k − 2)
(

cn −
s

k − 1

)
> (k − 2)cn −

1
√
α
. (6.7)

Next, (6.5) (or a direct calculation using (1.6), (1.8) and (6.4)) shows that∑
v∈V (G)

f (v) = 3
(
K3(K k

cn,...,cn,n−(k−1)cn)− K3(G)
)
. (6.8)

Now let x, y ∈ V (G) be two arbitrary distinct vertices. Let G ′ be the graph
obtained from G by deleting y and cloning x . (By cloning, we mean adding a
new vertex x ′ whose neighbourhood is identical to NG(x) \ {y}; so, in particular,
xx ′ /∈ E(G ′).) Then, letting e′ := e(G ′)− e(G), we have that

e′ =

{
d(x)− d(y) if xy /∈ E(G),
d(x)− d(y)− 1 otherwise.

Clearly, |e′| 6 n and so k(n, e + e′) = k(n, e).
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Suppose first that e′ > 0. Using Lemma 4.16, (6.1) and the facts that G is a
worst counterexample and that c(n, ·) is a nonincreasing function, we have

K3(G ′)− K3(G)
(5.4)
> h(n, e + e′)− h(n, e)

=

e′∑
i=1

(h(n, e + i)− h(n, e + i − 1))

>
e′∑

i=1

((k − 2) · c(n, e + i − 1) · n − k) > e′(k − 2)c′n − kn

(6.7)
> e′(k − 2)cn −

2n
√
α
.

On the other hand, K3(G ′)− K3(G) 6 K3(x,G)− K3(y,G)+ (n − 2). Thus

K3(x,G)− K3(y,G) > (k − 2)cn(d(x)− d(y)− 1)−
2n
√
α

> (k − 2)cn(d(x)− d(y))−
3n
√
α
.

This implies that

f (x)− f (y) = (d(x)− d(y))(k − 2)cn − (K3(x,G)− K3(y,G)) 6
3n
√
α
.

Using an analogous argument assuming e′ < 0 and the fact that x, y were
arbitrary, we derive that for any x, y ∈ V (G),

| f (x)− f (y)| 6
3n
√
α
. (6.9)

Suppose now for some x ∈ V (G), we have | f (x)| > 6n/
√
α. Then

3n2

√
α

(6.9)
6

∣∣∣∣∣ ∑
v∈V (G)

f (v)

∣∣∣∣∣ (6.8)= 3
∣∣K3(K k

cn,...,cn,n−(k−1)cn)− K3(G)
∣∣ (5.8)6

3n
2ε
,

so 1/n0 > 1/n > 2ε/
√
α >
√
ε, a contradiction to (5.1).

COROLLARY 6.3.

∆(G) 6 (k − 1)cn +
42
√
α

and δ(G) > (k − 2)cn − k.
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Proof. Let x ∈ V (G) be arbitrary. By Lemma 6.2,

(dG(x)− (k − 2)cn)(k − 2)cn +
(

k − 2
2

)
c2n2
= K3(x,G)+ f (x)

6
1
2

∑
y∈NG (x)

P3(xy,G)+
6n
√
α

(5.5)
6

1
2

dG(x)((k − 2)cn + k)+
6n
√
α

6
1
2

dG(x)(k − 2)cn +
7n
√
α
.

Solving for dG(x), we have, using c > 1/k, that

dG(x) 6 (k−1)cn+
14

√
α(k − 2)c

6 (k−1)cn+
14k

√
α(k − 2)

6 (k−1)cn+
42
√
α
.

The claim about minimum degree trivially follows from (5.5).

6.1. G is almost complete k-partite. Theorem 1.2 implies that our worst
counterexample G is close in edit distance to some graph in H∗(n, e). In this
subsection, we prove that in fact G is close in edit distance to the specific
graph H ∗(n, e) in H∗(n, e). Recall from Definition 1 and (1.3) that the edit
distance between H ∗(n, e) and Ka∗1 ,...,a

∗

k
is at most n. But Lemma 4.16 implies

that additionally |a∗i − cn| 6 2 for all i ∈ [k − 1], so we will in fact show that
the edit distance between G and the complete k-partite graph with k − 1 parts of
size bcnc is o(n2).

LEMMA 6.4. |E(G)4 E(K k
bcnc,...,bcnc,n−(k−1)bcnc)| 6 ρ0n2.

Proof. Suppose that the statement is not true. We will first derive some structural
properties of G under this assumption.

Let H1(n) be the set of n-vertex graphs H with vertex partition A ∪ B such
that H [A] is complete (k−2)-partite, H [A, B] is complete and H [B] is triangle-
free. Pick H ∈H1(n)with the minimal edit distance to G. Theorem 1.2 and (5.2)
imply that

|E(H)4 E(G)| 6 ρ4n2. (6.10)

(Note that H need not have e edges although we do have |e− e(H)| 6 ρ4n2.) By
definition, H comes with a canonical partition A1, . . . , Ak−2, B such that each
Ai is an independent set and H [B] is triangle-free, and H [A1, . . . , Ak−2, B] is
complete (k − 1)-partite. Now, G is ρ4n2-close to some graph H ′ ∈ H∗1(n, e) in
which for i ∈ [k − 2], the i th part has size a∗i = cn ± 2 (by Lemma 4.16). Thus
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H is 2ρ4n2-close to H ′ and consequently,

||Ai | − cn| < ρ3n for all i ∈ [k − 2]. (6.11)

Let A :=
⋃

i∈[k−2] Ai .

CLAIM 6.5. The following hold in G:

(i) for every x ∈ A, dG(x, B) > (c + ρ0)n or dG(x, A) < ((k − 2)c − ρ0)n;

(ii) for any y ∈ V (G) and i j ∈
(
[k−2]

2

)
such that min{dG(y, Ai), dG(y, A j)} >

ρ3n, we have min{dG(y, Ai), dG(y, A j)} 6 ρ3n;

(iii) for every y ∈ B, dG(y, A) > (k − 3)cn + ρ0n or dG(y, B) < cn − ρ0n.

Proof of Claim. To prove (i), suppose that there is a vertex x ∈ A with dG(x,
B) 6 cn+ ρ0n and dG(x, A) > ((k− 2)c− ρ0)n. Without loss of generality, we
may suppose that x ∈ A1. Now modify H to obtain H ′ ∈ H1(n) by replacing
the neighbourhood of x with A \ {x}. Then H ′ has a canonical partition A1 \ {x},
A2, . . . , Ak−2, B ∪ {x}. We have that

dG\H (x)+ dH\G(x) > dG(x, A)− |A \ A1| + |B| − dG(x, B)
(6.11)
> ((k − 2)c − ρ0)n − (k − 3)(c + ρ3)n
+ (1− (k − 2)(c + ρ3))n − (c + ρ0)n

> (1− (k − 2)c − 3ρ0)n,

while

dG\H ′(x)+ dH ′\G(x) = dG(x, B)+ |A| − dG(x, A)
6 (c + ρ0)n + (k − 2)(c + ρ3)n − ((k − 2)c − ρ0)n
6 cn + 3ρ0n.

Thus

|E(H ′)4 E(G)| − |E(H)4 E(G)|
= dG\H ′(x)+ dH ′\G(x)− dG\H (x)− dH\G(x)

6 (kc − 1− c)n + 6ρ0n
(6.3)
6 −((k − 1)α − 6ρ0)n < −αn, (6.12)

contradicting the choice of H .
To prove (ii), suppose that there exist y ∈ V (G) and i j ∈

(
[k−2]

2

)
such that

dG(y, Ai), dG(y, A j) > ρ3n and dG(y, A j) > dG(y, Ai) > ρ3n. Then we can
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obtain a new graph G ′ by replacing ρ3n neighbours of y in Ai with ρ3n new
neighbours in A j . There are at most ρ4n2 edges missing between Ai and A j in
G, so

K3(G)− K3(G ′) = K3(y,G)− K3(y,G ′)

> (dG(y, Ai)dG(y, A j)− ρ4n2)

− (dG(y, Ai)− ρ3n)(dG(y, A j)+ ρ3n)

> ρ2
3 n2
− ρ4n2 > ρ4n2.

This contradicts the fact that G is a worst counterexample (namely, (C1)).
For (iii), suppose there is some y ∈ B with dG(y, A) 6 (k − 3)cn + ρ0n

and dG(y, B) > cn − ρ0n. Suppose without loss of generality that dG(y, A1) =

min j∈[k−2]{dG(y, A j)}. We claim that

dG(y, A1) 6 2ρ0n. (6.13)

Indeed, when k = 3, we have A1 = A and so dG(y, A1) = dG(y, A) 6 ρ0n.
Suppose now that k > 4. If dG(y, A1) > 2ρ0n, then

dG(y, A \ A1) = |A \ A1| − dG(y, A)+ dG(y, A1)

(6.11)
> (k − 3)(c − ρ3)n − (k − 3)cn − ρ0n + 2ρ0n >

ρ0n
2
.

Thus there is some j ∈ [k− 2] \ {1} for which dG(y, A j) > ρ0n/(2k) > ρ3n. On
the other hand, as dG(y, A1) = min j∈[k−2]{dG(y, A j)}, we have that

dG(y, A1) = |A1| − dG(y, A1) > |A1| − dG(y, A)/(k − 2) > ρ3n.

Then (ii) implies that dG(y, A1) 6 ρ3n < 2ρ0n, a contradiction. Thus (6.13)
holds.

Obtain H ′ from H by replacing NH (y) with V (H) \ A1. Then H ′ ∈ H1(n)
has a canonical partition A1 ∪ {y}, A2, . . . , Ak−2, B \ {y}. We have dG\H (y) +
dH\G(y) > dG(y, A), while

dG\H ′(y)+ dH ′\G(y) 6 dG(y, A1)+ dG(y, A \ A1)+ dG(y, B)
6 2dG(y, A1)+ dG(y, A)− |A1| + |B| − dG(y, B)
6 4ρ0n + dG(y, A)− (c − ρ3)n + (1− (k − 2)(c − ρ3))n
− (c − ρ0)n

6 dG(y, A)+ (1− kc)n + 6ρ0n
(6.3)
6 dG(y, A)− (

√
2α − 6ρ0)n.

Again, this implies that |E(H ′) 4 E(G)| < |E(H) 4 E(G)|, contradicting the
choice of H . This completes the proof of the claim.
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The next claim shows that every large enough subset of B must contain many
edges.

CLAIM 6.6. For all X ⊆ B with |X | > (c − ρ1)n, we have E(G[X ]) > ρ1n2.

Proof of Claim. Suppose that some X violates the claim. By taking a subset,
we can assume that |X | = (c − ρ1)n. Now (6.2) implies that c > 1/k, and so
|X | > n/(2k). Let d̃(X, X) := 1

|X |

∑
x∈X dG(x, X) denote the average degree of

vertices in X into X in G. Then the average degree of vertices in X in G is

1
|X |

∑
x∈X

dG(x) = d̃(X, X)+
2e(G[X ])
|X |

6 d̃(X, X)+ 4kρ1n.

Let Y := B \ X . By Corollary 6.3, the average degree of vertices in Y is certainly
at most

∆(G) 6 (k − 1)cn + 42/
√
α 6 (k − 1)cn + ρ3n. (6.14)

The average degree of vertices in A in G[A] is

1
|A|

∑
a∈A

dG(a, A)
(6.10)
6

1
|A|

(∑
a∈A

dH (a, A)+ 2ρ4n2

)
(6.11)
6 (k − 3)(c + ρ3)n + ρ3n 6 (k − 3)cn + kρ3n.

Thus the average degree of vertices of A in G is

1
|A|

∑
a∈A

dG(a) 6 |B| + (k − 3)cn + kρ3n

(6.11)
6 (1− (k − 2)(c − ρ3))n + (k − 3)cn + kρ3n
6 (1− c + 2kρ3)n.

Hence, by taking the weighted average of these average degrees to obtain the
average degree of G, we have

2
(
(k − 1)c −

(
k
2

)
c2

)
(4.10)
=

2e
n2

6
1
n2
((d̃(X, X)+ 4kρ1n)|X | + ((k − 1)cn + ρ3n)|Y | + (1− c + 2kρ3)n|A|)

(6.11)
6

(
d̃(X, X)

n
+ 4kρ1

)
c + ((k − 1)c + ρ3)(1− (k − 1)c + 2ρ1)
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+ (1− c + 2kρ3)(k − 2)(c + ρ3)

6 2
(
(k − 1)c −

(
k
2

)
c2

)
+ c

(
d̃(X, X)

n
− (1− c)

)
+ 6kρ1.

Thus

d̃(X, X) >
(
(1− c)−

6kρ1

c

)
n > |X | −

√
ρ1n.

In particular, the number of missing edges in G between X and Y is e(G[X,
Y ]) 6 (c − ρ1)

√
ρ1n2 6

√
ρ1n2. This further implies that

e(G[Y ]) 6 |Y | ·∆(G)− e(G[A, Y ])− e(G[X, Y ])
(6.10)
6 |Y |∆(G)− (|A||Y | − ρ4n2)− (|X ||Y | −

√
ρ1n2)

(6.11),(6.14)
6 |Y |((k − 1)cn + 42/

√
α − (k − 2)(c − ρ3)n − (c − ρ1)n)

+ ρ4n2
+
√
ρ1n2

6 2
√
ρ1n2.

Let H ′ ∈ H1(n) be the n-vertex complete k-partite graph with partition A1,

. . . , Ak−2, X, Y . Then

|E(G)4 E(H ′)| 6 |E(G)4 E(H)| + e(G[Y ])+ e(G[X ])+ e(G[X, Y ])
(6.10)
6 (ρ4 + 2

√
ρ1 + ρ1 +

√
ρ1)n2 < 4

√
ρ1n2.

But there is a one-to-one mapping of parts of H ′ to parts of K k
bcnc,...,bcnc,n−(k−1)bcnc

such that two corresponding parts have size within 2ρ1 of one another. Therefore

∣∣E(H ′)4 E(K k
bcnc,...,bcnc,n−(k−1)bcnc)

∣∣ 6 ρ0n2

2
.

Then |E(G) 4 E(K k
bcnc,...,bcnc,n−(k−1)bcnc)| < ρ0n2, a contradiction to our initial

assumption on G.

We are now able to show that vertices in every Ai have small degree in their own
part, and further that for distinct i, j , the bipartite graph G[Ai , A j ] is complete.

CLAIM 6.7. For all i ∈ [k − 2], we have ∆(G[Ai ]) < ρ2n. Moreover, G[A] ⊇
K [A1, . . . , Ak−2].
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Proof of Claim. Suppose on the contrary that for some i ∈ [k − 2], there is an
x ∈ Ai with dG(x, Ai) > ρ2n. Let Z := NG(x, Ai) and X := NG(x, B). We
claim that

dG(x, A \ Ai) < 6kρ3n. (6.15)

This is vacuously true if k = 3. So suppose that k > 4. We will first show that
for any j ∈ [k − 2] \ {i}, we have

dG(x, A j) > dG(x, Ai)− ρ3n. (6.16)

Indeed, let H ′ ∈ H1(n) have a canonical partition obtained from A1, . . . , Ak−2,

B by moving x from Ai to A j . We have that

0 6 |E(G)4 E(H ′)| − |E(G)4 E(H)|
6 dG(x, A j)+ |Ai | − dG(x, Ai)− (dG(x, Ai)+ |A j | − dG(x, A j))

(6.11)
6 2(dG(x, A j)− dG(x, Ai))+ 2ρ3,

giving (6.16). So dG(x, A j) > |Z |−ρ3n > (ρ2−ρ3)n > ρ3n. If dG(x, A\ Ai) >
6kρ3n, then there exists some j ∈ [k − 2] \ {i} such that dG(x, A j) > 6ρ3n.
Then (6.16) implies that

|Ai | − 1− dG(x, Ai) = dG(x, Ai) 6 dG(x, A j)+ρ3n = |A j | − dG(x, A j)+ρ3n

and so

dG(x, Ai) > dG(x, A j)+ |Ai | − 1− |A j | − 2ρ3n
(6.11)
> 6ρ3n + (c − ρ3)n − 1− (c + ρ3)n − 2ρ3n > ρ3n.

Then Claim 6.5(ii) implies dG(x, Ai) < ρ3n < ρ2n, a contradiction. Thus (6.15)
holds.

We have∑
z∈Z

(dG(z, X)+ dG(z, A \ Ai)) = e(G[Z , X ])+ e(G[Z , A \ Ai ])

6 |E(G)4 E(H)|
(6.10)
6 ρ4n2.

Thus, by averaging, there is some z ∈ Z such that

dG(z, X)+ dG(z, A \ Ai) 6 ρ4n/ρ2 6 ρ3n.
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Then

(k − 2)cn + k
(5.5)
> P3(xz,G)
> |X | + |A \ Ai | − (dG(z, X)+ dG(z, A \ Ai))

− dG(x, A \ Ai)

(6.11),(6.15)
> |X | + (k − 3)(c − ρ3)n − ρ3n − 6kρ3n
> |X | + (k − 3)cn − 7kρ3n.

Consequently,
|X | 6 cn + 8kρ3n. (6.17)

We now bound dG(x) and K3(x,G) as follows. We have

dG(x) 6 |X | + |Z | + |A \ Ai |
(6.11)
6 |X | + |Z | + (k − 3)cn + kρ3n. (6.18)

We wish to bound K3(x,G) from below. Let Y := NG(x, A \ Ai). We will need
the following lower bound on |Y |:

|Y | = |A \ Ai | − dG(x, A \ Ai)
(6.11),(6.15)

> (k− 3)cn− 7kρ3n > |A \ Ai | − 8kρ3n.
(6.19)

Note also that

K3(x,G; A \ Ai) = e(G[Y ]) > e(G[A \ Ai ])− (|A \ Ai | − |Y |)n
(6.10),(6.19)

> e(H [A \ Ai ])− ρ4n2
− 8kρ3n2

>

((
k − 3

2

)
(c − ρ3)

2
− ρ4 − 8kρ3

)
n2

>

(
k − 3

2

)
c2n2
−

√
ρ3n2

2
.

Thus

K3(x,G)
(6.10)
> |X ||Y | + |Y ||Z | + |Z ||X | − ρ4n2

+ e(G[X ])
+ K3(x,G; A \ Ai)

(6.11),(6.19)
> |X ||Z | + (|X | + |Z |)(k − 3)cn + e(G[X ])

+

(
k − 3

2

)
c2n2
−
√
ρ3n2.

This together with Lemma 6.2 implies that

−
6n
√
α

6 f (x) (6.20)
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= (dG(x)− (k − 2)cn)(k − 2)cn +
(

k − 2
2

)
c2n2
− K3(x,G)

(6.11), (6.18)
6 (|X | + |Z | − cn + kρ3n)(k − 2)cn +

(
k − 2

2

)
c2n2

−

(
|X ||Z | + (|X | + |Z |)(k − 3)cn + e(G[X ])

+

(
k − 3

2

)
c2n2
−
√
ρ3n2

)
6 (|Z | − cn)(cn − |X |)− e(G[X ])+ ρ2n2.

Then, by considering two cases where the coefficient cn− |X | of |Z | is negative
or nonnegative and recalling that ρ2n 6 |Z | 6 |Ai |, we have

e(G[X ])
(6.17)
6

6n
√
α
+ ρ2n2

+max {(ρ2n − cn)(−8kρ3n), (|Ai | − cn)cn}

(6.11)
6 2ρ2n2

+ 8kρ3cn2 6 3ρ2n2.

Thus, by Claim 6.6, we have dG(x, B) = |X | < (c − ρ1)n. Claim 6.5(i) now
implies that

((k − 2)c − ρ0)n > dG(x, A) = |Z | + |Y |
(6.19)
> |Z | + (k − 3)cn − 7kρ3n,

implying that |Z | 6 cn − ρ0n/2. We look again at (6.20) to see that

e(G[X ]) 6
6n
√
α
+ ρ2n2

−
ρ0ρ1n2

2
< 0,

a contradiction. This proves the first part of the claim.
For the second part, let x ∈ Ai and y ∈ A j with i j ∈

(
[k−2]

2

)
. Then, using the

first part,

P3(xy,G) 6 (n − |Ai | − |A j |)+∆(G[Ai ])+∆(G[A j ])

(6.11)
6 (1− 2c + 2ρ3)n + 2ρ2n
(6.3)
< (k − 2)cn − (

√
2α − 2ρ3 − 2ρ2)n < (k − 2)cn −

√
αn.

Then (5.5) implies that xy ∈ E(G). Since i j was arbitrary, we have shown that
K [A1, . . . , Ak−2] ⊆ G[A], as required.

We now prove some useful properties of vertices in B.
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CLAIM 6.8. For every y ∈ B, the following holds:

(i) If dG(y, B) 6 cn + ρ2n, then A ⊆ NG(y).

(ii) If dG(y, B) > (c − ρ1/2)n, then there exists i ∈ [k − 2] such that dG(y,
A \ Ai) < kρ3n.

Proof of Claim. Let y ∈ B be arbitrary, and let Y := NG(y, B). We will first
prove (ii). Note that (ii) is vacuously true when k = 3, so assume k > 4. Suppose
that dG(y, B) > (c − ρ1/2)n. Claim 6.5(iii) implies that

dG(y, A) > (k − 3)cn + ρ0n. (6.21)

Let i ∈ [k − 2] be such that dG(y, Ai) = max j∈[k−2] dG(y, A j).
Let us show that this i satisfies (ii). Suppose on the contrary that dG(y, A \

Ai)> kρ3n. Then there exists j ∈ [k−2]\{i} such that ρ3n 6 dG(y, A j)6 dG(y,
Ai). Claim 6.5(ii) and (6.11) imply that dG(y, Ai ∪ A j) 6 ρ3n + (c + ρ3)n =
(c + 2ρ3)n. But then

dG(y, A) 6 dG(y, Ai ∪ A j )+ |A \ (Ai ∪ A j )|
(6.11)
6 (c + 2ρ3)n + (k − 4)(c + ρ3)n

6 (k − 3)cn + ρ2n,

contradicting (6.21). Thus dG(y, A\ Ai) < kρ3n. This completes the proof of (ii).
For (i), suppose now that |Y | 6 cn + ρ2n. First, consider the case when

additionally |Y | 6 (c − ρ1/2)n. Let x ∈ A be arbitrary, and let i ∈ [k − 2]
be such that x ∈ Ai . Then Claim 6.7 implies that

P3(xy,G) 6 ∆(G[Ai ])+ |Y | + |A \ Ai |
(6.11)
6 ρ2n + (c − ρ1/2)n + (k − 3)(c + ρ3)n

6 (k − 2)cn − ρ1n/3.

Then (5.5) implies that xy ∈ E(G). Since x was arbitrary, we have proved that
A ⊆ NG(y). So (i) holds in this case.

Consider the other case when (c−ρ1/2)n < |Y | 6 (c+ρ2)n. Part (ii) implies
that there exists i ∈ [k − 2] such that dG(y, A \ Ai) < kρ3n.

Let Z := NG(y, A \ Ai). Then

|Z | = |A \ Ai | − dG(y, A \ Ai) > (k − 3)(c − ρ3)n − kρ3n
> (k − 3)cn − 2kρ3n. (6.22)

Let also X := NG(y, Ai). Note that dG(y) 6 |X | + |Y | + |A \ Ai | 6 |X | + |Y | +
(k − 3)(c + ρ3)n by (6.11). Then Lemma 6.2 implies that

K3(y,G) 6 (dG(y)− (k − 2)cn)(k − 2)cn +
(

k − 2
2

)
c2n2
+

6n
√
α
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6 (|X | + |Y | − cn)(k − 2)cn +
(

k − 2
2

)
c2n2
+ ρ2n2. (6.23)

Recall that every pair among X, Y, Z spans a complete bipartite graph in H .
Moreover, (ii) implies that

e(G[Z ]) > e(G[A \ Ai ])− dG(y, A \ Ai)n > e(G[A \ Ai ])− kρ3n2.

Thus we can use Claim 6.7 to lower bound K3(y,G):

K3(y,G) > e(G[X, Y ])+ e(G[Y, Z ])+ e(G[Z , X ])
+ e(G[Z ])+ e(G[Y ])

(6.10)
> |X ||Y | + |Y ||Z | + |Z ||X | − ρ4n2

+

∑
hj∈([k−2]\{i}

2 )

|Ah||A j |

−kρ3n2
+ e(G[Y ])

(6.11),(6.22)
> |X ||Y | + (k − 3)cn(|X | + |Y |)+

(
k − 3

2

)
c2n2
+ e(G[Y ])

−
√
ρ3n2.

This together with (6.23) implies that

e(G[Y ]) 6 (cn − |X |)(|Y | − cn)+ 2ρ2n2.

As before, considering the two cases when cn − |X | is positive and nonpositive
and recalling that (c − ρ1/2)n < |Y | 6 (c + ρ2)n, we have

e(G[Y ]) 6 max
{
cn · ρ2n, (|Ai | − cn) · ρ1n/2

}
+ 2ρ2n2

(6.11)
6 max

{
cρ2n2, ρ1ρ3n2/2

}
+ 2ρ2n2 < ρ1n2.

This is a contradiction to Claim 6.6.

CLAIM 6.9. For every i ∈ [k − 2] and y ∈ B with dG(y, A \ Ai) 6 ρ2n/2, we
have that Ai ⊆ NG(y).

Proof of Claim. Choose i ∈ [k − 2] and y ∈ B with dG(y, A \ Ai) 6 ρ2n/2.
Let X := NG(y, Ai) and Y := NG(B, y). Suppose that there exists x ′ ∈ Ai such
that x ′y /∈ E(G). Then Claim 6.8(i) implies that |Y | > (c + ρ2)n. Claim 6.5(iii)
implies that dG(y, A) > (k − 3)cn + ρ0n. Therefore

|X | > dG(y, A)− |A \ Ai |
(6.11)
> (k − 3)cn + ρ0n − (k − 3)(c + ρ3)n > ρ0n/2.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


The minimum number of triangles 55

Furthermore,∑
x∈X

(
dG(x, Y )+ dG(x, A \ Ai)

)
= e(G[X, Y ])+ e(G[X, A \ Ai ])

(6.10)
6 ρ4n2,

so there exists x ∈ X with

dG(x, Y )+ dG(x, A \ Ai) 6
ρ4n2

|X |
6

2ρ4n
ρ0

< ρ3n.

Since dG(y, A \ Ai) 6 ρ2n/2, we have that

P3(xy,G) > (|A \ Ai | + |Y |)− dG(x, Y )− dG(x, A \ Ai)− dG(y, A \ Ai)

(6.11)
> (k − 3)(c − ρ3)n + (c + ρ2)n − ρ3n − ρ2n/2
> (k − 2)cn + ρ2n/3,

a contradiction to (5.5).

We are now able to show that G consists of the complete (k − 1)-partite graph
with parts A1, . . . , Ak−2, B, together with some additional edges in B.

CLAIM 6.10. G \ G[B] ∼= K [A1, . . . , Ak−2, B].

Proof of Claim. We will first show that G[A, B] is a complete bipartite graph.
Let y ∈ B be arbitrary. It suffices to show that A ⊆ NG(y). By Claim 6.9, we
may assume that k > 4. Let Y := NG(y, B). By Claim 6.8(i), we may assume
that |Y | > (c+ρ2)n, and Claim 6.5(iii) implies that dG(y, A) > (k−3)cn+ρ0n.
Claim 6.8(ii) implies that there exists i ∈ [k − 2] such that dG(y, A \ Ai) <

kρ3n < ρ2n/2. Then, by Claim 6.9, we have that Ai ⊆ NG(y). Thus, for all
j ∈ [k − 2], we have dG(y, A \ A j) 6 dG(y, A) = dG(y, A \ Ai) < ρ2n/2. But
Claim 6.9 now implies that A j ⊆ NG(y) for all j ∈ [k − 2]. Thus A ⊆ NG(y),
proving the first part of the claim.

To complete the proof, it suffices by the second assertion of Claim 6.7 to show
that e(G[Ai ]) = 0 for all i ∈ [k − 2]. So let i ∈ [k − 2] and let x, z ∈ Ai be
distinct. Claim 6.7 implies that A j ⊆ NG(x) ∩ NG(z) for all j ∈ [k − 2], and
since G[A, B] is complete, we also have B ⊆ NG(x) ∩ NG(z). Thus

P3(xz,G) > n − |Ai |
(6.11)
> n − (c + ρ3)n

(6.3)
> (k − 2)cn + ((k − 1)α − ρ3)n.

So (5.5) implies that xz /∈ E(G). This completes the proof of the claim.
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The rigid structural information provided by the last claim allows us to finish the
proof by deriving a contradiction to our assumption that G is far in edit distance
from K k

bcnc,...,bcnc,n−(k−1)bcnc.

Suppose first that k = 3. Claim 6.10 implies that G[A, B] is complete bipartite
and G[A] contains no edges. Thus G[B] exactly minimizes the number of
triangles given its size, that is, K3(G[B]) = g3(n, e(G[B])) (otherwise, we
could replace G[B] in G to obtain an (n, e)-graph with fewer triangles). Now,
K3(G[B]) > 0, otherwise G ∈ H1(n, e), a contradiction. Therefore

e(G[B]) > t2(|B|)
(6.11)
>

⌊
(1− (c + ρ3))

2n2

4

⌋
>
(1− c)2n2

4
− ρ2n2. (6.24)

Recalling the definition of c (that is, (4.10)) in the case k = 3 and the fact that
c < 1/2 (that is, (5.6)), we have

e(G[B]) = e − |A||B| 6 e − (c − ρ3)(1− (c + ρ3))n2

6 e − c(1− c)n2
+ ρ2n2

(4.10)
= c(1− 2c)n2

+ ρ2n2.

This together with (6.24) implies that (3c − 1)2 6 8ρ2 and so

c <
1
3
+ ρ0 <

1+
√

2α
3

,

contradicting (6.2).
Therefore we may suppose that k > 4. Now, by Claim 6.10, for each i ∈ [k−2],

we have that Ai is an independent set in G and G[ Ai , Ai ] is a complete bipartite
graph. Let ni := | Ai | and ei := e(G[ Ai ]) = e − ni(n − ni) and G i := G[ Ai ].
Then g3(n, e) = K3(G) = K3(G i)+(n−ni)ei . Thus K3(G i) = g3(ni , ei). Recall
the definition of the function k(·, ·) given in (1.1).

CLAIM 6.11. tk−2(ni)+ αn2
i /3 6 ei 6 tk−1(ni)− αn2

i /3.

Proof of Claim. By (6.11), |ni − (1− c)n| 6 ρ3n. We then have

ei

n2
i

−
1
2

(
1−

1
k − 2

)
>
(1− kc + c)((kc − 1)(k − 2)+ (1− c))

2(1− c)2(k − 2)
− ρ2,

where the first term follows by routine calculations with ni approximated by
(1 − c)n while the second term −ρ2 absorbs all errors. By (6.3), the left-hand
side is at least

(k − 1)α · (1− c)
2(1− c)2(k − 2)

− ρ2 >
α

3
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and thus ei > tk−2(ni)+ αn2
i /3. The other inequality is similar:

ei

n2
i

−
1
2

(
1−

1
k − 1

)
6−

(k − 2) · (kc − 1)2

2(k − 1)
+ρ2

(6.3)
6 −

(k − 2) · 2α
k − 1

+ρ2 <−
α

2

and so ei 6 tk−1(ni)− αn2
i /3.

But

ni = n − |Ai |
(6.11)
> (1− c − ρ3)n

(6.3)
> n/2 > n0/2

(5.2)
> n0(k − 1, α/3)

and so the minimality of k implies that G i ∈ H(ni , ei). Suppose first that
G i ∈ H1(ni , ei). Since G is an (n, e)-graph obtained by adding every edge
between the independent set Ai and V (G i), we have that G ∈ H1(n, e), a
contradiction to (C1). Suppose instead that G i ∈ H2(ni , ei). Then G i is (k − 1)-
partite and so G is k-partite. Corollary 4.4(i) then implies that G ∈ H2(n, e),
again contradicting (C1). Thus our original assumption was false, and we have
shown that |E(G)4 E(K k

bcnc,...,bcnc,n−(k−1)bcnc)| 6 ρ0n2. This completes the proof
of Lemma 6.4.

6.2. Proof of Lemma 6.1. Now we are ready to show that every max-
cut partition A1, . . . , Ak of our worst counterexample G has the required
approximate structure.

Proof of Lemma 6.1. Choose a max-cut k-partition V (G) = A1 ∪ · · · ∪ Ak .
Assume that |Ak | 6 |Ai | for all i ∈ [k − 1]. Define

Z i := {z ∈ Ai : dG(z, Ai) > ξn} for i ∈ [k],
Z := Z1 ∪ · · · ∪ Zk .

We need to show that G has an (A1, . . . , Ak; Z , β, ξ, ξ, δ)-partition, that is, that
P1(G)–P5(G) hold with the appropriate parameters.

Let p := k; d := ρ0n2 and ρ := ρ0. Then p2 6 d 6 ρn2 and, using (6.3),
2ρ1/6 6 (k − 1)α 6 1 − (k − 1)c. We can apply Lemma 5.1 with parameters
d , p and ρ, using the k-partition returned by Lemma 6.4 that has k − 1 parts of
size bcnc. Lemma 5.1 implies that P1(G) holds for (A1, . . . , Ak) with parameter
2k2
√

d/n 6 2k2√ρ0 and hence with parameter β.
For P2(G), let i j ∈

(
[k−1]

2

)
and let x ∈ Ai and y ∈ A j . Then Lemma 5.1(iv)

implies that

P3(xy,G) 6 n − |Ai | − |A j | + dG(x, Ai)+ dG(y, A j)
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P1(G)
6 n − 2(c − β)n + 2ρ1/5

0 n
(6.3)
6 (k − 2)cn − (

√
2α − 2β − 2ρ1/5

0 )n < (k − 2)cn −
√
αn.

Thus (5.5) implies that xy ∈ E(G). So P2(G) holds. Lemma 5.1(ii) implies that

m =
∑

i j∈([k]2 )

e(G[Ai , A j ]) 6 3k2√ρ0n2 < ηn2. (6.25)

For P3(G), note that |Z | 6 2m/(ξn) 6 2ηn/ξ 6 δn. Furthermore,
Lemma 5.1(iii) implies that for every i ∈ [k] and e ∈ E(G[Ai ]), there is at
least one endpoint x of e with

dG(x, Ai) >
1
2

(
n − (k − 1)cn − 3k2√ρ0n

) (6.3)
>

(k − 1)αn
3

> ξn.

Thus x ∈ Z . The final part of P3(G) follows from Lemma 5.1(iv) and the fact
that ρ0 � δ.

We now prove P4(G). Let z ∈ Z∩ Ak be arbitrary. By the definition of Z , there
is some i ∈ [k− 1] such that dG(z, Ai) > ξn/k. Let j ∈ [k− 1] \ {i} and y ∈ A j

be arbitrary. We have

P3(zy,G) 6 dG(y, A j)+ dG(z, Ak)

+ dG(z, Ai)+ (n − |Ai | − |A j | − |Ak |)

P1(G),P3(G)
6 2δn + (c + β)n − ξn/k + ((k − 3)c + 3β)n
6 (k − 2)cn − ξn/(2k).

Thus (5.5) implies that xy ∈ E(G). This proves P4(G).
The property P5(G) holds immediately from the definition of Z .
The bound on m claimed in the lemma was established in (6.25). Finally,

Lemma 5.1(v) implies that h 6 kρ1/30
0 m 6 δm.

6.3. Applying Lemma 6.1. Let G be a worst counterexample, that is, G
satisfies (C1)–(C3). Let A1, . . . , Ak be a max-cut partition of G satisfying (C3).
Assume that |Ak | = mini∈[k] |Ai |. Until the end of Section 8, we fix the (A1,

. . . , Ak; Z , β, ξ, ξ, δ)-partition of G obtained from applying Lemma 6.1 to G
and A1, . . . , Ak using the parameters in (5.1). Let m = (m1, . . . ,mk−1) be the
missing vector of this partition and let

m := m1 + · · · + mk−1 6 ηn2. (6.26)
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By permuting A1, . . . , Ak−1 if necessary, we may assume that mk−1 =

maxi∈[k−1]m i . (This assumption will not be used until the proof of Lemma 8.2.)
Further,

h :=
∑
i∈[k]

e(G[Ai ]) 6 δm. (6.27)

Define

t :=
m

(kc − 1)n

(6.3)
>

m
cn
. Then t2

(6.3)
6

m2

2αn2

(6.26)
6

ηm
2α

(5.1)
6
√
ηm. (6.28)

Since P5(G) holds with both γ1 and γ2 set to the same value ξ , this uniquely
determines the set Z as

Z =
⋃
i∈[k]

{
z ∈ Ai : dG(z, Ai) > ξn

}
. (6.29)

For all i ∈ [k], let

Z i := Ai ∩ Z and Ri := Ai \ Z . (6.30)

By P3(G), Ri is an independent set for all i ∈ [k]. By P2(G) and P5(G), for
each i ∈ [k − 1], every z ∈ Z i has dG(z, Ak) > ξn. Note that, by P4(G), the
set Zk has a partition Z 1

k ∪ · · · ∪ Z k−1
k such that, for all i j ∈

(
[k−1]

2

)
we have that

G[Z i
k, A j ] is complete. In particular, each vertex in Z i

k sends at least ξn missing
edges to Ai . Thus we have for all i ∈ [k − 1]

|Z i ∪ Z i
k | 6

2m i

ξn
and |Z | 6

2(m1 + · · · + mk−1)

ξn
=

2m
ξn

(6.26)
6
√
ηn. (6.31)

For each i ∈ [k − 1], let

Yi := {y ∈ Z i
k : dG(y, Ai) 6 γ n}, Y :=

⋃
i∈[k−1]

Yi (6.32)

X i := Z i
k \ Yi , and X :=

⋃
i∈[k−1]

X i .

See Figure 2 for an illustration. In the proof, we will perform various
transformations on G, which will mainly involve changing adjacencies at
vertices in Y and X . It turns out that vertices in X are much harder to deal with
than those in Y , and much of the proof is devoted to these troublesome vertices.

We need a simple proposition before we start with the first main ingredient of
the proof in Section 7.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


H. Liu, O. Pikhurko and K. Staden 60

PROPOSITION 6.12. The following hold in G:

(i) Suppose that xy ∈ E(G[Ak]) and x ∈ Rk . Then y ∈ Y .

(ii) For all i j ∈
(
[k−1]

2

)
, we have that G[Yi , Y j ] is complete.

Proof. For (i), first note that dG(x, Ak) < ξn by P5(G) since x is in Rk = Ak \ Z .
Next, P3(G) implies that y ∈ Zk . By P4(G), there is i ∈ [k−1] such that y ∈ Z i

k .
Using (5.5) and that G[Z i

k, A j ] is complete for every j ∈ [k − 1] \ {i}, we have
that

(k − 2)cn + k > P3(xy,G)
P1(G),P5(G)

>
∑

j∈[k−1]\{i}

|A j | + dG(y, Ai)− ξn

P1(G)
> (k − 2)(c − β)n + dG(y, Ai)− ξn

and so dG(y, Ai) 6 (kβ + ξ)n < γ n. Thus y ∈ Y .
To prove (ii), let y ∈ Yi and x ∈ Y j . Then

P3(xy,G) 6
∑

t∈[k−1]
t 6=i, j

|At | + dG(y, Ai)+ dG(x, A j)+max
z∈Y

dG(z, Ak)

P1,P3(G)
6 (k − 3)(c + β)n + 2γ n + δn 6 (k − 2)cn − cn/2.

Thus (5.5) implies that xy ∈ E(G).

7. The intermediate case: transformations

The aim of this section is to prove the following lemma, which enables us to
find a k-partite (n, e)-graph G ′ that inherits many of the useful properties of G
but does not contain many more triangles than G (see Figure 7 for an illustration
of G ′). Let

C :=
1
√
δ
. (7.1)

LEMMA 7.1. Suppose that m > Cn. Then there exists an (n, e)-graph G ′ with
V (G ′) = V (G), which has the following properties.

(i) For all i ∈ [k−1], there exists Ui ⊆ X i such that, letting A′′i := Ai ∪Yi ∪Ui

and A′′k := V (G) \
⋃

i∈[k−1] A′′i , the graph G ′ is k-partite with partition A′′1,
. . . , A′′k , and further has an (A′′1, . . . , A′′k ; 3β)-partition.
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(ii) The missing vector m ′ := (m ′1, . . . ,m ′k−1) of G ′ with respect to this partition
satisfies α2m i − 2

√
δm 6 m ′i 6 2m i + 2

√
δm for all i ∈ [k − 1].

(iii) K3(G ′) 6 K3(G)+ δ1/4m2/(2n).

It is important to note that we do not assume m > Cn in any of the lemmas
that precede the proof of Lemma 7.1 in Section 7.7. Indeed, we will require some
of these lemmas in both cases m > Cn and m < Cn.

We will obtain a sequence of (n, e)-graphs G =: G0,G1, . . . ,G6 =: G ′ via a
series of transformations such that Transformation i is applied to G i−1 to obtain
G i and it preserves the number of edges and vertices: e(G i−1) = e(G i). For each
i , G i has at most as many bad edges as G i−1, and K3(G i) is not much larger than
K3(G i−1). The final graph G ′ is required to have a special partition and a missing
vector with the property that each entry is within a constant multiplicative factor
of the corresponding entry in G. So each G i must also have these properties.

Transformation i for i ∈ {1, 2, 3} consists of a ‘local’ transformation applied
to each of a given set of vertices U in turn, producing graphs G i−1 =: G0

i−1,G1
i−1,

. . . ,G |U |i−1 =: G i . We first derive some fairly precise properties of the graph G j
i−1,

and then after that we derive the required less precise properties of the graph
G i obtained after the final step. The reason for this is that a single step (that
is, obtaining G1

i−1 only) is also needed at a later stage in the proof to derive a
contradiction.

For all i ∈ [k − 1], we will let

ai :=
∑

j∈[k−1]\{i}

|A j | = n − |Ai | − |Ak |. (7.2)

7.1. Vertices with small missing degree. In the sequence of transformations
described, we will often want to ‘fill in’ some missing edges, and thus we must
remove some edges from another part of the graph to compensate. It will be
useful if we have a fairly large stockpile of such edges that somehow exhibit
average behaviour, and this property is preserved even after removing many of
these well-behaved edges. For this reason, we define Q1, . . . , Qk−1 and R′k ⊆ Rk

below.

PROPOSITION 7.2. Let Ai , Ri ,m i for i ∈ [k] and Z be as in Section 6.3. Let
J be an n-vertex graph with an (A1, . . . , Ak; Z , 2β, ξ/4, 2ξ, δ)-partition and
missing vector m∗ = (m∗1, . . . ,m∗k−1), where m∗i 6 m i for all i ∈ [k − 1]. Then,
for all i ∈ [k − 1], there exists Qi ⊆ J [Ri , Rk] such that Qi is a collection of
2δn edge-disjoint stars, each with a distinct centre in Ak and with δn leaves; and
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the centre of each star has missing degree at most 2
√
ηn. (In particular, for all

e ∈ Qi , we have P3(e, J ) >
∑

j∈[k−1]\{i} |A j | − 2
√
ηn.)

Proof. Let R∗k ⊆ Rk consist of vertices with missing degree at least 2
√
ηn in J .

Then

|R∗k | 6

∑
i∈[k−1]m

∗

i

2
√
ηn

6
m

2
√
ηn

(6.26)
6
√
ηn
2
.

By P1,P3(J ), we have that |Ri | > (c − 2β)n − |Z | > (c − 3β)n for every
i ∈ [k − 1] and |Rk \ R∗k | > (1− (k − 1)c − 4β)n > 2δn · (k − 1). Thus, each
Qi can be chosen by picking a distinct set of 2δn vertices in Rk \ R∗k along with
δn of each one’s Ri -neighbours (of which there are at least (c − β − 2ξ)n by
P1,P3(J )).

Let R′k ⊆ Rk be such that |R′k | = |Rk | − ξn/2 and dG(x ′, Zk) 6 dG(x, Zk) for
all x ′ ∈ R′k and x ∈ Rk \ R′k . Let also

∆ := max
x∈R′k

dG(x, Zk) = max
x∈R′k

dG(x, Ak), (7.3)

where the second inequality follows from P3(G). By P3(G) and (6.27),

2δm > 2e(G[Ak]) >
∑

x∈Rk\R′k

dG(x, Ak) > (|Rk | − |R′k |)∆ =
ξn
2
·∆.

Therefore every x ∈ R′k is such that

dG(x, Ak) 6 ∆ 6
4δm
ξn

6
δ1/3m

n
. (7.4)

7.2. Transformation 1: removing bad edges in A1, . . . , Ak−1. Our first
goal is to obtain a graph G1 from G, which has the property that G1[Ai ] is
independent for all i ∈ [k − 1] and G1 does not contain many more triangles
than G. The following lemma concerns the local transformation of removing all
bad edges incident to a single z ∈ Z \Zk and replacing them with certain missing
edges incident to z (see the left-hand image in Figure 3).

LEMMA 7.3. Let p := |Z \ Zk | and let z1, . . . , z p be any ordering of Z \ Zk .
For each r ∈ [p], let s(r) be such that zr ∈ As(r). Then there exists a sequence
G =: G0,G1, . . . ,G p

=: G1 of graphs such that for all j ∈ [p], we have the
following:
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Figure 2. An (A1, A2, A3; Z , β, ξ, ξ, δ)-partition of G (here k = 3). Here and in
the other figures, dark grey represents a complete bipartite pair, and light grey
represents an ‘almost complete’ bipartite pair, in which each vertex has a small
missing degree. The red edges are missing edges, and Z is also coloured (light)
red.

J(1, j): G j is an (n, e)-graph and has an (A1, . . . , Ak; Z , β, ξ/2, ξ, δ)-
partition.

J(2, j): E(G j) \ E(G j−1) = {z j x : x ∈ R(z j)} for some R(z j) ⊆ R′k , and
E(G j−1) \ E(G j) is the set of xz j ∈ E(G) with x ∈ As( j) \ {z1, . . . ,

z j−1}.

J(3, j): K3(G j) − K3(G j−1) 6
∑

y∈NG j−1 (z j ,As( j))
(∆ − |Zk \ Z s( j)

k | − P3(yz j ,

G j−1
; Rk)). Furthermore, equality holds only if G j−1

[NG j \G j−1(z j , Rk),⋃
i∈[k−1]\{s( j)} Ai ] is complete.
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Figure 3. Transformation 1: G → G2
1 (here k = 3). Left: A single step G j

→

G j+1 as in Lemma 7.3, in which the black edges are replaced by the pink edges.
Right: The final graph G2

1 obtained in Lemma 7.4, in which A1 and A2 are now
independent sets.

Remark. The combined properties of Lemma 7.3 state that each G j is obtained
from the previous graph G j−1 by replacing all current edges connecting z j to
its part with the same number of new edges between z j and R′k . Thus dG j (zt ,

As(t)) = 0 for all t ∈ [ j]; e(G j [Ai , Ak]) = e(G j−1[Ai , Ak]) for all i 6= s( j), and
e(G j [As( j), Ak]) = e(G j−1[As( j), Ak])− dG j−1(z j , As( j)).

Proof of Lemma 7.3. Let G0
:= G. Suppose we have obtained G0, . . . ,G j for

some j < p such that, for all r 6 j , properties J(1, r )–J(3, r ) hold. For g ∈ [3],
let J(g) denote the conjunction of J(g, 1), . . . ,J(g, j). We obtain G j+1 as follows.
Let s := s( j + 1). Choose R(z j+1) ⊆ R′k \ NG j (z j+1) such that |R(z j+1)| =

dG j (z j+1, As). Let us first see why this is possible. One consequence of J(2) is
that the neighbourhood of z j+1 in G j is obtained from its neighbourhood in G by
removing its G-neighbours among {z1, . . . , z j }∩As . Thus, as |R′k | = |Rk |−ξn/2,
we have

dG j (z j+1, R′k)
J (2)
= dG(z j+1, R′k) > dG(z j+1, Ak)− |Zk | − ξn/2

P5(G)
> ξn/2− δn > δn

P3(G)
> dG(z j+1, As)

J (2)
> dG j (z j+1, As).
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So R(z j+1) exists. Now define G j+1 by setting V (G j+1) := V (G j) and

E(G j+1) :=
(
E(G j) ∪ {z j+1x : x ∈ R(z j+1)}

)
\ E(G j

[z j+1, As]).

Thus G j+1 is obtained by replacing all bad edges of G j that are incident with
z j+1 by the same number of missing edges of G j that are incident to z j+1. The
endpoints x of these new edges are chosen in R′k to ensure that the number of
new triangles created is not too large.

We will now show that G j+1 satisfies J (1, j + 1), . . . , J (3, j + 1), beginning
with J (1, j + 1). By construction, G j+1 is an (n, e)-graph. To show that G j+1

has an (A1, . . . , Ak; Z , β, ξ/2, ξ, δ)-partition, we need to show that P1(G j+1)–
P5(G j+1) hold with the appropriate parameters. All properties except P5(G j+1)
are immediate. For P5, let i ∈ [k] and let y ∈ Ai be arbitrary. We have that

dm
G j+1(y) =


dm

G j (y)− 1 if y ∈ R(z j+1),

dm
G j (y)− dG j (z j+1, As) if y = z j+1,

dm
G j (y) otherwise.

(7.5)

Thus if y ∈ Ai \ Z , we have dm
G j+1(y) 6 dm

G j (y) 6 ξn since G j has an (A1, . . . ,

Ak; Z , β, ξ/2, ξ, δ)-partition. It remains to consider the case y = z j+1 (since
missing degree is unchanged for all other vertices in Z ). By the consequence of
J (2) stated above,

dm
G j (z j+1) = dm

G (z j+1) and dG j (z j+1, As) = dG(z j+1, As \ {z1, . . . , z j }). (7.6)

Thus, as G has an (A1, . . . , Ak; Z , β; ξ, ξ, δ)-partition,

dm
G j (z j+1) > ξn − dG(z j+1, As \ {z1, . . . , z j })

P3(G)
> (ξ − δ)n > ξn/2.

Thus P5(G j+1) holds. We have shown that J (1, j + 1) holds. That J (2, j + 1)
holds is clear from J (2) and the construction of G j+1.

For J(3, j + 1), observe that a triangle is in G j+1 but not G j if and only if it
contains an edge xz j+1, where x ∈ R(z j+1); furthermore, no triangle contains
two such edges; and a triangle is in G j but not G j+1 if and only if it contains an
edge yz j+1, where y ∈ NG j (z j+1, As). Thus

K3(G j+1) = K3(G j)+
∑

x∈R(z j+1)

P3(xz j+1,G j+1)

−

∑
y∈NG j (z j+1,As )

P3(yz j+1,G j
; As)− K3(z j+1,G j

; As). (7.7)
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Fix y ∈ NG j (z j+1, As). By J(1, j), P2(G j ) holds and, since y, z j+1 ∈ As , both
of these vertices are incident to all of At ∪ Z t

k for t ∈ [k − 1] \ {s}. Recall the
definition of as from (7.2). So

P3(yz j+1,G j
; As) = as + |Zk \ Z s

k | + P3(yz j+1,G j
; Rk ∪ Z s

k)

> as + |Zk \ Z s
k | + P3(yz j+1,G j

; Rk).

Now fix x ∈ R(z j+1) ⊆ R′k . Then, by J (2, j + 1), we have dG j+1(z j+1, As) = 0
and dG j+1(x, Rk) = dG(x, Rk) = 0. So

P3(xz j+1,G j+1) = as − dG j (x,
⋃

i∈[k−1]\{s}

Ai)+ P3(xz j+1,G j+1
; Zk)

6 as + dG j+1(x, Zk)
J (2)
= as + dG(x, Zk)

(7.3)
6 as +∆. (7.8)

Therefore,

K3(G j+1)− K3(G j)
(7.7),(7.8)

6
∑

y∈NG j (z j+1,As )

(
∆− |Zk \ Z s

k | − P3(yz j+1,G j
; Rk)

)
,

where equality holds only when equality in (7.8) holds for every x ∈ R(z j+1).
This happens only if dG j (x,

⋃
i∈[k−1]\{s} Ai) = 0 for every x ∈ R(z j+1); in

other words, G j
[R(z j+1),

⋃
i∈[k−1]\{s} Ai ] is complete. Recall that R(z j+1) =

NG j+1\G j (z j+1, Rk). This completes the proof of J (3, j + 1).

We can now derive some properties of G1 := G p obtained in Lemma 7.3,
namely that its only bad edges have endpoints in Ak and G1 does not have many
more triangles than G. In fact, we consider the graph G`

1, which is obtained by
applying Lemma 7.3 for only vertices z j ∈ Z1∪· · ·∪ Z`. See the right-hand side
of Figure 3 for an illustration of G2

1 in the case k = 3.

LEMMA 7.4. Let ` ∈ [k−1]. There exists an (n, e)-graph G`
1 on the same vertex

set as G such that we have the following:

(i) G`
1 has an (A1, . . . , Ak; Z , β, ξ/2, ξ, δ)-partition with missing vector

m(1,`)
:= (m(1,`)

1 , . . . ,m(1,`)
k−1 ), where m i/2 6 m(1,`)

i 6 m i for all i ∈ [k − 1].

(ii) E(G`
1[Ai ]) = ∅ for all i ∈ [`], and E(G`

1[Ai ]) = E(G[Ai ]) otherwise.

(iii) K3(G`
1) 6 K3(G)+ δ7/8m2/n.

(iv) NG`
1
(z) = NG(z) for all z ∈ Zk and NG`

1
(x, Ak) = NG(x, Ak) for all x ∈ Ak .
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Proof. Let p := |Z \ Zk | and let p′ := |Z1 ∪ · · · ∪ Z`| 6 p. Let z1, . . . , z p be an
ordering of Z \ Zk such that for 1 6 i < i ′ 6 k − 1, every vertex in Z i appears
before any vertex in Z i ′ . Apply Lemma 7.3 to obtain G`

1 := G p′ satisfying J (1,
p′), . . . , J (3, p′). By J(1,p′), G`

1 has an (A1, . . . , Ak; Z , β, ξ/2, ξ, δ)-partition.
Further, J(2) (defined at the beginning of the proof of Lemma 7.3) implies that,
for i ∈ [`],∑

j∈[p′ ]
s( j)=i

dG j−1(z j , Ai) =
∑
j∈[p′ ]

s( j)=i

dG(z j , Ai \ {z1, . . . , z j−1}) = e(G[Ai ]). (7.9)

If i ∈ [k − 1] \ [`], then m(1,`)
i = m i . If i ∈ [`], then

m(1,`)
i = e(G p′[Ai , Ak])

J (2,p′)
= e(G[Ai , Ak])−

∑
j∈[p′ ]

s( j)=i

dG j−1(z j , Ai)

(7.9)
= m i − e(G[Ai ])

P3(G)
> m i − |Z i | · δn > m i − |Z i | ·

ξn
4

P5(G)
>

m i

2

while clearly m(1,`)
i 6 m i , proving (i). Part (ii) follows immediately from J (2).

Equation (6.27) states that
∑

i∈[k] e(G[Ai ]) 6 δm. Therefore

K3(G`
1)− K3(G) =

∑
j∈[p′]

(
K3(G j)− K3(G j−1)

) J (3)
6

∑
j∈[p′]

dG j−1(z j , As( j)) ·∆

(7.9)
=

∑
i∈[`]

e(G[Ai ]) ·∆
(7.4)
6 δm ·

4δm
ξn

6
δ7/8m2

n
.

Finally, part (iv) follows from J(2).

7.3. Transformation 2: removing Yi -Ai edges. The next transformation is
applied to G`

1 to obtain a graph that inherits the properties of G`
1 whilst also

reassigning Yi to Ai and removing any edges that are bad relative to this new
partition. The only bad edges that remain are incident to X in Ak . Observe that
the (A1, . . . , Ak; Z , β, ξ/2, ξ, δ)-partition of G`

1 is also an (A1, . . . , Ak; Z , 2β,
ξ/4, 2ξ, δ)-partition.

LEMMA 7.5. Let ` ∈ [k − 1] and let G`
1 be any graph satisfying the conclusion

of Lemma 7.4 applied with `. Let q = q(`) := |Y1 ∪ · · · ∪ Y`| and let y1, . . . , yq

be an arbitrary ordering of Y1 ∪ · · · ∪ Y`. For all j ∈ [q], let s( j) ∈ [k − 1]
be such that y ∈ Ys( j). Let A0

i := Ai for i ∈ [k]. Let Q0
i := Qi be obtained by
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Figure 4. Transformation 2: G1 → G2 (here k = 3). Left: A single step
G j
→ G j+1 as in Lemma 7.5, in which the two sets of black edges are replaced

by the corresponding sets of pink edges. Right: The final graph G2
2 obtained in

Lemma 7.6, with the updated partition A′1, A′2, A′3.

applying Proposition 7.2 to the graph J := G`
1 and the partition (A0

1, . . . , A0
k),

for all i ∈ [k − 1]. For all j ∈ [q], let

A j
t :=


A j−1

t ∪ {y j } if t = s( j),
A j−1

t \ {y j } if t = k,
A j−1

t otherwise,
(7.10)

and U j
:= Zk ∩ A j

k and U j,i
:= Z i

k ∩ A j
k for every i ∈ [k − 1]. Then there exists

a sequence G`
1 =: G

0,G1, . . . ,Gq
=: G`

2 of graphs such that for all j ∈ [q], we
have the following:

K(1, j ): • E(G j) \ E(G j−1) is a star with centre y j , where the set of leaves
consists of T (y j) together with some vertices in R′k , where T (y j) is
the set of non-G j−1-neighbours of y j in U j−1

\U j−1,s( j).

• E(G j−1) \ E(G j) = {y jv ∈ E(G) : v ∈ A j−1
s( j)} ∪ Q(y j), where

Q(y j) ⊆ Q j−1
s( j) and |Q(y j)| 6 δn.

• If Zk = Xs( j) ∪ Ys( j), then T (y j) = Q(y j) = ∅.
• The total number of cross-edges in G j is at least that in G0, that is,∑

i p∈([k]2 )

e(G j
[A j

i , A j
p]) >

∑
i p∈([k]2 )

e(G0
[A0

i , A0
p]).
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Define Q j
i := Q j−1

i \ Q(y j) for all i ∈ [k − 1].

K(2, j ): G j is an (n, e)-graph and has an (A j
1, . . . , A j

k ; Z , β+ j
n ,

ξ

2−
j
n , ξ+2δ+

j
n , δ)-partition, where U j,1, . . . ,U j,k−1 is the partition of U j

:= Z∩A j
k

given by P4(G j ).

K(3, j ):

K3(G j)− K3(G j−1)

6
∑

y∈NG j−1 (y j ,A
j−1
s( j) )

(
∆−

ξ

6γ
|U j−1

\U j−1,s( j)
| − P3(yy j ,G j−1

; Rk)

)
.

Furthermore, equality holds only if G j−1
[NG j \G j−1(y j , Rk),⋃

i∈[k−1]\{s( j)} A j−1
i ] is complete.

Proof. Let G0
:= G`

1. Note that s(r) 6 ` for every r ∈ [q]. Suppose that we
have obtained G0, . . . ,G j for some j < q such that, for all r 6 j , properties
K (1, r)–K (3, r) hold. For g ∈ [3], let K (g) denote the conjunction of properties
K (g, 1), . . . , K (g, j). Let s := s( j+1). By definition, U j

\U j,s
= (Zk\Z s

k)\{y1,

. . . , y j }. Recall that

T (y j+1) = NG j (y j+1,U j
\U j,s).

We obtain G j+1 as follows. Choose a set R(y j+1) of dG j (y j+1, A j
s ) vertices

in R′k \ NG j (y j+1). Note that Ri ⊆ Ar
i for all 0 6 r 6 j and i ∈ [k] by (7.10).

Choose a set Q(y j+1) ⊆ Q j
s of size |T (y j+1)| with

V (Q(y j+1)) ∩ Rk ⊆ NG j (y j+1). (7.11)

Note that if Zk = Xs∪Ys , then by definition U j
\U j,s

= ∅. Therefore, T (y j+1) =

Q(y j+1) = ∅. Now define G j+1 by setting V (G j+1) := V (G j) and

E(G j+1) :=
(
E(G j) ∪ {y j+1x : x ∈ R(y j+1)} ∪ {y j+1z : z ∈ T (y j+1)}

)
\(

E(G j
[y j+1, A j

s ]) ∪ Q(y j+1)
)
.

So G j+1 is obtained from G j by replacing every neighbour of y j+1 in A j
s with a

nonneighbour in R′k ; and moving some previously unused edges from Qs to lie
between y j+1 and those nonneighbours in Zk \ Z s

k that lie in A j
k (see the left-hand

side of Figure 4 for an illustration of the transformation G j
→ G j+1).

Let us check that G j+1 exists, that is, one can choose the sets R(y j+1) and
Q(y j+1) with the stated properties. Recall that G and G`

1 agree on Y due to
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Lemma 7.4(iv). Thus by Proposition 6.12(ii), G`
1[Yi , Y j ] is complete for all i j ∈(

[k−1]
2

)
. Consequently, T (yr ) ∩ Y = ∅ for all 1 6 r 6 j ; in other words, no edge

incident to {y j+1, . . . , yq} was modified when we passed from G0 to G j . This
implies that

NG j (y j+1) = NG`
1
(y j+1) ⊇

⋃
i∈[k−1]\{s}

(Ai ∪ Yi). (7.12)

As A j
s = As ∪ {yr : r 6 j; s(r) = s}, together with (7.12), this implies that

NG j (y j+1, A j
s ) ⊆ NG`

1
(y j+1, As) ∪ Y . Since |Y | 6 |Z | 6 δn by P3(G), we have

from Lemma 7.4(iv) that

dG j (y j+1, A j
s ) 6 dG`

1
(y j+1, As)+ δn = dG(y j+1, As)+ δn 6 (γ + δ)n 6 2γ n.

(7.13)
Thus

dG j (y j+1, R′k)
K (1)
= dG`

1
(y j+1, R′k) > |Ak | − |Zk | − ξn/2− dG`

1
(y j+1, Ak)

P3(G`
1),P5(G`

1)

> |Ak | − (ξ/2+ 2δ)n
P1(G`

1),(6.3)
> 2γ n > dG j (y j+1, A j

s ).

So we can choose R(y j+1) as required. Also, by K (1) and Lemma 7.4(iv),
NG j (y j+1, Rk) = NG(y j+1, Rk), which is of size at most δn by P3(G). Thus

|V (Qs) ∩ NG j (y j+1, Rk)| > |V (Qs) ∩ Rk | − |NG j (y j+1, Rk)| > 2δn − δn = δn.

Recall that |Y | 6 |Z | 6
√
ηn by (6.31), and Qs consists of 2δn stars each with

δn leaves centred at Rk . Thus the number of available edges in Q j
s (that is, all

edges in Qs \
⋃

`∈[ j] Q(y`) whose endpoints in Rk are not adjacent to y j+1) is at
least

δn(δn − |Y |) > δn > |Z | > |U j
| > dG j (y j+1,U j

\U j,s) = |T (y j+1)| = |Q(y j+1)|,

so we can choose the desired Q(y j+1) ⊆ Q j
s . Hence G j+1 exists.

Recall that the sets A j+1
t , t ∈ [k], were defined in (7.10). It remains to check

that K (1, j +1)–K (3, j +1) hold. The first three points in Property K (1, j +1)
follow immediately from the construction. To see the last point, note that from
G0 to G j+1, the cross-edges that are no longer present are precisely those in
Q(yr ) and E(Gr−1

[yr , Ar−1
s(r) ]), which are compensated by {xyr : x ∈ T (yr )} and

{xyr : x ∈ R(yr )}, respectively, for every 1 6 r 6 j + 1. In fact, G j+1 will have
more cross-edges than G0 if there are G[Ak]-edges incident to {y1, . . . , y j+1}.

To check that G j+1 has an

(A j+1
1 , . . . , A j+1

k ; Z , β + ( j + 1)/n, ξ/2− ( j + 1)/n, ξ + 2δ + ( j + 1)/n, δ)
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-partition, we need to show that P1(G j+1)–P5(G j+1) hold with the required
parameters. For P1(G j+1), the part sizes |A j+1

t |, |A
j
t | differ by at most one. So

for t ∈ [k − 1] we have∣∣|A j+1
t |−cn

∣∣6 ∣∣|A j+1
t |−|A

j
t |
∣∣+∣∣|A j

t |−cn
∣∣6 (

β +
j
n

)
n+1=

(
β +

j + 1
n

)
n,

as required. The case t = k is similar.
By P2(G j ) we have that G j

[A j
i , A j

p] is complete for all i p ∈
(
[k−1]

2

)
. Thus,

for P2(G j+1), we need only check that xy j+1 ∈ E(G j+1) for all x ∈ A j+1
i with

i ∈ [k − 1] \ {s}. Indeed, if i ∈ [k − 1] \ {s}, then A j+1
i = A j

i = Ai ∪ {yr : r 6
j; s(r) = i} and, by (7.12) and Lemma 7.4(iv), NG j (y j+1) ⊇ A j+1

i . Finally, note
that by construction, NG j+1(y j+1, A j+1

i ) = NG j (y j+1, A j+1
i ).

Note that P3(G j+1) holds by P3(G`
1) and K(1). For P4(G j+1), it suffices to

show that, for all i p ∈
(
[k−1]

2

)
, the bipartite graph G j+1

[U j+1,i , A j+1
p ] is complete.

By P4(G j ) and K (2, j), we have that G j
[U j,i , A j

p] is complete. For i, p 6= s,
this means that G j

[U j+1,i , A j+1
p ] is complete. But G j and G j+1 are identical

between these two sets by construction, so we are done in this case. Suppose
instead that i = s. Then note that U j+1,s

= U j,s
\ {y j+1} and A j+1

p = A j
p, so we

are done as G j
[U j,s, A j

p] is complete and G j+1 is identical in this part. Suppose
finally that p = s. Then U j+1,i

= U j,i and G j
[U j,i , A j+1

s \ {y j+1}] is complete.
Thus, it suffices to show that U j+1,i

= U j,i
⊆ NG j+1(y j+1). But this is immediate

by construction. So P4(G j+1) holds with U j+1,i playing the role of U i
k . We now

turn to P5(G j+1). In what follows, dm
Gr is the missing degree with respect to the

partition (Ar
1, . . . , Ar

k). Let y ∈ V (G j+1). We have by construction that

dm
G j+1(y)=



|A j+1
k | − dG j (y, A j

k )− dG j (y, A j
s )

−|Q(y j+1)| if y = y j+1,

dm
G j (y)+ dQ(y j+1)(y)− 1 if y ∈ NG j (y j+1, A j

s ),

dm
G j (y)+ dQ(y j+1)(y)+ 1 if y ∈ NG j

(y j+1,U j+1,s) \ R(y j+1),

dm
G j (y)+ dQ(y j+1)(y) otherwise.

(7.14)
If y ∈ Z \ {y j+1}, then y is isolated in

⋃
i∈[k−1] Qi and hence in Q(y j+1). So

dm
G j+1(y) > dm

G j (y). Thus we are done by P5(G j ) in this case. If y /∈ Z , then,
using ∆(

⋃
i∈[k−1] Qi) 6 2δn from Proposition 7.2 and Q(y1), . . . , Q(y j+1) are

edge-disjoint, we have

dm
G j+1(y)

(7.14)
6 dm

G`
1
(y)+∆(

⋃
i∈[k−1]

Qi)+ j + 1
P5(G`

1)

6 (ξ + 2δ)n + j + 1,
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as required. Moreover, by K (1) and P3(G`
1), dG j (y j+1, A j

k) 6 dG`
1
(y j+1, Ak) 6

δn. Using (7.13) and (7.14), we have

dm
G j+1(y j+1) = |A j+1

k | − dG j (y j+1, A j
k)− dG j (y j+1, A j

s )− |Q(y j+1)|

> |Ak | − |Y | − 2δn − 2γ n
P1(G`

1)

> n − (k − 1)cn − βn − 3δn − 2γ n
(6.3)
> αn > ξn/2− ( j + 1). (7.15)

Thus P5(G j+1) holds. This completes the proof of K (2, j + 1).
Finally, we will show K (3, j + 1). For every p ∈ [k − 1] and q ∈ [ j + 1], let

aq
p :=

∑
t∈[k−1]\{p}

|Aq
t |.

Then by (7.10), a j
s = a j+1

s . Observe that a triangle is in G j+1 but not G j if and
only if it contains an edge xy j+1, where x ∈ R(y j+1) or x ∈ (Zk \ Z s

k) ∩ A j
k is a

nonneighbour of y j+1 in G j (this is precisely the set T (y j+1)); and a triangle is
in G j but not G j+1 if and only if it contains an edge uy j+1, where u ∈ NG j (y j+1,

A j
s ), or an edge e ∈ Q(y j+1). Observe that there is no triangle in G j that contains

at least two edges from E(G j) \ E(G j+1). Indeed, this follows from (7.11) and
the fact that E(G j

[A j
s ]), E(G j

[Rk])= ∅ (due to s 6 `, Lemma 7.4(ii) and K (1)).
Thus

K3(G j+1)− K3(G j) 6
∑

e∈E(G j+1)\E(G j )

P3(e,G j+1)−
∑

e∈E(G j )\E(G j+1)

P3(e,G j)

6
∑

x∈R(y j+1)

P3(xy j+1,G j+1)−
∑

y∈NG j (y j+1,A
j
s )

P3(yy j+1,G j)

+

∑
z∈T (y j+1)

P3(zy j+1,G j+1)−
∑

e∈Q(y j+1)

P3(e,G j).

We will estimate each summand separately. Let y ∈ NG j (y j+1, A j
s ). By K (1,

j + 1) and the definition of T (y j+1), we have that

P3(yy j+1,G j) > a j
s + dG j (y j+1,U j

\U j,s)+ P3(yy j+1,G j
; Rk)

= a j
s + |U

j
\U j,s

| − |T (y j+1)| + P3(yy j+1,G j
; Rk).

Now let x ∈ R(y j+1). Then dG j+1(y j+1, A j
s ) = 0 and x ∈ R′k , so

P3(xy j+1,G j+1) 6 a j
s − dG j (x,

⋃
i∈[k−1]\{s}

A j
i )+ dG j+1(x, A j+1

k )
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6 a j
s + dG(x, Ak) 6 a j

s +∆, (7.16)

where we used Lemma 7.4(iv) to replace dG`
1
(x, Ak) by dG(x, Ak). Let z ∈

T (y j+1). Let t ∈ [k−1]\{s} be such that z ∈ Z t
k . Then, since dG j+1(y j+1, A j

s ) = 0
and each of y j+1, z has at most δn neighbours in Ak and |A j+1

t | = |A
j
t | > |At |,

P3(zy j+1,G j+1) 6
∑

p∈[k−1]\{s,t}

|A j
p| + dG j+1(z, A j

t )+ dG j+1(z, A j+1
k )

P3(G j+1),P5(G j+1)

6 a j
s − ξn/2+ j + 1+ δn 6 a j

s − ξn/2+ 2δn.

Let now xy ∈ Q(y j+1), where x ∈ Rs and y ∈ Rk . As Q0
s ⊇ Q(y j+1),

Proposition 7.2 implies that P3(xy,G`
1) > as − 2

√
ηn. Then by K (1),

P3(xy,G j) > P3(xy,G`
1) > a j

s − |Y | − 2
√
ηn > a j

s − 2δn.

Before we upper bound K3(G j+1) − K3(G j), we need some preliminary
estimates. Let a, b, p be nonnegative integers such that b 6 a and p 6 2γ n.
We claim that (

ξa
6γ
− b

)
p 6

ξn
3
(a − b). (7.17)

Indeed, if ξa
6γ − b < 0, then it trivially holds as a > b. Otherwise, ( ξa

6γ − b)p 6

( ξa
6γ − b)2γ n 6 ξn

3 (a − b) as desired.
Observe that |U j

\ U j,s
|, dG j (y j+1,U j

\ U j,s), dG j (y j+1, A j
s ) satisfy the

conditions on a, b, p, respectively. Indeed, by Lemma 7.4(iv), K (2) and the
definition of Y , we have that

dG j (y j+1, A j
s ) 6 dG`

1
(y j+1, As)+ |Y |

P3(G)
6 2γ n.

Now,

K3(G j+1)− K3(G j)

6
∑

y∈NG j (y j+1,A
j
s )

(
∆− (|U j

\U j,s
| − |T (y j+1)|)− P3(yy j+1,G j

; Rk)
)

− |T (y j+1)| · ξn/3
= dG j (y j+1, A j

s )
(
∆− dG j (y j+1,U j

\U j,s)
)

−

∑
y∈NG j (y j+1,A

j
s )

P3(yy j+1,G j
; Rk)

−
(
|U j
\U j,s

| − dG j (y j+1,U j
\U j,s)

) ξn
3
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(7.17)
6 dG j (y j+1, A j

s )

(
∆−

ξ

6γ
|U j
\U j,s

|

)
−

∑
y∈NG j (y j+1,A

j
s )

P3(yy j+1,G j
; Rk)

=

∑
y∈NG j (y j+1,A

j
s )

(
∆−

ξ

6γ
|U j
\U j,s

| − P3(yy j+1,G j
; Rk)

)
.

Observe that equality above holds only when equality in (7.16) holds. This
happens only if dG j (x,

⋃
i∈[k−1]\{s} A j

i ) = 0 for every x ∈ R(y j+1); in other words,
G j
[R(y j+1),

⋃
i∈[k−1]\{s} A j

i ] is complete. Recall that R(y j+1) = NG j+1\G j (y j+1,

Rk). So K (3, j + 1) holds.

We can now derive some properties of the graph G2 := Gk−1
2 obtained in

Lemma 7.5, namely that its only bad edges have both endpoints in X , and G2

does not have many more triangles than G1. See the right-hand side of Figure 4
for an illustration of G2 in the case k = 3. For all i ∈ [k − 1], we will let
A′i := Ai ∪ Yi and

a′i :=
∑

j∈[k−1]\{i}

|A′j | = n − |A′i | − |A
′

k |. (7.18)

LEMMA 7.6. There exists an (n, e)-graph G2 on the same vertex set as G1 :=

Gk−1
1 such that we have the following:

(i) G2 has an (A′1, . . . , A′k; Z , 2β, ξ/3, 2ξ, δ)-partition with missing vector
m(2)
= (m(2)

1 , . . . ,m(2)
k−1), where A′i := Ai ∪ Yi for i ∈ [k − 1] and A′k :=

Ak \ Y = Rk ∪ X; also, αm(1)
i 6 m(2)

i 6 2m(1)
i for all i ∈ [k − 1].

(ii) If there are i ∈ [k] and xy ∈ E(G2[A′i ]), then i = k; furthermore, x, y ∈ X
and xy ∈ E(G[A′k]).

(iii) For every i ∈ [k − 1] and every z ∈ X i , we have that dG2(z, A′i) > γ n.

(iv) K3(G2) 6 K3(G1)+ δ
1/4m2/(3n).

Proof. Let q := |Y | and apply Lemma 7.5 to obtain G2 := Gq
= Gk−1

2 satisfying
K (1, q)–K (3, q). Write m(1)

= (m(1)
1 , . . . ,m(1)

k−1). For g ∈ [3], let K (g) be the
conjunction of the properties K (g, 1)–K (g, q). Observe that A′i = Aq

i for all
i ∈ [k]. Now |Y | 6 |Z | 6 δn, and so q/n 6 δ. Thus, by K (1, q), G2 has an (A′1,
. . . , A′k; Z , β+δ, ξ/2−δ, ξ+3δ, δ)-partition and hence an (A′1, . . . , A′k; Z , 2β,
ξ/3, 2ξ, δ)-partition.
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Now, by K (1),

m(2)
i = e(G2[A′i , A′k]) = e(Gq[Ai ∪ Yi , Ak \ Y ])

= e(Gq[Ai , Ak \ Y ] +
∑
y∈Yi

dGq (y, Ak \ Y )

= e(G1[Ai , Ak \ Y ])+
∑
j∈[q]

s( j)=i

|Q(y j)| +
∑
y∈Yi

dGq (y, Ak \ Y )

= m(1)
i −

∑
y∈Yi

(
dG1
(y, Ai)− dGq (y, Ak \ Y )

)
+

∑
j∈[q]

s( j)=i

|Q(y j)|.

Note further, using |Y | 6 |Z | 6 δn by P3(G), that∑
y∈Yi

(
dG1
(y, Ai)− dGq (y, Ak \ Y )

)
=

∑
y∈Yi

(
dm

G1
(y)− dm

Gq (y)
)

6
∑
j∈[q]

s( j)=i

(
|Ai | − (dm

G j (y j)− |Y |)
) (7.15)

6
∑
j∈[q]

s( j)=i

(|Ai | − (1− (k − 1)c)n + 3γ n)

P1(G)
6 |Yi |(kc − 1+ 4γ )n

(6.3)
6 (c − α)|Yi |n.

A similar calculation shows that the left-hand side is positive. Thus using K (1)
for the bound |Q(y j)| 6 δn, we have m(1)

i − (c−α)|Yi |n 6 m(2)
i 6 m(1)

i + δn|Yi |.
But the definition of Yi and Lemma 7.4(iv) imply that

m(1)
i > |Yi | ·min

y∈Yi
dG1
(y, Ai) = |Yi | ·min

y∈Yi
dG(y, Ai)

P1(G)
> |Yi | · (c − β − γ )n > |Yi | · (c − 2γ )n.

Thus, using the fact that c 6 1
k−1 6 1

2 from (5.6),

α 6 1−
c − α

c − 2γ
6

m(2)
i

m(1)
i

6 1+
δ

c − 2γ
6 2.

This completes the proof of (i).
For (ii), the first part follows from E(G1[Ai ]) = ∅ due to Lemma 7.4(ii) and

K (1). For the second part, suppose xy ∈ E(G2[A′k]). Now, Y ∩ A′k = ∅ and
E(G2[A′k]) ⊆ E(G1[Ak]), so every edge in E(G2[A′k]) is incident to a vertex
of X . So x ∈ X , say. Suppose that y /∈ X . Then y ∈ A′k \ X ⊆ Rk . So xy
is an edge of G1 and hence of G by Lemma 7.4(iv). This is a contradiction
to Proposition 6.12(i). This completes the proof of (ii). For (iii), note that for
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any i ∈ [k − 1] and any z ∈ X i , G1 and G2 are identical in [z, Ai ]. Thus, by
Lemma 7.4(iv) and the definition of X , we have that dG2(z, A′i) > dG2(z, Ai) =

dG(z, Ai) > γ n, as required.
Finally, for (iv),

K3(G2)− K3(G1) =

∑
j∈[q]

(
K3(G j)− K3(G j−1)

)
K (3, j)
6

∑
j∈[q]

dG j−1(y j , A j−1
s( j)) ·∆

K (1)
6 ∆ ·

∑
j∈[q]

(dG1(y j , As( j))+ |Y |) 6 ∆|Z |(γ n + |Z |)

(6.31),(7.4)
6

δ1/3m
n
·

2m
ξn
· 2γ n 6

δ1/4m2

3n
,

as required.

7.4. Transformation 3: removing bad X i -X i edges. We have obtained a
graph G2 from G, which has the property that every bad edge has both endpoints
in X . In the third transformation, we remove those bad edges whose endpoints
both lie in X i for some i ∈ [k − 1]. The proof is very similar to the proofs of
Lemmas 7.3 and 7.4.

For all i ∈ [k − 1] and x, y ∈ X i , let

D(x) := dG2(x, X \ X i) and D(x, y) := |NG2(x, X \ X i) ∩ NG2(y, X \ X i)|.

So D(x)− D(x, y) > 0 with equality if and only if the G2-neighbourhood of x
in X \ X i is a subset of y’s.

LEMMA 7.7. Let G2 be any graph satisfying the conditions of Lemma 7.6. Let
f := |X | and let x1, . . . , x f be any ordering of X. For each r ∈ [ f ], let s(r) be
such that xr ∈ Xs(r). Then there exists a sequence G2 =: G0,G1, . . . ,G f

=: G3

of graphs such that for all j ∈ [ f ], we have the following:

L(1, j ): G j is an (n, e)-graph and has an (A′1, . . . , A′k; Z , 2β, ξ/4, 2ξ, δ)-
partition.

L(2, j ): E(G j) \ E(G j−1) = {x j x : x ∈ R(x j)}, where R(x j) ⊆ Rs( j), and
E(G j−1)\E(G j) is the set of x j ′x j ∈ E(G2)with s( j ′)= s( j) and j ′ >
j . Thus dG j (xt , Xs(t)) = 0 for all t ∈ [ j]; e(G j [A′i , A′k]) = e(G j−1[A′i ,
A′k]) for all i 6= s( j), and e(G j [A′s( j), A′k]) = e(G j−1[A′s( j), A′k]) −
dG j−1(x j , Xs( j)).
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Figure 5. Transformation 3: G2 → G3 (here k = 3). Top: A single step G j
→

G j+1 as in Lemma 7.7, in which the black edges are replaced by the pink edges.
Bottom: The final graph G3 obtained in Lemma 7.8, in which X1 and X2 are now
independent sets.
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Figure 6. Transformations 4 and 5. Dark grey and red represent (almost)
complete/empty bipartite pairs, respectively. Left: G4 (here k = 3). The only
bad edges lie in [Ui ,U j ∪W j ] for some i j ∈

(
[k−1]

2

)
. Right: G4→ G5 in the case

k = 4 and I1 = {12} and I2 = {13, 23}.

L(3, j ): K3(G j) − K3(G j−1) 6
∑

y∈NG2 (x j ,Xs( j)\{x1,...,x j−1})
(D(x j) − D(y, x j))

with equality only if K3(x j ,G j−1
; Xs( j)) = 0 and NG j−1(y, A′s( j)) ∩

NG j−1(x j , A′s( j)) = ∅ for all y ∈ NG j−1(x j , Xs( j)).

Proof. Let G0
:= G2. Suppose we have obtained G0, . . . ,G j for some j <

f such that, for all r ∈ [ j], L(1, r)–L(3, r) hold. Note that G0 has an (A′1,
. . . , A′k; Z , 2β, ξ/3, 2ξ, δ)-partition and hence an (A′1, . . . , A′k; Z , 2β, ξ/4, 2ξ,
δ)-partition. For g ∈ [3], let L(g) denote the conjunction L(g, 1), . . . , L(g, j)
of properties. We obtain G j+1 as follows. Let s := s( j + 1). Choose R(x j+1) ⊆
Rs \ NG j (x j+1) ⊆ A′s such that |R(x j+1)| = dG j (x j+1, Xs). Let us first see why
this is possible. One consequence of L(2) is that the neighbourhood of x j+1 in
G j can be obtained from its neighbourhood in G0

= G2 by removing its G2-
neighbours among {xr : r 6 j and s(r) = s}. Thus

dG j (x j+1, Rs)
L(2)
= dG2

(x j+1, Rs) > dG2
(x j+1, A′s)− |Z ∩ A′s |

P5(G2)

> ξn/3− δn > δn
P5(G2)

> |Z | > dG j (x j+1, Xs).
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Figure 7. Transformation 6. Top: Transformation 6 at X i = Ui ∪Wi . Bottom: G ′,
in which the redistributed subsets of X are coloured pink (cf. G in Figure 2).

So R(x j+1) exists. Now define G j+1 by setting V (G j+1) := V (G j) and

E(G j+1) :=
(
E(G j) ∪ {x j+1x : x ∈ R(x j+1)}

)
\ E(G j

[x j+1, Xs]).

Thus G j+1 is obtained by replacing all bad edges of G j between x j+1 and another
vertex in Xs by the same number of missing edges of G j that are between x j+1

and Rs . See the top half of Figure 5 for an illustration of the transformation
G j
→ G j+1.
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H. Liu, O. Pikhurko and K. Staden 80

We will now show that G j+1 satisfies L(1, j + 1), . . . , L(3, j + 1), beginning
with L(1, j + 1). By construction, G j+1 is an (n, e)-graph. To show that G j+1

has an (A′1, . . . , A′k; Z , 2β, ξ/4, 2ξ, δ)-partition, we need to show that P1(G j+1)–
P5(G j+1) hold with the appropriate parameters. All properties except P5(G j+1)
are immediate. For P5, let i ∈ [k] and let y ∈ A′i be arbitrary. Let dm

G j , dm
G j+1

denote the missing degree in G j ,G j+1 with respect to the partition (A′1, . . . , A′k).
We have that

dm
G j+1(y) =


dm

G j (y)− 1 if y ∈ R(x j+1),

dm
G j (y)− dG j (x j+1, Xs) if y = x j+1,

dm
G j (y) otherwise.

(7.19)

Thus if y ∈ A′i \ Z , we have dm
G j+1(y) 6 dm

G j (y) 6 2ξn since G j has an (A′1, . . . ,
A′k; Z , 2β, ξ/4, 2ξ, δ)-partition. It remains to consider the case y = x j+1 (since
missing degree is unchanged for all other vertices in Z ). By the consequence of
L(2) stated above,

dm
G j (x j+1) = dm

G2
(x j+1) and dG j (x j+1, Xs) 6 |Z | 6 δn. (7.20)

Thus

dm
G j+1(x j+1)

P5(G2)

> ξn/3− δn > ξn/4.

Thus P5(G j+1) holds. We have shown that L(1, j + 1) holds. That L(2, j + 1)
holds is clear from L(2), the construction of G j+1 and (7.19).

For L(3, j + 1), observe that a triangle is in G j+1 but not G j if and only if it
contains an edge xx j+1, where x ∈ R(x j+1); and a triangle is in G j but not G j+1

if and only if it contains an edge yx j+1, where y ∈ NG j (x j+1, Xs). Observe also
that there is no triangle in G j+1 that contains more than one vertex in R(x j+1).
Thus

K3(G j+1) = K3(G j )+
∑

x∈R(x j+1)

P3(xx j+1,G j+1)−
∑

y∈NG j (x j+1,Xs )

P3(yx j+1,G j
; Xs)

−K3(x j+1,G j
; Xs).

We will estimate each summand in turn. Fix y ∈ NG j (x j+1, Xs). By L(1, j),
P2(G j ) holds and, since y, x j+1 ∈ Xs , both of these vertices are incident to all of
A′t for t ∈ [k − 1] \ {s}. So

P3(yx j+1,G j
; Xs) = a′s + |NG j (y, X \ Xs) ∩ NG j (x j+1, X \ Xs)|

+ |NG j (y, A′s) ∩ NG j (x j+1, A′s)|
= a′s + D(y, x j+1)+ |NG j (y, A′s) ∩ NG j (x j+1, A′s)|, (7.21)
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where the last equality uses the fact that G j and G2 are identical at [Xs, X \ Xs]

for any s ∈ [k−1] due to L(2). Now fix x ∈ R(x j+1). Then dG j+1(x, A′s)= dG2(x,
A′s) = 0 and also dG j+1(x j+1, Xs) = 0. By P4(G j+1), x is incident to every vertex
in X t for t 6= s. Recall that dG j+1(x j+1, Rk) = 0. Indeed, E(G[X, Rk]) = ∅ due
to Proposition 6.12(i), and it remains empty during the transformations G →
G1 → G2 → Gq for any q ∈ [ f ]. Thus

P3(xx j+1,G j+1) = a′s + P3(xx j+1,G j+1
; A′k) = a′s +

∑
t∈[k−1]\{s}

dG j+1(x j+1, X t)

L(2)
= a′s + D(x j+1).

Therefore

K3(G j+1)− K3(G j )

=

∑
x∈R(x j+1)

P3(xx j+1,G j+1)−
∑

y∈NG j (x j+1,Xs )

P3(yx j+1,G j
; Xs)− K3(x j+1,G j

; Xs)

6
∑

y∈NG j (x j+1,Xs )

(D(x j+1)− D(y, x j+1)− |NG j (y, A′s) ∩ NG j (x j+1, A′s)|)

− K3(x j+1,G j
; Xs)

=

∑
y∈NG2 (x j+1,Xs\{x1,...,x j })

(D(x j+1)− D(y, x j+1)− |NG j (y, A′s) ∩ NG j (x j+1, A′s)|)

− K3(x j+1,G j
; Xs),

proving L(3, j + 1).

Again we are now able to derive some properties of G3 := G f obtained in
Lemma 7.7, namely that every bad edge lies between X i and X j for some distinct
i, j ; and G3 does not have many more triangles than G2. The bottom half of
Figure 5 shows G3 in the case when k = 3.

LEMMA 7.8. There exists an (n, e)-graph G3 on the same vertex set as G2 such
that we have the following:

(i) G3 has an (A′1, . . . , A′k; Z , 2β, ξ/4, 2ξ, δ)-partition with missing vector
m3
:= (m(3)

1 , . . . ,m(3)
k−1) and m(2)

i /2 6 m(3)
i 6 m(2)

i , where m(3)
i = m(2)

i if
and only if E(G2[X i ]) = ∅.

(ii) If there is i ∈ [k] and xy ∈ E(G3[A′i ]), then i = k and there exists ``′ ∈(
[k−1]

2

)
such that x ∈ X` and y ∈ X`′ . Moreover, for all st ∈

(
[k−1]

2

)
, we have

E(G3[Xs, X t ]) = E(G2[Xs, X t ]) and dG3(x, A′i) > γ n for all i ∈ [k − 1]
and x ∈ X i .
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(iii) K3(G3) − K3(G2) 6 |Z |2 · max i∈[k−1]
x,y∈X i

(D(x) − D(x, y)) with equality only

if for all i ∈ [k − 1], we have that G2[X i ] is triangle-free and NG2(x, A′i) ∩
NG2(y, A′i) = ∅ for all xy ∈ E(G2[X i ]). In particular, K3(G3)− K3(G2) 6√
δm2/n.

Proof. Let f := |X | and apply Lemma 7.7 to G2 to obtain G3 := G f satisfying
L(1, f )–L(3, f ). For g ∈ [3], let L(g) denote the conjunction of properties L(g,
1)–L(g, f ). By L(1, f ), G3 has an (A′1, . . . , A′k; Z , 2β, ξ/4, 2ξ, δ)-partition.
Also, for all i ∈ [k − 1],∑

j∈[ f ]
s( j)=i

dG j−1(x j , X i) =
∑
j∈[ f ]

s( j)=i

dG2(X i \ {x1, . . . , x j−1}) = e(G2[X i ]).

Thus

m(3)
i = e(G f [A′i , A′k])

L(2, f )
= e(G2[A′i , A′k])−

∑
j∈[ f ]

s( j)=i

dG j−1(x j , X i)

= m(2)
i − e(G2[X i ])

P3(G2)

> m(2)
i − |X i | · δn > m(2)

i − |X i | ·
ξn
6

P5(G2)

>
m(2)

i

2
,

and also m(3)
i 6 m(2)

i with equality holds if and only if E(G2[X i ]) = ∅. This
proves (i).

We now turn to (ii). By L(2) and Lemma 7.6(ii), E(G3[A′t ])= E(G2[A′t ])= ∅
if t 6= k. Furthermore, E(G3[A′k]) ⊆ E(G2[A′k]). So if G3 has a bad edge xy,
both of its endpoints lie in X . But, for all r ∈ [ f ], we have dG j (xr , Xs(r)) = 0
for all j > r . So E(G3[X i ]) = ∅ for all i ∈ [k − 1]. Note that for any x ∈ X i

with i ∈ [k − 1], after the transformations G → G1 → G2 → G3, we have
NG3(x, Ai) ⊇ NG(x, Ai). Hence, by the definition of X ,

dG3(x, A′i) > dG3(x, Ai) > dG(x, Ai) > γ n. (7.22)

This proves (ii).
It remains to establish (iii). We have that

K3(G3)− K3(G2) =
∑
j∈[ f ]

(
K3(G j)− K3(G j−1)

)
6
∑
j∈[ f ]

∑
y∈NG2 (x j ,Xs( j)\{x1,...,x j−1})

(D(x j)− D(y, x j))

6 |Z |2 · max
i∈[k−1]
x,y∈X i

(D(x)− D(x, y))

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


The minimum number of triangles 83

P3(G2)

6 |Z |2 · δn
(6.31)
6

4δm2

ξ 2n
6

√
δm2

n
.

This together with L(3) implies the inequality in (iii). Further, we have equality
only if K3(x j ,G j−1

; Xs( j)) = 0 for all j ∈ [ f ], and |NG j−1(y, A′s) ∩ NG j−1(x j ,

A′s)| for all y ∈ NG j−1(x j), where s( j) is such that x j ∈ A′s( j). This occurs if and
only if G2[X i ] is triangle-free for all i ∈ [k−1], and NG2(x, A′i)∩NG2(y, A′i)= ∅,
as required.

7.5. Transformation 4: symmetrizing X i -A′i edges. Lemma 7.8(ii) implies
that D(x) =

∑
t∈[k−1]\{i} dG3(x, X t) for every x ∈ X i , i ∈ [k−1]. Next we obtain

an (n, e)-graph G4 with the property that, for all i ∈ [k − 1] and all but at most
one vertex x ∈ X i , either G4[x, A′i ] is empty or it is almost complete (see the
left-hand side of Figure 6).

LEMMA 7.9. There exists an (n, e)-graph G4 on the same vertex set as G3 such
that we have the following:

(i) G4 has an (A′1, . . . , A′k; Z , 2β, ξ/5, 3ξ, δ)-partition; also, G3 and G4 can
differ only at the union of [X i , A′i ] for i ∈ [k − 1].

(ii) For every i ∈ [k − 1], there exists a partition X i = Ui ∪ Wi (into parts
that may be empty) such that dG4(w, A′i) = |A

′

i | − ξn/5 for all but at most
one w ∈ Wi , which has at least ξn/5 nonneighbours in A′i , and e(G4[Ui ,

A′i ]) = 0. Further, for all i ∈ [k − 1], if Ui 6= ∅, then Wi 6= ∅.

(iii) If there is i ∈ [k] and xy ∈ E(G4[A′i ]), then i = k and there exists st ∈(
[k−1]

2

)
such that x ∈ Xs and y ∈ X t , and further, xy ∈ E(G3[A′k]).

(iv) K3(G4) 6 K3(G3); and if there exists i ∈ [k − 1] and x, y ∈ X i such that
D(x) 6= D(y), then K3(G4) 6 K3(G3)− ξn/20.

(v) Let m4
= (m(4)

1 , . . . ,m(4)
k−1) be the missing vector of G4 with respect to (A′1,

. . . , A′k). Then m(4)
i = m(3)

i and |Ui ||A′i | 6 m(4)
i for all i ∈ [k − 1].

Proof. Roughly speaking, we will obtain G4 from G3 by, for each i ∈ [k − 1],
moving all X i -Ai edges to be incident to vertices x ∈ X i such that D(x) is
minimal. Let G1,0

:= G3. For each i ∈ [k − 1], let fi := |X i |.
Set i = 1 and perform the following procedure.

(1) If X i = ∅, then let ti := 0 and go to Step (6). Otherwise, let x i
1, . . . , x i

fi

be an ordering of X i such that D(x i
1) 6 · · · 6 D(x i

fi
). Suppose we have

constructed G i,0, . . . ,G i, j for some j > 0.
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(2) Let i+ = i+( j) be the largest t ∈ [ fi ] such that dGi, j (x i
t , A′i) > 0. Let

i− = i−( j) be the smallest s ∈ [ fi ] such that dGi, j (x i
s, A′i) > ξn/5.

(3) If i+ 6 i−, then set ti := j and go to Step (6).

(4) Choose x ∈ NGi, j (x i
i+, A′i) and y ∈ NGi, j (x i

i−, A′i). Let G i, j+1 be the graph
on vertex set V (G i, j) with

E(G i, j+1) := E(G i, j) ∪ {x i
i−, y} \ {x i

i+, x}.

(5) Set j := j + 1 and go to Step (2).

(6) If i = k − 1, set G4 := Gk−1,ti and STOP. Otherwise, set G i+1,0
:= G i,ti ,

then set i := i + 1 and go to Step (1).

Observe that, by (7.22) and P5(G3), for each i ∈ [k − 1] such that X i 6= ∅ and
for each x ∈ X i , we have

γ n 6 dG3(x, A′i) 6 |A
′

i | − ξn/4. (7.23)

Thus in G i,0, we have i+(0) = fi > 1 = i−(0). We need to show that the
iteration terminates. Indeed, for each fixed i ∈ [k − 1], we have that i+ − i−

is a nonincreasing function of j , which is bounded above by fi . Note further that
i+ − i− remains constant for at most n instances of Steps (2)–(4) since dGi, j (x i

i+,

A′i) strictly decreases. Thus we reach Step (6) in a finite number ti of steps for
each i ∈ [k − 1]. Thus we obtain the final graph G4 in some finite number
t1 + · · · + tk−1 of steps, as required.

Recall that E(G3[X, Rk]) = E(G[X, Rk]) = ∅. Then for all i ∈ [k − 1], 0 6
j 6 ti , x ∈ X i and u ∈ A′i , we have that

P3(xu,G i, j) = P3(xu,G3) = a′i + dG3(x, X \ X i) = a′i + D(x).

This follows from the fact that the only edges that change lie between A′` and X`

for some ` ∈ [k − 1], and no such edge forms a triangle with xu. Together with
the fact that Step (4) happens only when i+ > i−, we have

K3(G i, j)− K3(G i, j−1) = P3(x i
i− y,G i, j)− P3(x i

i+x,G i, j−1)

= D(x i
i−)− D(x i

i+) 6 0. (7.24)

We will now prove (i)–(v). Clearly P1(G4)–P4(G4) hold with the same
parameters. For P5(G4), note that the missing degree of any v ∈ V (G4) \ Z
changes by at most |X |6 δn, so P5(G3) implies that it is at most 3ξn, as required.
For i ∈ [k − 1], every v ∈ A′i ∩ Z has gained at most |X | 6 δn neighbours in
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A′k , so, by P5(G3), the missing degree of v in G4 is at least (ξ/4 − δ)n > ξn/5.
For v ∈ X i ⊆ X = A′k ∩ Z for some i ∈ [k− 1], it follows from the construction
that dG4

(v, A′i) > ξn/5. The last assertion follows from the construction. This
completes the proof of (i).

We now prove (ii). If X i 6= ∅, let

Wi = {x i
1, . . . , x i

i+(ti )} and Ui := X i \Wi . (7.25)

Then (ii) holds by construction. Property (iii) also holds by construction.
For (iv), let ` := ξn/20. Recall that for every i ∈ [k − 1] with |X i | > 2,

we have i+(0) = fi > 2 > 1 = i−(0). Then (7.23) and ξ � γ imply that
ti > ξn/4 − ξn/5 = ` and for any 0 6 j 6 ` − 1, we have i+( j) = fi and
i−( j) = 1. Then (7.24) implies that

K3(G4)− K3(G3) =
∑

i∈[k−1]
X i 6=∅

∑
j∈[ti ]

(
K3(G i, j)− K3(G i, j−1)

)
6 0.

Furthermore, if there are i ∈ [k− 1] and x, y ∈ X i such that D(x) 6= D(y), then
D(x i

1) 6 D(x i
fi
)− 1. Then the observation above shows that in fact

K3(G4)− K3(G3) 6
∑

06 j6`−1

(
K3(G i, j+1)− K3(G i, j)

)
6 ` · (D(x i

1)− D(x i
fi
)) 6 −ξn/20.

Finally, (v) is immediate by construction and the definition of Ui .

7.6. Transformation 5: replacing [Wi, W j ]-edges with [Ui, U j ]-edges.
The required partition of G ′ is obtained by moving Ui to A′i for each i ∈ [k − 1],
and for P2(G ′) to hold, we need that G ′[Ui ,U j ] is complete. Using the next
transformation, we obtain G5 from G4 by replacing [Wi ,W j ]-edges with [Ui ,

U j ]-edges. Thus either we have the required property or G5[Wi ,W j ] is empty.
See the right-hand side of Figure 6 for an illustration.

LEMMA 7.10. There exists an (n, e)-graph G5 on the same vertex set as G4 such
that we have the following:

(i) G5 has an (A′1, . . . , A′k; Z , 2β, δ)-partition.

(ii) Every pair e ∈ E(G4) 4 E(G5) has endpoints xs ∈ Xs, xt ∈ X t for some
st ∈

(
[k−1]

2

)
.
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(iii) There is a partition I1 ∪ I2 of
(
[k−1]

2

)
such that for each i j ∈ I1, we have

e(G5[Ui ,U j ]) = 0; and for each i j ∈ I2, we have e(G5[Wi ,W j ]) = 0.

(iv) K3(G5) < K3(G4)+ k2δn + 2|Z |3.

Proof. Obtain a graph G5 from G4 as follows. For all i j ∈
(
[k−1]

2

)
, let

fi j := min{e(G4[Wi ,W j ]), e(G4[Ui ,U j ])}.

Let F W
i j ⊆ E(G4[Wi ,W j ]) and FU

i j ⊆ E(G4[Ui ,U j ]) be such that |F W
i j | =

|FU
i j | = fi j . Let V (G5) := V (G4) and

E(G5) := E(G4) ∪
⋃

i j∈([k−1]
2 )

FU
i j \

⋃
i j∈([k−1]

2 )

F W
i j .

Clearly G5 is an (n, e)-graph. Parts (i)–(iii) are also clear by construction (to
define the partition in (iii), break ties arbitrarily).

It remains to prove part (iv). For this, we need to calculate the P3-counts for
those adjacencies that were changed by passing from G4 to G5. Recall from
Lemma 7.8(ii) that for any i ∈ [k − 1], if Ui 6= ∅, then Wi 6= ∅. Note also
that if Ui = ∅, then the adjacencies involving X i are the same in G4 and G5.
Thus, for fixed i j ∈

(
[k−1]

2

)
, we may assume that Ui ,U j 6= ∅. Let wi ∈ Wi and

w j ∈ W j be arbitrary. Suppose that there exists a vertex w′i ∈ Wi with dG4(w
′

i ,

A′i) > |A
′

i | − ξn/5. Then, by P4(G4), wi , w
′

i are incident to every vertex in A′`
with ` ∈ [k−1]\{i}, andw j is incident to every vertex in A′` with ` ∈ [k−1]\{ j}.
So

P3(w
′

iw j ,G4) > a′j − ξn/5.

Also,

P3(wiw j ,G4) > P3(wiw j ,G4; A′k) > a′i − |A
′

j |
(7.18)
= a′j − |A

′

i |. (7.26)

Let ui ∈ Ui and u j ∈ U j . Then dG5(ui , A′i), dG5(u j , A′j) = 0 (since this holds in
G4), so

P3(ui u j ,G5) 6 a′i−|A
′

j |+dG4(u j , A′k)
P1,P3(G4)

6 a′i− (c−2β−δ)n 6 a′i−cn/2.
(7.27)

Similarly, P3(ui u j ,G5) 6 a′j−cn/2. We have shown, for anywi ∈ Wi ,w j ∈ W j ,
ui ∈ Ui and u j ∈ U j such that dG4(w`, A′`) > |A

′

`|− ξn/5 for at least one ` ∈ {i,
j}, that

P3(ui u j ,G5)− P3(wiw j ,G4) 6 −cn/2+ ξn/5 < −cn/3.
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If we arbitrarily order FU
i j as e1, . . . , e fi j and F W

i j as e1, . . . , e fi j , then we can
write

K3(G5)− K3(G4) 6
∑

i j∈([k−1]
2 )

∑
`∈[ fi j ]

(P3(e`,G5)− P3(e`,G4))+ 2|Z |3,

where 2|Z |3 bounds from above the error coming from the triangles in G4

using at least two edges from
⋃

i j∈([k−1]
2 )

F W
i j . Then the only ` for which the

corresponding summand is potentially greater than −cn/3 is such that e` =
wiw j , where wt ∈ Wt for t ∈ {i, j} and dG4(wt , A′t) < |A

′

t | − ξn/5. Given any
ui ∈ Ui and u j ∈ U j , we have in this case

P3(ui u j ,G5)−P3(wiw j ,G4)
(7.26),(7.27)

6 a′i−|A
′

j |+dG4(u j , A′k)−(a
′

i−|A
′

j |)6 δn.

But each Wt contains at most one such vertex by Lemma 7.9(ii), so the number
of such summands is at most

(k−1
2

)
. Thus we have

K3(G5)− K3(G4) 6 k2δn + 2|Z |3,

proving (iv).

7.7. Transformation 6 and the proof of Lemma 7.1. A final transformation
of G5 gives us the required graph G ′. The transformation does the following. Let
I1, I2 be defined as in Lemma 7.10. If i j is a pair in I1, it replaces all [Wi ,W j ]-
edges with some missing edges in [Wi , Ri ]. If i j is a pair in I2, then it replaces
some edges in [Ri , Rk]with all missing edges in [Ui ,U j ]. The resulting graph G ′

(see Figure 7) has the following properties: (i) an edge remains inside A′k if and
only if it is in [Ui ,W j ∪U j ] for some i j ∈

(
[k−1]

2

)
; (ii) for any i j ∈

(
[k−1]

2

)
, G ′[Ui ,

U j ] is complete while G ′[Wi ,W j ] is empty. Thus the new partition obtained by
moving Ui to A′i for all i ∈ [k − 1] satisfies P2.

Proof of Lemma 7.1. Apply Lemmas 7.3–7.10 to obtain (n, e)-graphs
G→ G1→ G2→ G3→ G4→ G5. We will obtain G ′ from G5 as follows. For
each i ∈ [k − 1], choose Ci ⊆ E(G5[Ri ,Wi ]) such that |Ci | = e(G5[Wi ,⋃

i`∈I1:`>i W`]), and Di ⊆ E(G5[Rk, Ri ]) such that |Di | = e(G5[Ui ,⋃
i`∈I2:`>i U`]), each Di is bipartite, and the collection of sets V (Di) ∩ Rk

is pairwise-disjoint over i ∈ [k − 1]. Let

E(G ′) :=

E(G5) ∪
⋃

i∈[k−1]

Ci ∪
⋃

i j∈([k−1]
2 )

E(G5[Ui ,U j ])

∖
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i j∈([k−1]

2 )

E(G5[Wi ,W j ]) ∪
⋃

i∈[k−1]

Di

 .
So for each i ∈ [k − 1], we remove all [Wi ,W j ]-edges with j > i and replace
them with missing [Ri ,Wi ]-edges (the set Ci ); and we add all missing [Ui ,U j ]-
edges with j > i and remove the same number of [Rk, Ri ]-edges (the set Di )
to compensate (see Figure 7). Write W =

⋃
i∈[k−1]Wi and U =

⋃
i∈[k−1]Ui .

Observe that

e

(
G5

[
Wi ,

⋃
i`∈I1:`>i

W`

])
6 e(G5[Wi ,W\Wi ])

P3(G5)

6 |Wi |δn < |Wi |(ξ/5− δ)n

P5(G4)

6 e(G4[Wi , A′i ])− |Wi ||Z | 6 e(G4[Wi , Ri ])

= e(G5[Wi , Ri ]),

where we used Lemma 7.10(ii) for the last equality. So Ci exists. On the other
hand,

e

(
G5

[
Ui ,

⋃
i`∈I2:`>i

U`

])
6 e(G5[Ui ,U \Ui ]) 6 |Z |2

(6.31)
6 ηn2.

Note that, for every v ∈ Rk and i ∈ [k − 1], we have

|Ri |> dG5(v, Ri )= dG4(v, Ri )
P5(G4)

> |A′i |−
ξn
5
−|Z |

P1(G4),(6.3)
> |Rk |> k

√
ηn

(6.31)
> k|Z |.

Thus we can choose Di to be the union of stars with distinct centres at Rk and
leaves in Ri such that V (Di) ∩ Rk are pairwise-disjoint for all i ∈ [k − 1] as
desired. There is no edge that is both added and removed as W ∩U = ∅, and

∑
i j∈([k−1]

2 )

e(G5[Wi ,W j ]) =
∑

i∈[k−1]

e

(
G5

[
Wi ,

⋃
i`∈I1:`>i

W`

])
=

∑
i∈[k−1]

|Ci |,

(7.28)∑
i j∈([k−1]

2 )

e(G5[Ui ,U j ]) =
∑

i∈[k−1]

e

(
G5

[
Ui ,

⋃
i`∈I2:`>i

U`

])
=

∑
i∈[k−1]

|Di |.

Thus G ′ is an (n, e)-graph. By construction, we have the following:

(1) Every edge in G ′[A′k] is in [Ui ,W j ∪U j ] for some i j ∈
(
[k−1]

2

)
; furthermore,

G ′[U1, . . . ,Uk−1] is complete (k − 1)-partite.
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(2) The edge set of G ′[A′i ] is empty for all i ∈ [k − 1] (this follows from
Lemmas 7.9(iii) and 7.10(ii) and that G5 and G ′ are identical in A′i for all
i ∈ [k − 1]).

(3) The edge set of G ′[A′i ,Ui ] is empty for all i ∈ [k − 1] and the edge set
of G ′[A′j ,Ui ] is complete for all j ∈ [k − 1] \ {i} (this follows from
Lemmas 7.9(ii) and 7.10(ii) and that G5 and G ′ are identical in [A′i ,Ui ]

for all i ∈ [k − 1]).

With these observations, we can define the required partition of G ′ and prove
(i). Indeed, let A′′i := A′i ∪ Ui for all i ∈ [k − 1] and A′′k := A′k \ U . Properties
(1)–(3) imply that A′′i is independent for all i ∈ [k].

We claim that G ′ has an (A′′1, . . . , A′′k ; 3β)-partition, that is, P1(G ′) and
P2(G ′) hold with the appropriate parameters. For P1(G ′), clearly A′′1, . . . , A′′k
is a partition of V (G ′). Moreover,

∑
i∈[k−1] |Ui | 6 |Z | 6 δn 6 βn, so P1(G5)

implies that P1(G ′) holds with parameter 3β.
For P2(G ′), since G ′[A′i , A′j ] = G4[A′i , A′j ] for i j ∈

(
[k−1]

2

)
, it suffices to check

that G ′[Ui , A′′j ] is complete. By P4(G4), we have that G ′[Ui , A′j ] = G4[Ui , A′j ]
is complete. But G ′[Ui ,U j ] is also complete by Property (1). This proves P2(G ′).
We have shown that G ′ has an (A′′1, . . . , A′′k ; 3β)-partition.

Our next task is to bound the entries in the missing vector m ′ := (m ′1, . . . ,
m ′k−1) of G ′ with respect to (A′′1, . . . , A′′k). For each i ∈ [k − 1], we have

m ′i = e(G ′[A′′i , A′′k ]) = e(G ′[A′i , A′k \U ])+ e(G ′[Ui , A′k \U ])
= e(G ′[A′i , A′k])+ e(G ′[Ui , A′k \U ])− e(G ′[Ui , A′i ]), (7.29)

where the last equality follows from e(G ′[U, A′i ]) = e(G ′[Ui , A′i ]), a
consequence of Property (3). By Property (3), e(G ′[Ui , A′i ]) = |Ui ||A′i |. Note
also that every transformation from G to G ′ preserves all adjacencies in [X, Rk]

(hence also [Ui , Rk]), which is empty in G. Together with A′k \ U = Rk ∪ W ,
this implies that

|Ui ||Rk | 6 e(G ′[Ui , A′k \U ]) 6 |Ui ||A′k |.

We then derive from (7.29) that

e(G ′[A′i , A′k])− |Ui |(|A′i | − |Rk |) 6 m ′i 6 e(G ′[A′i , A′k])− |Ui |(|A′i | − |A
′

k |).

(7.30)
Lemma 7.10(ii) says that G5 has the same number of edges between parts A′i ,

A′j as G4 for all 1 6 i < j 6 k, and so implies that e(G5[A′i , A′k]) = m(4)
i for all

i ∈ [k − 1]. Then

e(G ′[A′i , A′k]) = e(G5[A′i , A′k])− |Ci | + |Di | = m(4)
i − |Ci | + |Di |. (7.31)
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Now, using P3(G5),

|Ci | + |Di | 6 e(G5[W ])+ |Ui ||Z | 6 e(G5[A′k])+ |Z |
2 (7.32)

(6.31)
6

2m
ξn
(δn +

√
ηn) 6 2

√
δm.

Lemma 7.9(v) implies that m(4)
i = m(3)

i and m(4)
i > |Ui ||A′i | for all i ∈ [k − 1].

Now,

|A′i |−|A
′

k | = |A
′

i |−|Rk |±δn = |A′i |−|A
′

k |+|Z |±δn
P3(G5),P1(G5)
= (kc−1)n±5βn.

(7.33)
Thus

m ′i
(7.30),(7.31)

6 m(4)
i − |Ci | + |Di | − |Ui |(|A′i | − |A

′

k |)

(7.32),(7.33)
6 m(4)

i + 2
√
δm − |Ui |(kc − 1± 5β)n

(6.3)
6 m(4)

i + 2
√
δm.

In the other direction,

m ′i
(7.30),(7.31)

> m(4)
i − |Ci | + |Di | − |Ui |(|A′i | − |Rk |)

> m(4)
i − 2

√
δm −

m(4)
i

|A′i |
· (kc − 1+ 5β)n

P1(G4)

> m(4)
i − 2

√
δm −

m(4)
i

(c − 2β)
· (kc − 1+ 5β)

= m(3)
i ·

1− (k − 1)c − 7β
c − 2β

− 2
√
δm

(6.3)
> m(3)

i ·
(k − 1)α − 7β

c − 2β
− 2
√
δm.

Then Lemmas 7.4, 7.6 and 7.8(i) imply that αm i/4 6 m(3)
i 6 2m i ; thus,

α2m i−2
√
δm 6

α

4
·
(k − 1)α − 7β

c − 2β
·m i−2

√
δm 6 m ′i 6 m(3)

i +2
√
δm 6 2m i+2

√
δm,

as required.
It remains to bound K3(G ′)− K3(G). To do so, we will first bound K3(G ′)−

K3(G5). Let i ∈ [k − 1]. Let xi ∈ Ri and wi ∈ Wi be arbitrary. Then dG ′(xi ,

A′i) = dG5(xi , A′i) = 0 and dG ′(wi , A′k) 6 |U | by Properties (1) and (2). So
P3(xiwi ,G ′) 6 a′i + |U | 6 a′i + δn and hence

max
e∈Ci

P3(e,G ′) 6 a′i + δn. (7.34)
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Let w j ∈ W j be arbitrary with j ∈ [k − 1] \ {i}. Recall from Lemma 7.9(ii) that
all vertices in Wi except at most one special vertex have G4-degree in A′i exactly
|A′i |− ξn/5. Let W ′

⊆ W be the set of these special vertices from each Wi . Then
|W ′
| 6 k−1. Further, define EW\W ′ := E(G5[W \W ′

]) to be the set of G5-edges
in W \ W ′ and EW ′ := E(G5[W ])− EW\W ′ to be the set of G5-edges in W with
at least one endpoint in W ′. Note that

|EW ′ | 6 |W ′
| · |W | < k|Z |

(6.31)
6

2km
ξn

. (7.35)

By P4(G4) and the definition of W ′, we see that

P3(wiw j ,G4; A′k) =
k−1∑
i=1

|A′i | − 2ξn/5 for all wiw j ∈ EW\W ′, (7.36)

while for any wiw j ∈ EW ′ , (7.26) holds. By Lemma 7.10(ii), for every w ∈
W ′, we have NG5(w, A′k) = NG4(w, A′k), which in turn implies that the bounds
in (7.26) and (7.36) hold also for P3(wiw j ,G5), that is,

P3(wiw j ,G5) > a′i − |A
′

j |
(7.18)
= a′j − |A

′

i | and (7.37)

P3(wiw j ,G5; A′k) =
k−1∑
i=1

|A′i | − 2ξn/5 for all wiw j ∈ EW\W ′ .

Let xk ∈ Rk and yi ∈ Ri . By P2(G5) (that is, Lemma 7.10(i)), G5[yi , A′`] is
complete for all ` ∈ [k−1] \ {i}. Moreover, Lemma 7.10(ii) implies that dG5

(xk,

A′k) = dG4
(xk, A′k), which is at most 3ξn by P5(G4). Thus P3(xk yi ,G5) > a′i −

3ξn, and so
min
e∈Di

P3(e,G5) > a′i − 3ξn. (7.38)

Let ui ∈ Ui and u j ∈ U j for j ∈ [k − 1] \ {i}. Then dG ′(ui , A′i), dG ′(u j , A′j) = 0
by (3) and dG ′(ui , A′k), dG ′(u j , A′k) 6 |Z | 6 δn by (1). So

P3(ui u j ,G ′) 6 a′i − |A
′

j | + δn
P1(G5)

6 a′i − cn + 3βn. (7.39)

Since for all i ∈ [k − 1] the graph Di ⊆ G5[Rk, Ri ] is bipartite and the Di are
pairwise vertex-disjoint, any triangle in G5 that contains at least two edges in⋃

i∈[k−1] Di also contains an edge in G5[Ri ] or G5[Rk] for some i . So there are no
such triangles. Since

⋃
i∈[k−1] Di ∩W = ∅, the only possible triangles containing

at least two edges from E(G5) \ E(G ′) lie in W , and there are at most |Z |3 such
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triangles. Thus we can bound K3(G ′)− K3(G5) as follows:

K3(G ′)− K3(G5) 6
∑

i∈[k−1]

∑
e∈Ci

P3(e,G ′)−
∑

f ∈E(G5[Wi ,
⋃
`>i W`])

P3( f,G5)


+

∑
i∈[k−1]

 ∑
f ∈E(G5[Ui ,

⋃
`>i U`])

P3( f,G ′)−
∑
e∈Di

P3(e,G5)

+ 2|Z |3. (7.40)

Denote by∆W and∆U the first and second terms on the right-hand side of (7.40),
respectively. If there is at most one nonempty Ui , then ∆U = 0. Otherwise,
using (7.38) and (7.39), we have

∆U 6
∑

i∈[k−1]

|Di | · (−cn + 3βn + 3ξn) < 0.

We claim that ∆W 6 δ1/3m2/n. To see this, note that if there is at most one
nonempty Wi , then ∆W = 0, so assume not. Suppose first that e(G5[W ]) =∑

i∈[k−1] |Ci | 6 δ1/3m2/n2, where the equality follows from (7.28) and the fact
that G5[Wi ,W j ] = ∅. Then by (7.26) and (7.34),

∆W

(7.34),(7.37)
6

∑
i∈[k−1]

|Ci | · (a′i + δn − a′i +max
j 6=i,k
|A′j |)

P1(G5)

6
∑

i∈[k−1]

|Ci | · (cn + 3βn)

6
δ1/3m2

n2
· 2cn 6

δ1/3m2

n
.

We may then assume

e(G5[W ]) >
δ1/3m2

n2
> δ1/3

· C ·
m
n

(7.1)
=

m
δ1/6n

.

In this case, we need to estimate ∆W more carefully making use of (7.37):

∆W 6 |EW\W ′ | ·

(
max

j 6=k
a′j + δn −

k−1∑
i=1

|A′i | +
2ξn

5

)
+ |EW ′ | ·

(
δn +max

j 6=k
|A′j |

)
P1(G5)

6 |EW\W ′ | ·

(
−

cn
2

)
+ |EW ′ | · 2cn =

cn
2
· (4|EW ′ | − |EW\W ′ |)

=
cn
2
· (5|EW ′ | − e(G5[W ]))

(7.35)
6

cn
2
·

(
5 ·

2km
ξn
−

m
δ1/6n

)
< 0.

Therefore, we have

K3(G ′)− K3(G5) 6 ∆W +∆U + 2|Z |3 6
δ1/3m2

n
+ 2|Z |3.
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Now, letting G0 := G and G6 := G ′ and using Lemmas 7.4(iii), 7.6(iv), 7.8(iii),
7.9(iv) and 7.10(iv) and the previous inequalities,

K3(G ′)− K3(G) =
∑
i∈[6]

(K3(G i)− K3(G i−1))

6

(
δ7/8
+
δ1/4

3
+
√
δ + 0+ δ1/3

)
m2

n
+ k2δn + 4|Z |3

(6.31)
6

δ1/4m2

2n
,

where we use the fact that m > Cn to bound k2δn 6 k2δm2/(C2n) = k2δ2m2/n.
This completes the proof of Lemma 7.1.

8. The intermediate case: finishing the proof

8.1. The intermediate case when m is large. In this section, we finish the
proof of the intermediate case when

m > Cn. (8.1)

8.1.1. Properties of G via G ′ .
We will now use Lemma 7.1 to obtain some additional structural information

about G, which will in turn enable us to redo the transformations in Section 7
more carefully. This will eventually imply that most exceptional sets X i , Yi are
in fact empty. After this, one final ‘global’ transformation yields the result.

Apply Lemma 7.1 to G to obtain a k-partite graph G ′ with vertex partition A′′1,
. . . , A′′k and missing vector m ′ = (m ′1, . . . ,m ′k−1) satisfying Lemma 7.1(i)–(iii).
Let m ′ :=

∑
i∈[k−1]m

′

i .
The first step is to use Lemma 4.19 to show that, in G ′, the parts A′′1, . . . ,

A′′k−2 all have size within o(m/n) of cn, the ‘expected’ size; and that the number
of missing edges between these parts and A′′k is o(m). Roughly speaking, this
means that G ′ has edit distance o(m) from a graph in H1(n, e). Since m ′i =
Θ(m i) + o(m) for all i ∈ [k − 1], this information about missing edges in G ′

translates to G. Lemma 7.1(ii) clearly implies that

α2

2
6 α2

− 2k
√
δ 6

m ′

m
6 2+ 2k

√
δ 6 3. (8.2)

The next proposition shows that the smallest part A′′k of G ′ has to be noticeably
larger than (1− (k − 1)c)n since the number of missing edges m ′ is large.

PROPOSITION 8.1. |A′′k | > (1− (k − 1)c)n + m′

(kc−1)n .
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Proof. Suppose, for a contradiction, that |A′′k | < n − (k − 1)cn + q , where q :=
m′

(kc−1)n . Let x := (k − 1)cn − q . Given |A′′k |, we certainly have∑
i j∈([k−1]

2 )

|A′′i ||A
′′

j | + (n − |A
′′

k |)|A
′′

k | 6 tk−1(n − |A′′k |)+ (n − |A
′′

k |)|A
′′

k |.

Recall that we assume

|A′′k | < n−x
(8.2)
6 (1−(k−1)c)n+

3m
(kc − 1)n

(6.26)
6 (1−(k−1)c+

√
η)n

(6.3)
6 (c−

√
α)n.

As (1−(k−1)c+
√
η)+(k−1)(c−

√
α) < 1, we get from the above inequalities

that |A′′k | < n − x < n/k. We know by Lemma 4.5 that tk−1(n − |A′′k |) + (n −
|A′′k |)|A

′′

k | is an increasing function of |A′′k | whenever |A′′k | 6 n/k. Thus we have
tk−1(n − |A′′k |) + (n − |A

′′

k |)|A
′′

k | 6 tk−1(x) + x(n − x). Therefore, since G ′ has
no bad edges,

e + m ′ =
∑

i j∈([k−1]
2 )

|A′′i ||A
′′

j | + (n − |A
′′

k |)|A
′′

k | < tk−1(x)+ x(n − x)

6

(
k − 1

2

)(
x

k − 1

)2

+ x(n − x)

= x
(

n −
k

2(k − 1)
x
)
= (k − 1)cn2

−

(
k
2

)
c2n2
+ (kc − 1)qn −

kq2

2(k − 1)

6 (k − 1)cn2
−

(
k
2

)
c2n2
+ (kc − 1)qn (4.10)

= e + (kc − 1)qn = e + m ′,

a contradiction.

LEMMA 8.2. For all j ∈ [k − 2], the following hold.

(i) m j 6 δ1/6m.

(ii) |Z j ∪ Z j
k | 6 δ1/7m/(2n).

(iii) ||A′′j | − cn| 6 6δ1/9m/n and |A′′k−1| 6 cn − α2m/(4cn).

Proof. Let H := K k
bcnc,...,bcnc,n−(k−1)bcnc and let B1, . . . , Bk be the parts of H ,

where |Bi | = bcnc for all i ∈ [k − 1]. We claim that there is an (n, e)-graph
F , which one can obtain from H by removing at most (k − 1)2cn edges from
H [Bk−1, Bk]. Inequality (6.3) implies rather roughly that |Bk−1||Bk |> (k−1)2cn,
so it suffices to show that e 6 E(H) 6 e+ (k−1)2cn. Indeed, by (6.3), we have
that bcnc > n − (k − 1)bcnc + k, so

e = e(K k
cn,...,cn,n−(k−1)cn) 6 e(K k

bcnc,...,bcnc,n−(k−1)bcnc) = e(H)
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=

(
k − 1

2

)
bcnc2 + (k − 1)bcnc(n − (k − 1)bcnc) 6 e + (k − 1)2cn,

as required.
We will apply Lemma 4.19 with G ′, {A′′i }i∈[k], F, bcnc, (k − 1)2cn, playing

respectively the roles of G, {Ai}i∈[k], F, `, d . Let di := |A′′i | − bcnc for all i ∈
[k − 1] and dk := |A′′k | − n + (k − 1)bcnc. By Proposition 8.1, we have

dk >
m ′

(kc − 1)n
− k

(6.3)
>

m ′

(c − (k − 1)α)n
− k >

m ′

cn
. (8.3)

Moreover, for all i ∈ [k], Lemma 7.1(i) implies that

|di | 6 4βn <

√
2αn

20k3

(6.3)
6

(kc − 1)n
20k3

6
bcnc − (n − (k − 1)bcnc)

12k3
.

Then Lemma 4.19 can be applied with the parameters above to imply that

K3(G)+
δ1/4m2

2n
> K3(G ′)

> K3(F)+
∑

t∈[k−1]

m ′t
m ′
·

kbcnc − n
4

(
(dt + dk)

2
+

∑
i∈[k−1]\{t}

d2
i

)

−
12(k − 1)4c2n2

kbcnc − n
.

Observe that each summand over t ∈ [k − 1] is nonnegative by (6.3). Bounding
the last term, we have

0
(6.3)
6

12(k − 1)4c2n2

kbcnc − n
6

14(k − 1)4c2n
kc − 1

(6.3),(8.1)
6

14k4c2m2

√
2αC2n

(7.1)
=

14k4c2δm2

√
2αn

6
δ7/8m2

2n
.

Furthermore,
kbcnc − n

4

(6.3)
>

√
2αn − k

4
>

√
αn
4
.

Thus, for each j ∈ [k − 1], using the fact that δ7/8/2+ δ1/4/2 6 δ1/4,

m ′j
m ′

(
(d j + dk)

2
+

∑
i∈[k−1]\{ j}

d2
i

)
6

K3(G)− K3(F)+ δ1/4m2

n
√
αn
4

6
4δ1/4m2

√
αn2
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(8.2)
6

16δ1/4m ′2

α9/2n2
6

δ2/9m ′2

(k − 1)n2
.

So for all i j ∈
(
[k−1]

2

)
, we have that

|d j + dk |, |di | 6
δ1/9m ′

n
·

√
m ′

(k − 1)m ′j
. (8.4)

Suppose that r ∈ [k−1] is such that m ′r = max j∈[k−1]m ′j . Then m ′r > m ′/(k−1).
We have

|dr + dk |
(8.4)
6

δ1/9m ′

n
and |di | 6

δ1/9m ′

n
.

But by (8.3), dk > m ′/(cn) > δ1/9m ′/n. So dr < 0 and in fact dr = |A′′r |−bcnc 6
δ1/9m ′/n − dk . Thus

|A′′r |
(8.3)
< bcnc −

(
1
c
− δ1/9

)
m ′

n

(5.1)
6 cn −

m ′

2cn
(8.2)
6 cn −

α2m
4cn
; and (8.5)∣∣|A′′i | − cn

∣∣ (8.4)6
2δ1/9m ′

n

(8.2)
6

6δ1/9m
n

(8.6)

for all i ∈ [k− 1] \ {r}. Suppose now that m ′s > δ1/5m ′ for some s ∈ [k− 1] \ {r}.
Then applying (8.4) with i j = rs, we have

|A′′r | > bcnc−|dr |
(8.4)
> bcnc−

δ1/9m ′
√
(k − 1)δ1/10n

> cn−
4δ1/90

√
(k − 1)n

> cn−
α2m
4cn

,

a contradiction to (8.5). Therefore, for all s ∈ [k − 1] \ {r}, we have by
Lemma 7.1(ii) that

ms 6
1
α2

(
m ′s + 2

√
δm
)
<

1
α2

(
δ1/5m ′ + 2

√
δm
) (8.2)

6
1
α2

(
3δ1/5m + 2

√
δm
)

6 δ1/6m.

But maxi∈[k−1]m i = mk−1 > m/(k − 1), and so r = k − 1. That is, m1, . . . ,

mk−2 6 δ1/6m, as required for (i). By (6.31), we have for all s ∈ [k − 2] that

|Zs ∪ Z s
k | 6

2δ1/6m
ξn

6
δ1/7m

2n
,

proving (ii). Part (iii) follows from (8.5) and (8.6).
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Since the exceptional sets Z1, . . . , Zk−2 and Z 1
k , . . . , Z k−2

k are all small by the
previous lemma, it is now easy to show that G[R1, Rk], . . . ,G[Rk−2, Rk] are all
complete. That is, for all i ∈ [k−2], every missing edge in G[Ai , Ak] is incident
to a vertex of Z .

LEMMA 8.3. For every i ∈ [k − 2], G[Ri , Rk] is complete.

Proof. Let x ∈ Ri and y ∈ Rk . By Proposition 6.12(i), NG(y, Ak) ⊆ Y . By
P3(G), NG(x, Ai) ⊆ Z i . Since A′′j ⊇ A j ∪ Y j for all j ∈ [k − 1], using
Lemma 8.2(ii) and (iii) and m > Cn, we have that

P3(xy,G) 6
∑

j∈[k−1]\{i}

|A j | + |Z i | + |Y | 6
∑

j∈[k−2]\{i}

|A′′j | + |A
′′

k−1| + |Z i ∪ Z i
k |

6 (k − 3)
(

cn +
6δ1/9m

n

)
+ cn −

α2m
4cn
+
δ1/7m

2n
6 (k − 2)cn −

α2m
5cn

(8.1)
6 (k − 2)cn −

α2C
5c

(7.1)
6 (k − 1)cn − 2k.

Therefore xy ∈ E(G) by (5.5).

The previous two lemmas now imply very precise information about the sizes
of the parts A1, . . . , Ak in G. Indeed, we can calculate their sizes up to an o(m/n)
error term. Recall from (6.28) that t = m

(kc−1)n .

LEMMA 8.4. The following hold for parts of G.

|A1|, . . . , |Ak−2| = cn ±
δ1/10m

n
;

|Ak−1| = cn − t ±
δ1/11m

n
and

|Ak | = n − (k − 1)cn + t ±
δ1/11m

n
.

Proof. For the first equation, recall that for all i ∈ [k− 1], Lemma 7.1(i) implies
that Ai ⊆ A′′i ⊆ Ai ∪ Z i

k . If j ∈ [k − 2], then Lemma 8.2(iii) implies that |A j | 6
|A′′j | 6 cn + 6δ1/9m/n. Using Lemma 8.2(ii) in addition, we see that also

|A j | > |A′′j | − |Z
j
k | > cn −

δ1/10m
n

,

as required. Therefore there is some τ ∈ R such that

|Ak−1| = cn −
τm
n
±

kδ1/10m
n

and (8.7)
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|Ak | = (1− (k − 1)c)n +
τm
n
±

kδ1/10m
n

. (8.8)

By Proposition 8.1, we have |Ak | > |A′′k | > (1 − (k − 1)c)n + m′

(kc−1)n . So (8.2)

implies that τ > α2

2(kc−1) . Let δ̃ := kδ1/10m/n. Then

e − e(G[Ak−1, Ak])

=

∑
i j∈([k−2]

2 )

|Ai ||A j | + (|Ak−1| + |Ak |)
∑

i∈[k−2]

|Ai | +
∑
i∈[k]

e(G[Ai ])−
∑

i∈[k−2]

m i

(6.27)
=

(
k − 2

2

)
(cn ± δ̃)2 + (n − (k − 2)cn ± 2δ̃)((k − 2)cn ± δ̃)

± (δm + kδ1/6m)

=

(
k − 2

2

)
c2n2
+ (n − (k − 2)cn)(k − 2)cn ± 3k2δ̃n

(4.10)
= e − cn(n − (k − 1)cn)± 3k3δ1/10m.

Here we used Lemma 8.2(i) to bound m i for i ∈ [k − 2]. We then have

e(G[Ak−1, Ak]) = cn(n − (k − 1)cn)± 3k3δ1/10m. (8.9)

We claim that τ 6 1/δ. So suppose for a contradiction that τ > 1/δ. Now,
|Ak−1| + |Ak | = n −

∑
i∈[k−2] |Ai | = (1− (k − 2)c)n ± δ̃. Further,

|Ak−1| 6 cn −
τm
n
− δ̃ 6 cn −

m
δn
− δ̃ and

|Ak | > (1− (k − 1)c)n +
τm
n
− δ̃ > (1− (k − 1)c)n +

m
δn
− δ̃.

By (6.3), we have |Ak−1| > |Ak |. So the product |Ak−1||Ak | is minimized when
|Ak | attains the upper bound above. So

|Ak−1||Ak | >
(

cn −
m
δn
− δ̃

) (
(1− (k − 1)c)n +

m
δn
− δ̃

)
> cn(n − (k − 1)cn)+ (kc − 1)n ·

m
δn
−

m2

δ2n2
− δ̃n

(6.3),(6.26)
> cn(n − (k − 1)cn)+

√
2α ·

m
δ
−
ηm
δ2
− kδ1/10m

> cn(n − (k − 1)cn)+
m
√
δ
.
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But then, this implies that

e(G[Ak−1, Ak]) = |Ak−1||Ak | − mk−1 > cn(n − (k − 1)cn)+
m
√
δ
− m

> cn(n − (k − 1)cn)+ m,

contradicting (8.9). So τ 6 1/δ, as claimed.
We now estimate |Ak−1||Ak | again more carefully using that α2

2(kc−1) 6 τ 6 1/δ.
We have

|Ak−1||Ak | = cn(n − (k − 1)cn)+ (kc − 1)τm

+

(
−
τ 2m2

n2
± 2kδ1/10m +

2τkδ1/10m2

n2
+

k2δ1/5m2

n2

)
.

But m2/n2 6 ηm by (6.26) and τ 6 1/δ, so the expression in the final
parentheses is at most 3kδ1/10m. So

|Ak−1||Ak | = cn(n − (k − 1)cn)+ (kc − 1)τm ± 3kδ1/10m. (8.10)

As mk−1 = (1± kδ1/6)m due to Lemma 8.2(i), we have

(1±kδ1/6)m = mk−1 = |Ak−1||Ak |−e(G[Ak−1, Ak])
(8.9),(8.10)
= (kc−1)τm±4k3δ1/10m.

Solving this for τ , we get

τm
n
=

m
(kc − 1)n

±
δ1/11m

2n
(6.28)
= t ±

δ1/11m
2n

.

Combined with (8.7) and (8.8), this completes the proof of the lemma.

The usefulness of G ′ is now exhausted, and we work only with G for the rest
of the proof. The previous lemma implies that

ai =
∑

j∈[k−1]\{i}

|A j | = (k−2)cn− t±
(k − 2)δ1/11m

n
for all i ∈ [k−2]. (8.11)

Armed with Lemmas 8.3 and 8.4, we can now ‘redo’ Transformations 1 and
2 of Section 7, in a slightly more careful fashion, to imply that Z i = Yi = ∅ for
all i ∈ [k − 2].

PROPOSITION 8.5. Let i ∈ [k − 2] and z ∈ Z i ∪ Z i
k . Then dG(z, Ri) > t −

δ1/12m/n > 0.
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Proof. By P2(G), P3(G) and P5(G), every such z has at least ξn nonneighbours
in Ak . Recall the definitions of R′k and ∆ in Section 7.1. We have

|R′k \ NG(z)| > dG(z, Ak)− |Rk \ R′k | − |Zk |
(6.31)
> ξn/2−

√
ηn > ξn/3.

Thus we can choose w ∈ R′k \ NG(z). Then wz ∈ E(G) and so, by (5.5) and
P2(G),

(k − 2)cn − k 6 P3(zw,G)
(7.3)
6 ai + dG(z, Ai)+∆

(7.4)
6 ai + |Z i | + dG(z, Ri)+

δ1/3m
n

6 (k − 2)cn − t + dG(z, Ri)+
kδ1/11m

n
,

where the last inequality follows from Lemma 8.2(ii) and (8.11). Hence dG(z,
Ri) > t − δ1/12m/n, which is positive by (6.28).

LEMMA 8.6. Z i = Yi = ∅ for all i ∈ [k − 2].

Proof. Suppose that there exists z ∈ Z i for some i ∈ [k − 2]. Let z1, . . . , z p

be an arbitrary ordering of Z \ Zk such that z := z1. Note that NG(z, Ai) 6= ∅

due to Proposition 8.5. Now apply Lemma 7.3 to G and let F be the obtained
(n, e)-graph G1, which satisfies J (1, 1)–J (3, 1). By J (3, 1), we have that

0 6 K3(F)− K3(G) 6
∑

y∈NG (z,Ai )

(
∆− |Zk \ Z i

k | − P3(yz,G; Rk)
)

(8.12)

(7.4)
6

∑
y∈NG (z,Zi )

δ1/3m
n
+

∑
y∈NG (z,Ri )

(
δ1/3m

n
− |Zk \ Z i

k | − dG(z, Rk)

)
. (8.13)

Here, for all y ∈ Ri , since Lemma 8.3 implies that Rk ⊆ NG(y), we have P3(yz,
G; Rk) = dG(z, Rk). We must have |Zk \ Z i

k | 6 ∆ 6 δ1/3m/n, as otherwise the
right-hand side of (8.12) is negative. So Lemma 8.2(ii) implies that

|Z i ∪ Zk | = |Zk \ Z i
k | + |Z i ∪ Z i

k | 6
δ1/3m

n
+
δ1/7m

2n
6
δ1/7m

n
. (8.14)

We will now bound dG(z, Rk). By P3(G), z has a nonneighbour u in Ri . Since
u ∈ Ri , we have that NG(u, Ai) ⊆ Z i . Thus (5.5) then implies that

(k − 2)cn − k 6 P3(uz,G) 6 ai + dG(z, Rk)+ |Z i ∪ Zk |.
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Thus

dG(z, Rk) > (k − 2)cn − ai −
2δ1/7m

n

(8.11)
> t −

δ1/12m
n

. (8.15)

Using Proposition 8.5, (8.14) and (8.15), the final upper bound in (8.13) is at
most
δ1/7m

n
·
δ1/3m

n
+

(
δ1/3m

n
− 0−

(
t −

δ1/12m
n

))(
t −

δ1/12m
n

)
(6.28)
6 −

t2

2
,

(8.16)
a contradiction. We have proved that Z i = ∅, so Ai = Ri , for all i ∈ [k − 2].

Suppose now that there exists y ∈ Yi for some i ∈ [k − 2]. Let y1, . . . , yq

be an arbitrary ordering of Y =
⋃

i∈[k−1] Yi (as in (6.32)) such that y := y1.
Observe that, since Z1 = · · · = Zk−2 = ∅, the graph G satisfies the conclusions
of Lemma 7.4 when ` = k−2. Therefore we can apply Lemma 7.5 with k−2,G
playing the roles of `,G`

1. Let F ′ be the obtained (n, e)-graph G1, which satisfies
K (1, 1)–K (3, 1). Then K (3, 1), (7.4) and Lemma 8.3 imply that

0 6 K3(F ′)− K3(G) 6
∑

x∈NG (y,Ri )

(
∆−

ξ

6γ
|Zk \ Z i

k | − P3(xy,G; Rk)

)

6
∑

x∈NG (y,Ri )

(
δ1/3m

n
−

ξ

6γ
· |Zk \ Z i

k | − dG(y, Rk)

)
.

Again by Proposition 8.5, NG(y, Ri) 6= ∅. Therefore, as in (8.14), by Lemma 8.2,
we have

|Z i ∪ Zk | = |Zk | 6 |Z k−1
k | +

(k − 2)δ1/7m
2n

(8.17)

6
6γ δ1/3m
ξn

+
(k − 2)δ1/7m

2n
6

kδ1/7m
n

.

We will now bound dG(y, Rk). By the definition of Y , y has a nonneighbour u
in Ri . Then (5.5) implies that

(k − 2)cn − k 6 P3(uy,G) 6 ai + dG(y, Rk)+ |Zk |.

Thus

dG(y, Rk)
(8.17)
> (k − 2)cn − k − ai −

kδ1/7m
n

(8.11)
> t −

δ1/12m
n

.

But then, using Proposition 8.5 to bound dG(y, Ri), by a similar calculation
to (8.16), we have

K3(F ′)− K3(G) 6 −t2/2,

a contradiction. Thus Yi = ∅ for all i ∈ [k − 2].
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We can now use the lemmas in this section to prove the following penultimate
ingredient that we require. Let

A :=
⋃

i∈[k−2]

Ri ; B := Ak−1 ∪ Rk ∪ Z k−1
k and X ′ :=

⋃
i∈[k−2]

X i . (8.18)

Lemma 8.2(ii) implies that

|X ′| 6
δ1/8m

n
. (8.19)

LEMMA 8.7. The following properties hold for G.

(i) G has vertex partition A∪ B∪ X ′; G[A] is a complete (k−2)-partite graph
with parts R1, . . . , Rk−2; and G[A, B] is complete.

(ii) There exist b1 6 b2 ∈ N such that b1 + b2 = |B| and (b1 − 1)(b2 + 1) <
e(G[B]) 6 b1b2. Moreover, for all x ∈ X i with i ∈ [k − 2], we have

K3(x,G; X ′) > e(G[L i ])+ |L i |b1 + dG(x, Ri)(|L i | + b1)+ αm,

where L i := A \ Ri .

(iii) For all x ∈ X ′ we have

dG(x, Z k−1
k ) = t ±

2δ1/12m
n

, and further b1 = cn ±
δ1/13m

n
.

Proof. The previous lemma implies that Ai = Ri and Yi = ∅ for all i ∈ [k − 2].
So A ∪ B ∪ X ′ is a partition of V (G). Property P3(G) implies that Ri is
an independent set in G for all i ∈ [k − 2], which, together with P2(G),
implies that G[A] is a complete (k − 2)-partite graph with parts R1, . . . , Rk−2.
Properties P2(G), P4(G) and Lemma 8.3 imply that G[A, B] is complete. This
completes the proof of (i).

For (ii) and (iii), let x ∈ X i ⊆ X ′ for some i ∈ [k − 2]. Proposition 6.12(i)
implies that E(G[X ′, Rk]) = ∅. We need to determine dG(x, Z k−1

k ) quite
precisely. For this, let u ∈ Ri be arbitrary. Then

P3(ux,G) = ai + dG(x, Z k−1
k )± |X ′| (8.20)

(8.11),(8.19)
= (k − 2)cn − t + dG(x, Z k−1

k )±
δ1/12m

n
.

Since x ∈ X i , we have dG(x, Ri) > 0 by definition. Also, since Ri = Ai , we
have dG(x, Ri) > γ n > 0. That is, NG(x, Ri), NG(x, Ri) 6= ∅. So (5.5) implies
that the right-hand side of (8.20) lies in [(k − 2)cn − k, (k − 2)cn + k]. Thus

dG(x, Z k−1
k ) = t ±

2δ1/12m
n

. (8.21)
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Recall that, by P4(G), G[Ak−1, X ′] is complete. Thus, all of the mk−1 = (1 ±
kδ1/6)m missing edges between Ak−1 and Ak lie in B. Then Lemmas 8.2(i)
and 8.4 imply that

e(G[B]) = |Ak−1|(|Ak | − |X ′|)− mk−1 + (e(G[Ak−1])+ e(G[Ak]))

(6.27),(8.19)
=

(
cn − t ±

δ1/11m
n

)(
n − (k − 1)cn + t ±

2δ1/11m
n

)
−m ± kδ1/6m ±

√
δm

(6.28)
= (c − (k − 1)c2)n2

± δ1/12m. (8.22)

Also,

|B| = |Ak−1| + |Ak | − |X ′| = n − (k − 2)cn ±
δ1/12m

n
. (8.23)

A simple calculation using (6.3), (6.26) and (8.22) shows that

e(G[B]) 6
1
4

(
(1− (k − 2)c)n −

δ1/12m
n

)2

6
|B|2

4
.

Thus there exist b1, b2 ∈ N such that b1 6 b2 and

b1 + b2 = |B|

and
(b1 − 1)(b2 + 1) < e(G[B]) 6 b1b2.

Suppose, for a contradiction, that b1 > cn + q , where q := δ1/13m/n. Since the
product b1b2 is maximized when b1, b2 are as balanced as possible, while (6.3)
and (8.23) imply that 2(cn + q) > |B|, we have that

b1b2 < (cn + q)(|B| − cn − q)
(8.23)
6 (cn + q)(n − (k − 1)cn − q)+ δ1/12m

6 cn(n − (k − 1)cn)− qn(kc − 1)+ δ1/12m
(6.3),(8.22)

6 e(G[B])− (
√

2αδ1/13
− 3δ1/12)m

(8.1)
6 e(G[B])−

√
αδ1/13Cn

(5.1),(7.1)
< e(G[B])− 2n,

a contradiction. Similarly, if b1 < cn − q , then b1b2 > e(G[B]) + 2n;
consequently, (b1 − 1)(b2 + 1) > e(G[B]), a contradiction. Therefore

b1 = cn ±
δ1/13m

n
and so b2 = n − (k − 1)cn ±

2δ1/13m
n

. (8.24)

So

b1 − |Ak−1| = t ±
2δ1/13m

n
. (8.25)
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Recall from the statement of the lemma that L i = A \ Ri . Now, G[x, L i ∪ Ak−1]

is complete by P4(G). Also, G[L i , Ak−1, Ri ] is a complete tripartite graph
by P4(G). Finally, e(G[Ak−1, Z k−1

k ]) 6 e(G[Ak−1, Ak]) = mk−1 by definition.
Write δ̃ := 2δ1/13m/n. Thus

K3(x,G; X ′)
> K3 (x,G; L i ∪ Ak−1)+ K3

(
x,G; Ri ∪ Z k−1

k , L i ∪ Ak−1
)

+ K3(x,G; Ri , Z k−1
k )

> e(G[L i ∪ Ak−1])+ (dG(x, Ri)+ dG(x, Z k−1
k ))(|L i | + |Ak−1|)

+ dG(x, Ri)dG(x, Z k−1
k )− mk−1

(8.21),(8.25)
> e(G[L i ])+ |L i |(b1 − t − δ̃)+ (dG(x, Ri)+ t − δ̃)(|L i | + b1 − t − δ̃)
+ dG(x, Ri)(t − δ̃)− mk−1

(6.28),(8.24)
> e(G[L i ])+ |L i |b1 + dG(x, Ri)(|L i | + b1)− m +

cm
kc − 1

− 5δ̃n − 2
√
ηm

(6.3)
> e(G[L i ])+ |L i |b1 + dG(x, Ri)(|L i | + b1)

+

(
(k − 1)α

c − (k − 1)α
− 12δ1/13

)
m

> e(G[L i ])+ |L i |b1 + dG(x, Ri)(|L i | + b1)+ αm,

as required for (ii). Part (iii) follows immediately from (8.21) and (8.24).

To complete the proof, we first observe that if X ′ = ∅, then we are done.
Indeed, in this case, Lemma 8.7(i) and (ii) implies that G has a partition
A, B, where G[A] is complete (k − 2)-partite, G[A, B] is complete, and
e(G[B]) 6 t2(|B|). Thus K3(G[B]) = g3(|B|, e(B)) = 0 and so G ∈ H1(n,
e), a contradiction. So we may assume that X ′ 6= ∅. Now we will perform a
final global transformation on G to obtain an (n, e)-graph H , which has fewer
triangles.

Proof of Theorem 1.7 in the intermediate case and when m > Cn. We may
assume, as observed above, that X ′ 6= ∅. Choose b1, b2 as in Lemma 8.7(ii). Let
B1, B2 be an arbitrary partition of B such that |Bi | = bi for i ∈ [2]. Let v1,

. . . , vb1 be an ordering of B1. Let U ⊆ B2 have size e(G[B]) − (b1 − 1)b2. So
0 < |U | 6 b2. Let x1, . . . , x` be an arbitrary ordering of X ′. For each g ∈ [`],
let s(g) ∈ [k − 2] be such that xg ∈ Xs(g). Choose an arbitrary set T (xg) ⊆ Rs(g)
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Figure 8. G → H , from the perspective of a single x ∈ Xk−2 ⊆ X ′.

of size

|T (xg)| = dG(xg, B)+ dG(xg, {xg+1, . . . , x`})+ dG(xg, Rs(g))− |B1|

= |Ak−1| + dG(xg, Z k−1
k )+ dG(xg, Rs(g))− b1 ± |X ′|

(8.19),(8.25)
= dG(xg, Rs(g))±

3δ1/13m
n

. (8.26)

Here we used the facts that Ak−1 ⊆ NG(xg) by P4(G); Rk ∩ NG(xg) = ∅ by
Proposition 6.12(i); and also Lemma 8.7(iii). But by the definition of Xs(g), since
Rs(g) = As(g) by Lemma 8.6 and using m 6 ηn2 from (6.26), the right-hand side
of (8.26) is at least γ n− 3δ1/13ηn > γ n/2 and at most |Rs(g)|− ξn+ 3δ1/13ηn 6
|Rs(g)| − ξn/2. So T (xg) exists. Now define a new graph H by setting

E(H) :=

(
E(G) ∪ {vi y : i ∈ [b1 − 1], y ∈ B2} ∪ {vb1 y : y ∈ U }

∪

⋃
x∈X ′

{xy : y ∈ B1 ∪ T (x)}

)∖(
E(G[B ∪ X ′]) ∪

⋃
i∈[k−2]

E(G[X i , Ri ])

)
.

Thus, informally, H is obtained from G by rearranging the edges in G[B] to
form a maximally unbalanced bipartition, and then for each i ∈ [k−2] replacing
the neighbours of x ∈ X i that lie in X ′ ∪ B ∪ Ri with vertices in B1, and then Ri .
See Figure 8 for an illustration of G and H .
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The following claim states some properties of H .

CLAIM 8.8. (i) H is an (n, e)-graph such that H [A, B] is complete; H [A] =
G[A] and H [B] is bipartite with bipartition B1, B2, and X ′ 6= ∅. Also,
E(H [X ′, B2]) = E(H [X ′]) = ∅.

(ii) Let T (G) be the set of triangles in G containing at least one vertex from X ′

and define T (H) analogously. Then |T (H)| > |T (G)|.

Proof of Claim. The first part of (i) follows from Lemma 8.7 and by the
construction of H . Since G[A, B] = H [A, B] are both complete, we have that

K3(G) = K3(G[A])+ K3(G[B])+ |A|e(G[B])+ |B|e(G[A])+ |T (G)|; and
K3(H) = K3(H [A])+ K3(H [B])+ |A|e(H [B])+ |B|e(H [A])+ |T (H)|.

But G[A] = H [A] and we also have e(G[B]) = e(H [B]) from the construction
of H . Moreover, H [B] is bipartite, so K3(H [B]) = 0. Thus 0 6 K3(H) −
K3(G) = |T (H)| − |T (G)| − K3(G[B]). Then |T (H)| > |T (G)|, proving (ii).
This completes the proof.

In light of the claim, we will obtain a contradiction by showing that in fact
|T (H)| < |T (G)|. Recall from Claim 8.8(i) that X ′ is an independent set in
H , so there is no triangle in H involving more than one vertex in X ′, that
is, |T (H)| =

∑
x∈X ′ K3(x, H ; X ′). By the inclusion–exclusion principle, we

have

|T (H)| − |T (G)| 6
∑
x∈X ′

(K3(x, H ; X ′)− K3(x,G; X ′))+ |X ′|2 · n. (8.27)

Let x ∈ X ′ and let i ∈ [k − 2] be such that x ∈ X i . Let us count the change in
triangles involving x and two vertices in X ′ = A ∪ B.

Define L i := A \ Ri as in the proof of Lemma 8.7. By construction, we have
the following:

(H1) Ri ∪ L i ∪ B1 ∪ B2 ∪ X ′ is a partition of V (H), and B1, B2, Ri , X ′ are
independent sets of H .

(H2) L i ∪ B1 ⊆ NH (x) and (B2 ∪ X ′) ∩ NH (x) = ∅ and H [Ri , L i ], H [B, L i ]

are complete bipartite graphs.

Thus

K3(x, H ; X ′) (H1),(H2)
= K3 (x, H ; L i)+ K3 (x, H ; L i , Ri)+ K3(x, H ; L i , B1)

+ K3(x, H ; Ri , B1)
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(H2)
= e(H [L i ])+ |L i |b1 + |T (x)|(|L i | + b1)

(8.26)
6 e(G[L i ])+ |L i |b1 + dG(x, Ri)(|L i | + b1)+ δ

1/14m
6 K3(x,G; X ′)− (α − δ1/14)m < K3(x,G; X ′)− αm/2,

where we used Lemma 8.7(ii) for the penultimate inequality. This together
with (8.27) implies that

|T (H)| − |T (G)| 6 −|X ′|(αm/2− |X ′|n)
(8.19)
6 −|X ′| · (α/4) · m 6 −αm/4,

a contradiction to Claim 8.8(ii). Thus G is not a counterexample to Theorem 1.7,
and we have proved Theorem 1.7 in this case.

8.2. The intermediate case when m is small. In this section, we
will similarly obtain a contradiction to our assumption that G is a worst
counterexample to Theorem 1.7 in the case when

m < Cn. (8.28)

This case has a slightly different flavour from the rest of the proof. Indeed, in
all other cases, we are eventually able to obtain from G an (n, e)-graph H with
strictly fewer triangles than G, a contradiction. However, in the case when m <

Cn, we can only guarantee an (n, e)-graph H with at most as many triangles
as G but which lies in H(n, e). This is enough to prove that g3(n, e) = h(n,
e), but not enough to prove that every extremal graph lies in H(n, e). This is not
surprising, as when m < Cn, our graph G is very close indeed to a graph in H(n,
e). Recall from the very beginning of the proof in Section 5 that our choice of
extremal graph G was not arbitrary: we chose G according to three criteria (C1)–
(C3), which ensure that G minimizes/maximizes certain graph parameters. Note
that (C3) has not affected the proof until now. In this part of the proof, we are
required to analyse the transformations G→ G1

→ · · · → Gr
→ H that take us

from G to H . Using K3(G) = K3(G1) = · · · = K3(Gr ) = K3(H), we will show
that for each i the graph G i contradicts the choice of G according to (C1)–(C3)
or G i

∈ H(n, e). Then some additional work is required to show that this latter
consequence implies that actually G itself lies in H(n, e), also a contradiction.

We follow all arguments until the end of Section 7. In particular, all definitions
from Section 6.3 apply. Now (6.31) and (8.28) imply that Z has constant size,
namely,

|Z | 6
2C
ξ
. (8.29)
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Recall the definition of R′k in Section 7.1. The number of x ∈ Ak that have at
least one neighbour in Zk is at most∑

z∈Zk

dG(z, Ak)
P3(G)
6 |Zk |δn 6

2Cδn
ξ
=

2
√
δn
ξ

<
ξn
2
= |Rk | − |R′k |,

and so for all x ∈ R′k , we have dG(x, Zk) = 0. Recalling the definition of ∆
in (7.3), we have

∆ = 0. (8.30)

This will imply that Transformations 1–3 now do not increase the number of
triangles. Thus by applying Lemmas 7.3, 7.5 and 7.8, we can easily obtain
a graph G ′ with K3(G ′) = K3(G) in which, for all i ∈ [k − 1], we have
E(G ′[Ai ]) = ∅ (Lemma 8.14); Yi = ∅ (Lemma 8.15); and E(G ′[X i ]) = ∅

(Lemma 8.17). The final step is to further transform G ′ to another graph G ′′ ∈
H(n, e) with the same number of triangles. This proves that g3(n, e) = h(n,
e). However, as mentioned above, we must prove that G ′ ∈ H(n, e). The next
subsection contains some auxiliary results that we will need to achieve this.

8.2.1. Lemmas for characterizing extremal graphs. To compare G to some
H ∈ H(n, e) that differs slightly from G, we need to compare our usual max-
cut partition A1, . . . , Ak of G with a canonical partition of H , which is A∗1,
. . . , A∗k−2, B when H ∈ H1(n, e) and A∗1, . . . , A∗k when H ∈ H2(n, e). Recall
that, given U ⊆ V (G) = V (H), we say that G and H only differ at U if
E(G)4 E(H) ⊆

(U
2

)
. The first lemma will be used in the case when G ′ ∈H1(n,

e) (this is the easier case).

LEMMA 8.9. Let H ∈ H1(n, e) with K3(H) = K3(G), ∆(H [Ai ]) 6 2γ n for
every i ∈ [k] and e(H [Ai , A j ]) > 0 for every i j ∈

(
[k]
2

)
. Then the following

properties hold.

(i) If A∗1, . . . , A∗k−2, B is a canonical partition of H, then B = Ap ∪ Aq for
some pq ∈

(
[k]
2

)
and there is a permutation σ of [k] such that Ai = A∗σ(i) for

all i ∈ [k] \ {p, q}. Furthermore, e(H [As, At ]) > 0 for some st ∈
(
[k]
2

)
only

if {p, q} = {s, t}.

(ii) If H and G only differ at As′ ∪ At ′ , then H [As′, At ′] is complete.

Proof. For (i), let S ∈ {A∗1, . . . , A∗k−2, B}. Suppose for some i ∈ [k], we have
Ai ∩ S, Ai ∩ S 6= ∅. Then, as H [S, S] is complete, there exists v ∈ Ai with

dH (v, Ai) >
|Ai |

2

P1(G)
>

(c − β)n
2

> 2γ n > ∆(H [Ai ]),
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a contradiction. So either Ai ⊆ S or Ai ⊆ S. Since e(H [Ai , A j ]) > 0 for every
i j ∈

(
[k]
2

)
, and every A∗p with p ∈ [k − 2] is an independent set in H , A∗p must

contain exactly one Ai . This proves the first part of (i). Suppose now e(H [As,

At ]) > 0 for some st ∈
(
[k]
2

)
. Then the fact that H [A∗1, . . . , A∗k−2, B] is complete

multipartite implies that B = As ∪ At .
For (ii), suppose that H and G only differ at As′ ∪ At ′ and e(H [As′, At ′]) > 0.

Then by (i), we have B = As′ ∪ At ′ . So H [B] = G[B] is complete (k − 2)-
partite and H [B, B] = G[B, B] is complete. Since K3(H) = K3(G), we have
K3(G[B]) = K3(H [B]) = 0, so G[B] is triangle-free. Thus G ∈ H1(n, e) with
canonical partition A∗1, . . . , A∗k−2, B, contradicting the choice of G.

The next lemma analyses a graph H ∈ H2(n, e) obtained by making some
small changes to G.

LEMMA 8.10. Let H ∈Hmin
2 (n, e)\H1(n, e) be such that |E(G)4E(H)| 6 δn2

and H [Ai , A j ] is complete for every i j ∈
(
[k−1]

2

)
. Suppose that

d := max
i∈[k];v∈V (G)

|dG(v, Ai)− dH (v, Ai)| 6 γ n. (8.31)

Let A∗1, . . . , A∗k be a canonical partition of H. Then Rk ⊆ A∗k and there exists
a permutation σ of [k] such that |Ai 4 A∗σ(i)| 6 kβn for all i ∈ [k], and the
following properties hold:

(i) If there exists p ∈ [k−1] for which Zk = Z p
k , then Zk ⊆ A∗σ(p)∪A∗k . Moreover,

there is j ∈ [k − 1] such that A∗σ(i) = Ai for all i ∈ [k − 1] \ { j, p}, and if
j 6= p, then A∗σ( j) ⊆ A j ⊆ A∗σ( j) ∪ A∗k .

(ii) If d 6 δn and Y = ∅, then Ak ⊆ A∗k , and there is j ∈ [k − 1] such that
A∗σ(i) = Ai for all i ∈ [k − 1] \ { j}, and A∗σ( j) ⊆ A j ⊆ A∗σ( j) ∪ A∗k .

Proof. We require a claim.

CLAIM 8.11. There exists a permutation σ of [k] with σ(k) = k such that the
following hold:

(1) for all i ∈ [k], we have |Ai 4 A∗σ(i)| 6 kβn;

(2) Rk ⊆ A∗k;

(3) for all i ∈ [k − 1], we have A∗σ(i) \ Ai ⊆ Ak and Ai \ A∗σ(i) ⊆ A∗k;

(4) A j ⊆ A∗σ( j) for all but at most one j ∈ [k − 1].
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Proof of Claim. We start with (1). Corollary 4.4(iii) implies that∑
i j∈([k]2 )

e(H [A∗i , A∗j ]) 6 n. (8.32)

Further,

e(G[Ai ])
(6.27)
6 δm

(8.28)
6 δCn (7.1)

=
√
δn.

Suppose that there exist i, j ∈ [k] such that βn 6 |Ai ∩ A∗j | 6 |Ai | − βn. Then

|E(G)4 E(H)| > e(H [Ai ∩ A∗j , Ai \ A∗j ])− e(G[Ai ])

(8.32)
> |Ai ∩ A∗j ||Ai \ A∗j | − n −

√
δn >

β2n2

2
,

a contradiction. Thus, for all i, j ∈ [k], either |Ai ∩ A∗j | 6 βn or |Ai ∩ A∗j | >
|Ai | − βn. Since for all i ∈ [k], we have

|Ai |
P1(G)
> n − (k − 1)cn − βn

(6.3)
> (k − 1)αn − βn > kβn,

the first alternative cannot hold for every j ∈ [k]. Thus there is exactly one
j ∈ [k] for which |Ai ∩ A∗j | > |Ai | − βn. Suppose that there is j ∈ [k] and
1 6 i1 < i2 6 k such that |Ai p ∩ A∗j | > |Ai p | − βn for p ∈ [2]. Then

e(G[A∗j ]) > |Ai1∩A∗j ||Ai2∩A∗j |−m > (|Ai1 |−βn)(|Ai2 |−βn)−ηn2 P1(G)
> 2δn2,

and so e(H [A∗j ]) > 0, a contradiction. That is, there is a permutation σ of [k] for
which

|Ai 4 A∗σ(i)| = |Ai \ A∗σ(i)| + |A
∗

σ(i) \ Ai | 6 βn +
∑

j∈[k]\{σ(i)}

|A j ∩ A∗σ(i)| 6 kβn.

(8.33)
Since

|Ak |
P1(G)
6 n − (k − 1)cn + βn

(6.3)
6 cn −

√
2αn + βn

P1(G)
< |Ai | −

√
αn

for all i ∈ [k − 1], we have |A∗σ(k)| 6 |A
∗

σ(i)| −
√
αn/2 for all i ∈ [k − 1]. Since

|A∗1| > · · · > |A
∗

k |, this implies that σ(k) = k. This proves (1).
Now, for all i ∈ [k] and v ∈ V (G), we have

|dG(v, Ai)− dH (v, A∗σ(i))|
(8.31)
6 d + |Ai 4 A∗σ(i)|

(8.33)
6 γ n + kβn 6 2γ n. (8.34)
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For (2), let x ∈ Rk and i ∈ [k − 1]. We have

dH (x, A∗σ(i))
(8.34)
> dG(x, Ai)−2γ n

P5(G)
> |Ai |−ξn−2γ n

P1(G)
> (c−β−ξ−2γ )n > 0.

Since A∗σ(i) is an independent set in H , we have that v /∈ A∗σ(i). But i ∈ [k − 1]
was arbitrary, so v ∈ A∗σ(k) = A∗k , proving (2).

For (3), suppose that i ∈ [k − 1] and there is some v ∈ A∗σ(i) \ Ai . Then, since
A∗σ(i) is independent in H , we have that

dH (v, Ai )
(8.31)
6 dG(v, Ai )+d

(8.34)
6 dH (v, A∗σ(i))+2γ n+d 6 3γ n < (c−β)n

P1(G)
< |Ai |.

But H [Ai , A j ] is complete for all i j ∈
(
[k−1]

2

)
, so v /∈

⋃
j∈[k−1]\{i} A j . Thus v ∈ Ak ,

proving the first part of (3). For the second part, suppose that v ∈ Ai \ A∗σ(i) and
let j ∈ [k − 1] \ {i}. Then

dH (v, A∗σ( j))
(8.34)
> dG(v, A j)− 2γ n P2(G)

= |A j | − 2γ n
P1(G)
> (c − β − 2γ )n > 0.

So u /∈ A∗σ( j) and so u ∈ A∗k , completing the proof of (3).
Finally, for (4), suppose that there is i j ∈

(
[k−1]

2

)
for which there exist vi ∈

Ai\A∗σ(i) and v j ∈ A j\A∗σ( j). Since H [Ai , A j ] is complete, we have viv j ∈ E(H).
But (3) implies that vi , v j ∈ A∗k , a contradiction. This proves (4) and completes
the proof of the claim.

We will now prove Item (i) of the lemma. So suppose there is p ∈ [k − 1] for
which Zk = Z p

k . Let i ∈ [k − 1] \ {p} and y ∈ Z p
k . Then

dH (y, A∗σ(i))
(8.34)
> dG(y, Ai)− 2γ n P4(G)

= |Ai | − 2γ n
P1(G)
> (c − β − 2γ )n > 0.

Thus y /∈ A∗σ(i) and so y ∈ A∗σ(p) ∪ A∗k . Therefore, using Claim 8.11(2), Ak =

Rk ∪ Z p
k ⊆ A∗σ(p) ∪ A∗k . But, by Claim 8.11(3), for all i ∈ [k − 1], we have

A∗σ(i) \ Ai ⊆ Ak ⊆ A∗σ(p) ∪ A∗k . Thus A∗σ(i) ⊆ Ai for all i ∈ [k − 1] \ {p}. By
Claim 8.11(4), this implies that there is j ∈ [k − 1] such that Ai = A∗σ(i) for all
i ∈ [k − 1] \ { j, p}. If j 6= p, then by Claim 8.11(3), A∗σ( j) ⊆ A j ⊆ A∗σ( j) ∪ A∗k ,
completing the proof of (i).

For (ii), we may now assume that d 6 δn and Y = ∅. Inequality (8.34) is
replaced by the stronger statement

|dG(v, Ai)− dH (v, A∗σ(i))| 6 d + |Ai 4 A∗σ(i)| (8.35)

6 δn + kβn 6
√
βn for all v ∈ V (G).
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Let i ∈ [k − 1] and z ∈ Zk = X . Then, using the definition of X ,

dH (z, A∗σ(i))
(8.35)
> dG(z, Ai)−

√
βn > γ n −

√
βn > 0.

Thus z /∈ A∗σ(i) and so z ∈ A∗k . Combining this with Claim 8.11(2), we see that
again Ak = Rk ∪ X ⊆ A∗k . Then Claim 8.11(3) implies that for all i ∈ [k − 1],
we have A∗σ(i) \ Ai ⊆ Ak ⊆ A∗k and so A∗σ(i) ⊆ Ai . By Claim 8.11(4), there is j ∈
[k−1] such that A∗σ(i) = Ai for all i ∈ [k−1]\{ j}; and A∗σ( j) ⊆ A j ⊆ A∗σ( j)∪ A∗k .
This completes the proof of (ii).

The final lemma in this subsection will be used to prove that, for all i ∈ [k−1],
we have E(G[Ai ]) = ∅ (Lemma 8.14) and Yi = ∅ (Lemma 8.15). Its proof uses
part (i) of the previous lemma.

LEMMA 8.12. Let p ∈ [k − 1] and z ∈ Ap ∪ Ak be such that T := NG(z, Ap)

satisfies 1 6 |T | 6 γ n; and let S ⊆ NG(z, Rk) satisfy |S| = |T |. Suppose further
that Zk = Z p

k and P3(yz,G; Rk) = 0 for all y ∈ T , and G[S,
⋃

i∈[k−1]\{p} Ai ] is
complete. Obtain H from G by replacing zy for all y ∈ T with zx for all x ∈ S
and suppose that K3(H) = K3(G). Then H is an (n, e)-graph, which does not
lie in H2(n, e) \H1(n, e).

Proof. Suppose that the lemma does not hold. Then by definition, H is an (n, e)-
graph and so H ∈Hmin

2 (n, e)\H1(n, e). Let A∗1, . . . , A∗k be a canonical partition
of H . Clearly, |E(G)4E(H)| = |S|+|T | 6 2γ n and for all i j ∈

(
[k−1]

2

)
we have

H [Ai , A j ] = G[Ai , A j ] is complete by P4(G); note also that (8.31) holds. So H
satisfies the conditions of Lemma 8.10(i). Suppose without loss of generality
that the permutation σ guaranteed by Lemma 8.10 is the identity permutation.
By definition, H and G only differ at Ap ∪ Ak . We will obtain a contradiction
via the next claim.

CLAIM 8.13. We have the following properties:

(i) A∗i = Ai for all i ∈ [k − 1] \ {p} and Rk ⊆ A∗k;

(ii) z ∈ A∗p and NG(z, Ap) ∩ A∗p 6= ∅;

(iii) there exists j ∈ [k − 1] \ {p} for which G[A j , Rk] is not complete.

Proof of Claim. We first prove (i). By Lemma 8.10, Rk ⊆ A∗k and by Lemma
8.10(i), there exists j ∈ [k− 1] such that A∗i = Ai for all i ∈ [k− 1] \ { j, p} and
A∗j ⊆ A j . We may assume that j 6= p and there is some v ∈ A j \ A∗j ⊆ A∗k , for
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otherwise we are done. Further, we have that S ⊆ Rk ⊆ A∗k . Thus, recalling that
A∗k is an independent set in H and that G and H only differ at Ap ∪ Ak ,

0 = dH (v, A∗k) > dH (v, S) = dG(v, S),

a contradiction to the fact that G[S,
⋃

i∈[k−1]\{p} Ai ] is complete. This proves (i).
Thus A∗p∪ A∗k = Ap∪ Ak =: B. In particular, H [B] is bipartite with bipartition

A∗p, A∗k . Now, dH (z, A∗k) > dH (z, Rk) > |S| > 0. Since A∗k is an independent set
in H , we have that z ∈ A∗p. Suppose that T ∩ A∗p = ∅. Let G ′ be obtained from G
by removing the edges xz for all x ∈ T . Then G ′ ⊆ H , and so G ′[B] is bipartite
with bipartition A∗p, A∗k . Using that T ∩ A∗p = ∅ and T ⊆ B, we see that T ⊆ A∗k .
This together with z ∈ A∗p implies that G[B] is bipartite (with bipartition A∗p,
A∗k). But the fact that G and H only differ at Ap ∪ Ak and the definition of
H2(n, e) imply that G[B] is (k − 2)-partite. Thus G is k-partite with partition
A∗1, . . . , A∗k . Then Corollary 4.4(i) implies that G ∈ H2(n, e), a contradiction.
Thus T ∩ A∗p 6= ∅. This proves (ii).

For (iii), suppose that G[Ai , Rk] is complete for every i ∈ [k − 1] \ {p}. Then,
by P4(G), we have that Ak = Rk ∪ Z p

k is complete in G to
⋃

j∈[k−1]\{p} A j .
Further, P2(G) implies that G[Ai , A j ] is complete for all i j ∈

(
[k−1]

2

)
. Thus G[B,

B] is complete. Now, the facts that G and H only differ at Ap∪ Ak and K3(H) =
K3(G) imply that K3(G[B]) = K3(H [B]) = 0 since H [B] is bipartite. That is,
G[B] is triangle-free, so G ∈ H1(n, e), a contradiction to (C1). This completes
the proof of the claim.

By part (iii) of the claim, we can choose j ∈ [k − 1] \ {p}; u ∈ A j = A∗j
and v ∈ Rk ⊆ A∗k such that uv /∈ E(G). As G[S,

⋃
i∈[k−1]\{p} Ai ] is complete,

we have v ∈ Rk \ S and so NG(v) = NH (v). By part (ii) of the claim, pick
some y ∈ T ∩ A∗p. Since H [{v}, A∗j ] is not complete, we have that H [{v}, A∗p] is
complete by the definition of H2(n, e). Thus {y, z} ⊆ NH (v) = NG(v). But then
P3(yz,G; Rk) > 1, a contradiction.

8.2.2. Refining the structure of G via Transformations 1–3. We now return to
our extremal graph G and analyse the effects of Transformations 1–3 on the
number of triangles to obtain additional structural information. To do this, we
will apply each ‘local’ transformation once, changing edges at a single vertex
to obtain a new graph G1. This is the part of the proof at which we require the
full strength of Lemmas 7.3, 7.5 and 7.8 to carefully analyse K3(G1) − K3(G).
As we mentioned earlier, this turns out to now equal zero, and we show that
G1
∈ H(n, e).

The first step is to apply Transformation 1 (Lemma 7.3) to show that the only
bad edges in G lie in Ak .
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LEMMA 8.14. E(G[Ai ]) = ∅ for all i ∈ [k − 1].

Proof. Suppose to the contrary that
⋃

i∈[k−1] E(G[Ai ]) 6= ∅. Without loss of
generality, assume e(G[Ak−1]) > 0. Then P3(G) implies that there is some
z ∈ Zk−1 with dG(z, Ak−1) > 1. Let z =: z1, . . . , z p be an ordering of Z \ Zk .
Apply Lemma 7.3 to G to obtain an (n, e)-graph G1 that satisfies J (1, 1)–J (3,
1). Then J (3, 1) implies that

K3(G1)− K3(G) 6
∑

y∈NG (z,Ak−1)

(
∆− |Zk \ Z k−1

k | − P3(yz,G; Rk)
) (8.30)

6 0.

As K3(G1) > K3(G), we have equality in the above. Then J (3, 1) implies
that G[S,

⋃
i∈[k−2] Ai ] is complete, where S := NG1\G(z, Rk) ⊆ NG(z, Rk).

Furthermore, Zk = Z k−1
k and P3(yz,G; Rk) = 0 for all y ∈ NG(z, Ak−1).

By J (2, 1), for all i ∈ [k] and v ∈ V (G), we have

|dG(v, Ai)− dG1(v, Ai)| 6 dG(z, Ak−1)
P3(G)
6 δn.

We also have that ∆(G1
[Ai ]) 6 ∆(G[Ai ]) 6 δn. Note that∑

i j∈([k]2 )

e(G1
[Ai , A j ]) =

∑
i j∈([k]2 )

e(G[Ai , A j ])+ dG(z, Ak−1).

Since K3(G1) = K3(G), the choice of G, in particular (C2), implies that we
must have G1

∈ H(n, e). But G1 satisfies the properties of H in Lemma 8.12
with p := k − 1, so G1

∈ Hmin
1 (n, e). Then G1 clearly satisfies the hypothesis of

Lemma 8.9 and G1 and G only differ at Ak−1 ∪ Ak . Lemma 8.9(ii) implies that
G1
[Ak−1, Ak] is complete. But

e(G1[Ak−1, Ak]) > dG1(z, Rk) = dG(z, Rk)− dG(z, Ak−1)

> dG(z, Ak)− |Z | −∆(G[Ak−1])
P5(G)
> ξn − δn − δn > ξn/2,

a contradiction. This completes the proof of the lemma.

The second step is to apply Transformation 2 (Lemma 7.5) to show that Y is
empty. Then the only bad edges lie in Ak and by Lemma 6.12, they all have both
endpoints in X . (By (8.29), this means that there are only constantly many bad
edges.)

LEMMA 8.15. Yi = ∅ for all i ∈ [k − 1].
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Proof. Suppose, without loss of generality, that Yk−1 6= ∅ and fix an arbitrary
y ∈ Yk−1. Let Âi := Ai if i ∈ [k−2], Âk−1 := Ak−1∪{y} and Âk := Ak \{y}. We
may assume that dG(y, Ak−1) > 1; otherwise, Â1, . . . , Âk is a max-cut partition
of G, which contradicts the choice of A1, . . . , Ak , in particular (C3). Let y =:
y1, y2, . . . , yq be an ordering of Y . Observe that G is a graph that satisfies the
conclusions of Lemma 7.4 applied with ` := k−1. Thus we can apply Lemma 7.5
to G with ` := k − 1 to obtain a graph G1 satisfying K (1, 1)–K (3, 1). By K (3,
1),

K3(G1)− K3(G) 6
∑

x∈NG (y,Ak−1)

(
∆−

ξ

6γ
|Zk \ Z k−1

k | − P3(xy,G; Rk)

)
6 0.

As K3(G1) > K3(G), we have equality in the above. Then K (3, 1) implies
that G[S,

⋃
i∈[k−2] Ai ] is complete, where S := NG1\G(y, Rk) ⊆ NG(y, Rk).

Furthermore, Zk = Z k−1
k = Xk−1 ∪ Yk−1 and P3(xy,G; Rk) = 0 for all x ∈

NG(y, Ak−1). Since Zk = Xk−1 ∪ Yk−1, by K (1, 1), G1 is obtained from G by
replacing all edges from y to Ak−1 with some nonedges from y to Rk , that is,
T (y) and R(y) are empty. Also by K (1, 1), we have that

∑
i j∈([k]2 )

e(G1
[ Âi ,

Â j ]) >
∑

i j∈([k]2 )
e(G[Ai , A j ]). Since K3(G1) = K3(G), we must have equality

by (C2). But for all i ∈ [k− 1], we have | Âi | > | Âk | = |Ak | − 1, so (C3) implies
that G1

∈ Hmin(n, e). Again, G1 satisfies the properties of H in Lemma 8.12
with k − 1, y,G1 playing the roles of p, z, H , respectively. So we have that
G1
∈ Hmin

1 (n, e).
Let A∗1, . . . , A∗k−2, B be a canonical partition of G1. Note that G1 satisfies the

hypothesis of Lemma 8.9. Indeed,

∆(G1
[Ak]) 6 ∆(G[Ak])+ dG(y, Ak−1)

P3(G)
6 δn + γ n 6 2γ n.

Further, G1 and G only differ on Ak−1 ∪ Ak . Thus Lemma 8.9(ii) implies that
G1
[Ak−1, Ak] is complete. But by construction,

e(G1[Ak−1, Ak]) > dG1(y, Ak−1) = |Ak−1|,

a contradiction. This completes the proof of the lemma.

8.3. Obtaining a graph G3. We will apply Lemma 7.8 to G to obtain a
graph G3 in which X i is an independent set for all i ∈ [k − 1], but such that
G3 may contain constantly many more triangles than G. Then, applying further
transformations to G3, we deduce additional information about G.
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Observe that by Propositions 8.14 and 8.15, G satisfies all the properties of
G2 in Lemma 7.6, so we can set G2 := G and, for all i ∈ [k − 1], set A′i := Ai .
Recall from the beginning of Section 7.4 that, for all i ∈ [k − 1] and x, y ∈ X i ,
we define

D(x) := dG(x, X \ X i) and D(x, y) := |NG(x, X \ X i) ∩ NG(y, X \ X i)|.

LEMMA 8.16. Let G3 be the (n, e)-graph obtained by applying Lemma 7.8 to G
playing the role of G2. Then, we have the following:

(i) G3 has an (A1, . . . , Ak; Z , 2β, ξ/4, 2ξ, δ)-partition and, for each i ∈ [k −
1], we have e(G3[Ai , Ak]) 6 m i with equality if and only if E(G[X i ]) = ∅.

(ii) For all i ∈ [k − 1], E(G3[Ai ]) = ∅ and E(G3[Ak]) = E(G[X1, . . . , Xk])

and dG3(x, Ai) > γ n for x ∈ X i . Further, every pair in E(G) \ E(G3) lies
in X i for some i ∈ [k − 1], and every pair in E(G3) \ E(G) lies in [X i , Ai ]

for some i ∈ [k − 1].

(iii) For all i ∈ [k−1] such that X i 6= ∅, there exists Di ∈ N such that D(x)= Di

for all x ∈ X i . Moreover, P3(xu,G3) = ai + Di for all x ∈ X i and u ∈ Ai .

(iv) K3(G3) 6 K3(G) + |Z |2 · max i∈[k−1]
x,y∈X i

(Di − D(x, y)) with equality only if

G[X i ] is triangle-free and NG(x, Ai) ∩ NG(y, Ai) = ∅ for all i ∈ [k − 1]
and xy ∈ E(G[X i ]).

(v) Let G ′ be such that V (G ′) = V (G3) and E(G ′) 4 E(G3) ⊆
⋃

i∈[k−1]{ax :
a ∈ Ai , x ∈ X i} and e(G ′[X i , Ai ]) = e(G3[X i , Ai ]) for all i ∈ [k−1]. Then
K3(G ′) = K3(G3).

Proof. Parts (i) and (ii) and the fact that

K3(G3) 6 K3(G)+ |Z |2 · max
i∈[k−1]
x,y∈X i

(D(x)− D(x, y)) (8.36)

with equality only if G[X i ] is triangle-free and NG(x, Ai) ∩ NG(y, Ai) = ∅

for all i ∈ [k − 1] and xy ∈ E(G[X i ]) follow immediately from Lemmas 7.8
and 7.7 L(2). Apply Lemma 7.9 to G3 to obtain an (n, e)-graph G4 on the same
vertex set satisfying Lemma 7.9(i)–(v). Then, by Lemma 7.9(i), for every xy ∈
E(G3) 4 E(G4), there exists i ∈ [k − 1] such that x ∈ X i and y ∈ Ai . Let
i ∈ [k−1], u ∈ Ai and x ∈ X i . Then by Lemma 7.8(ii) and 7.9(i),(iii) we have, for
j ∈ {3, 4}, that dG j (u, Ai) = dG j (x, Rk) = dG j (x, X i) = 0 and X \ X i ⊆ NG j (u).
So P3(xu,G j) = ai + D(x). Clearly, if G ′ is any graph as in (v), then these
equalities also hold for G ′, in particular

P3(xu,G ′) = ai + D(x) = P3(xu,G j). (8.37)
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Suppose that there exist i ∈ [k− 1] and x, y ∈ X i such that D(x) 6= D(y). Then
Lemma 7.9(iv) implies that

K3(G4) 6 K3(G3)−
ξn
20

(8.36)
6 K3(G)+ |Z |2 · max

i∈[k−1]
x,y∈X i

(D(x)− D(x, y))−
ξn
20

(8.38)

6 K3(G)+ |Z |3 −
ξn
20

(8.29)
6 K3(G)+

8C3

ξ 3
−
ξn
20

< K3(G)−
ξn
30
,

a contradiction. This proves (iii), and together with (8.36), we also obtain (iv).
For (v), observe that there is no triangle in G3 or G ′ that contains more than one
Ai -X i edge since Ai and X i are independent sets in both graphs. Thus

K3(G ′)− K3(G3) =
∑

e∈E(G ′)\E(G3)

P3(e,G ′)−
∑

e∈E(G3)\E(G ′)

P3(e,G3)
(8.37)
= 0,

where the last equality follows from the hypotheses on G ′ in (v) and (8.37).

This allows us to conclude that G and G3 are in fact the same graph.

LEMMA 8.17. The following hold in G:

(i) For all i j ∈
(
[k−1]

2

)
, the graph G[X i , X j ] is either complete or empty.

(ii) G = G3, so E(G[X i ]) = ∅ for all i ∈ [k − 1].

Proof. First, we will show the following claim.

CLAIM 8.18. If i j ∈
(
[k−1]

2

)
is such that E(G[X i , X j ]) 6= ∅, then

e(G3[X i , Ai ])+ e(G3[X j , A j ]) 6 cn +
√
βn. (8.39)

Proof of Claim. To prove the claim, let x ∈ X i and y ∈ X j such that xy ∈ E(G).
Then xy ∈ E(G3) by Lemma 8.16(ii). By Lemma 8.16(v), we can obtain a graph
G ′ from G3 with the stated properties and such that

dG ′(x, Ai) = min{|Ai |, e(G3[X i , Ai ])} and (8.40)
dG ′(y, A j) = min{|A j |, e(G3[X j , A j ])}.

That is, we obtain G ′ by moving as many X i -Ai edges as possible to x , and
similarly for y and X j -A j edges. By P4(G3), x is complete to

⋃
`∈[k−1]\{i} A`
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in G3 and y is complete to
⋃

`∈[k−1]\{ j} A` in G3. Thus the same is true in G ′.
Therefore, using Lemma 8.16(iv) and (v),

K3(G ′) = K3(G3) 6 K3(G)+|Z |3
(8.29)
6 K3(G)+

8C3

ξ 3
6 K3(G)+

βn
2
. (8.41)

Corollary 4.18 applied with p := βn/2 implies that

(k − 2)cn + βn > P3(xy,G ′) >
∑

`∈[k−1]\{i, j}

|A`| + dG ′(x, Ai)+ dG ′(y, A j)

and so

dG ′(x, Ai)+ dG ′(y, A j)
P1(G)
6 (k − 2)cn+ βn− (k − 3)(cn− βn) 6 cn+

√
βn.

(8.42)
Now, P1(G) implies that |Ai | + |A j | > 2cn− 2βn > cn+

√
βn, so without loss

of generality from (8.40) we may suppose that dG ′(x, Ai) = e(G3[X i , Ai ]). If
dG ′(y, A j) = |A j |, then

e(G3[X i , Ai ]) 6 cn +
√
βn − |A j |

P1(G)
6 cn +

√
βn − (cn − βn) 6 2

√
βn.

But this is a contradiction because e(G3[X i , Ai ]) > dG3(x, Ai) > γ n by Lemma
8.16(ii). Thus dG ′(y, A j) = e(G3[X j , A j ]), and the claim follows from (8.42).

Suppose that (i) does not hold. Then there exist i j ∈
(
[k−1]

2

)
; xy ∈ E(G[X i , X j ])

and x ′y′ ∈ E(G[X i , X j ]) such that x, x ′ ∈ X i and y, y′ ∈ X j . These adjacencies
are the same in G3. Without loss of generality, we may assume that x 6= x ′ (but
it could be the case that y = y′). In particular, |X i | > 2.

CLAIM 8.19. There exists a graph G ′′ that satisfies Lemma 8.16(v) and such that

dG ′′(x ′, Ai)+ dG ′′(y′, A j) 6 cn − ξn/5.

Proof of Claim. Let

pi := e(G3[X i , Ai ])− 2
√
βn.

We claim that there is some G ′′ such that E(G ′′)4E(G3)⊆ {av : a ∈ Ai , v ∈ X i}

and e(G ′′[X i , Ai ]) = e(G3[X i , Ai ]) in which dG ′′(x, Ai) = pi . To show that G ′′

exists, since pi < e(G3[X i , Ai ]) and |X i | > 2, it suffices to show that pi 6 |Ai |,
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then we can obtain G ′′ by moving all but 2
√
βn X i -Ai edges to x . But this does

indeed hold: Claim 8.18 implies that

pi 6 cn −
√
βn

P1(G)
< |Ai |,

as required. We have

e(G ′′[X i , Ai ]) = e(G3[X i , Ai ]) = pi + 2
√
βn = dG ′′(x, Ai)+ 2

√
βn.

Thus dG ′′(x ′, Ai) 6 2
√
βn. Furthermore,

dG ′′(y′, A j) = dG3(y
′, A j)

P5(G3)

6 |A j | − ξn/4
P1(G)
6 cn + βn − ξn/4.

Then dG ′′(x ′, Ai) + dG ′′(y′, A j) 6 cn + βn + 2
√
βn − ξn/4 6 cn − ξn/5, as

required.

Apply Claim 8.19 to obtain G ′′. Proposition 6.12(i) implies that NG(x ′) and
NG(y′) are disjoint from R′k . This remains true with G replaced by G ′′, that is,
we have that NG ′′(x ′)∩ R′k = ∅ and NG ′′(y′)∩ R′k = ∅. Indeed, this follows from
Lemma 8.16(ii) and that G ′′ and G3 only differ on [X i , Ai ]. Thus

P3(x ′y′,G ′′) 6
∑

`∈[k−1]\{i, j}

|A`| + dG ′′(x ′, Ai)+ dG ′′(y′, A j)+ |Z |

P1(G),(8.29)
6 (k − 3)(c + β)n + cn −

ξn
5
+

2C
ξ

6 (k − 2)cn −
ξn
6
. (8.43)

On the other hand, by Lemma 8.16(v) and the analogue of (8.41), K3(G ′′) =
K3(G3) 6 K3(G) + 8C3/ξ 3. As x ′y′ 6∈ E(G ′′), Corollary 4.18 implies that
P3(x ′y′,G ′′) > (k − 2)cn − k − 8C3/ξ 3, contradicting (8.43). This completes
the proof of (i).

We now turn to (ii). We claim first that K3(G3) = K3(G). Indeed, for all
i ∈ [k − 1] and x, y ∈ X i , we have

D(x, y) =
∑

`∈[k−1]:
G3[X i ,X`] complete

|X`| = D(x) = D(y) = Di .

Then Lemma 8.16(iv) implies that K3(G3) = K3(G).
Recall m(3)

=
∑

i j∈([k]2 )
e(G3[Ai , A j ]) and Lemma 8.16(i) implies that m(3) 6

m with equality if and only if E(G[X i ]) = ∅ for all i ∈ [k − 1]. Thus if
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m(3)
= m, then Lemma 8.16(ii) implies that G3 = G as desired. We may then

assume that m(3) < m and, without loss of generality, that e(G[Xk−1]) > 0. By
Lemma 8.16(ii), this means that G3 has more cross-edges with respect to A1,

. . . , Ak than G. As K3(G3) = K3(G), by the choice of G, in particular (C2) , we
must have G3 ∈ H(n, e).

For all i ∈ [k − 1] such that X i 6= ∅, we have

e(G3[Ai , Ak])= e(G[Ai , Ak])−e(G[X i ])
P3(G),P5(G)

> |X i |(ξn−δn) > 0. (8.44)

Suppose first that G3 ∈ H1(n, e) and A∗1, . . . , A∗k−2, B is a canonical partition
of G3. By construction, G3 satisfies the hypotheses of Lemma 8.9. Recall that
e(G[Xk−1]) > 0, in particular, Xk−1 6= ∅. Then (8.44) and Lemma 8.9(i) imply
that B = Ak−1 ∪ Ak , G3[Ai , B] is complete and X i = ∅ for every i ∈ [k − 2].
(There can only be one i ∈ [k−1] such that e(G3[Ai , Ak]) > 0, so (8.44) and the
fact that Xk−1 6= ∅ imply that X i = ∅ for all i ∈ [k−2].) But then G3 and G only
differ at Ak−1 ∪ Ak and Lemma 8.9(ii) implies that G3[Ak−1, Ak] is complete,
contradicting (8.44).

We may now assume that G3 ∈ Hmin
2 (n, e) \ H1(n, e) and let A∗1, . . . , A∗k

be a canonical partition of G3. We claim that G3 satisfies the hypotheses
of Lemma 8.10(ii). Indeed, by Lemma 8.16(ii), P5(G) and (8.29), |E(G) 4
E(G3)| 6 |Z |2 6 δn2 . Also, G3[Ai , A j ] is complete for all i j ∈

(
[k−1]

2

)
by

P2(G3). Finally, d 6 |Z |2 < δn and Y = ∅ by Proposition 8.15.
Recall that Xk−1 6= ∅. By Lemma 8.10(ii),

Xk−1 ⊆ Ak ⊆ A∗k (8.45)

and there is a bijection σ : [k − 1] → [k − 1] and at most one j ∈ [k − 1]
such that A∗σ(`) = A` for all ` ∈ [k − 1] \ { j}, and A∗σ( j) ⊆ A j ⊆ A∗σ( j) ∪ A∗k .
Without loss of generality, assume that σ is the identity permutation. By P4(G3),
we have that G3[Xk−1, A`] is complete for every ` 6 k − 2. But Xk−1 ⊆ A∗k , so
A` ∩ A∗k = ∅. Thus A` = A∗` . Therefore j can only be k − 1 if it exists, that is,
A∗k−1 ⊆ Ak−1 ⊆ A∗k−1 ∪ A∗k . But A∗k−1 ∪ A∗k = Ak−1 ∪ Ak , so Ak ⊆ A∗k . So

|A∗k−1| − |A
∗

k | 6 |Ak−1| − |Ak |
P1(G)
6 (kc − 1+ 2β)n (8.46)

(6.3)
< (c − (k − 1)α)n + 2βn < (c − α)n.

Fix an arbitrary edge xy ∈ E(G[Xk−1]). Note that as X ⊆ Ak ⊆ A∗k is
independent in G3, for every i j ∈

(
[k−1]

2

)
we have that [X i , X j ] is empty in G3,

and hence also in G as they are identical at
⋃

i j∈([k−1]
2 )
[X i , X j ]. So Di = 0 for all

i ∈ [k − 1] . Since K3(G3) = K3(G), by Lemma 8.16(iv), we have that G[X i ]
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is triangle-free for every i ∈ [k − 1], and NG(x, Ai)∩ NG(y, Ai) = ∅. That is, x
and y have no common Ai -neighbour in G. So

e(G[Ak−1, {x, y}]) > |Ak−1|
P1(G)
> (c − β)n.

By (8.45), {x, y} ⊆ Xk−1 ⊆ A∗k , and recall that from G to G3, at most |Z |2

adjacencies are changed in [Ak−1, X ]. Lemma 8.10 implies that |Ak−1 \ A∗k−1| 6
|Ak−1 4 A∗k−1| 6 kβn. So

e(G3[A∗k−1, A∗k]) > e(G3[A∗k−1, {x, y}]) > e(G3[Ak−1, {x, y}])− 2|Ak−1 \ A∗k−1|

> e(G[Ak−1, {x, y}])− |Z |2 − 2|Ak−1 \ A∗k−1|

(8.29)
> (c − β)n −

4C2

ξ 2
− 2kβn

> (c − α/2)n
(8.46)
> |A∗k−1| − |A

∗

k | + 1,

contradicting Corollary 4.4(iii). This completes the proof of the lemma.

For i j ∈
(
[k−1]

2

)
, we write X i ∼ X j if G[X i , X j ] is complete and X i 6∼ X j if

G[X i , X j ] is empty (recall that exactly one of these holds for every pair i j by
Lemma 8.17(i)). Thus for all i ∈ [k − 1],

Di =
∑

`∈[k−1]:X`∼X i

|X`|.

PROPOSITION 8.20. The following hold.

(i) Let i, j ∈ [k − 1] be such that X i , X j 6= ∅. Then ai + Di = a j + D j .

(ii) If G ′ is an (n, e)-graph with E(G ′) 4 E(G) ⊆
⋃

i∈[k−1] K [X i , Ai ], then
K3(G ′) = K3(G).

Proof. Choose arbitrary i, j ∈ [k − 1] and x ∈ X i and x ′ ∈ X j . We obtain (i) by
performing a transformation on G. First observe that, by the definition of X and
P5(G), we have γ n 6 d(x, Ai) 6 |Ai | − ξn. So there exist sets K (x) ⊆ NG(x,
Ai) and K (x) ⊆ NG(x, Ai) of size ξn, and equally sized subsets K (x ′) ⊆ NG(x ′,
A j) and K (x ′) ⊆ NG(x ′, A j). Let J be obtained from G by adding {xv : v ∈
K (x)} and removing {x ′u ′ : u ′ ∈ K (x ′)}. Let J ′ be obtained from G by adding
{x ′v′ : v′ ∈ K (x ′)} and removing {xu : u ∈ K (x)}. For all a ∈ Ai and a′ ∈ A j ,
we have by Lemma 8.16(iii), Lemma 8.17(ii) and the constructions of J and J ′

that

P3(xa, J ) = P3(xa, J ′) = P3(xa,G) = ai + Di and
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P3(x ′a′, J ) = P3(x ′a′, J ′) = P3(x ′a′,G) = a j + D j .

Since Ai , A j are independent sets in G by Proposition 8.14, there are no
triangles in J containing both edges xv1, xv2 for distinct v1, v2 ∈ K (x); and
no triangles in J containing both edges x ′v′1, x ′v′2 for distinct v′1, v

′

2 ∈ K (x ′).
Thus

K3(J )−K3(G) =
∑
v∈K (x)

P3(xv, J )−
∑

u∈K (x ′)

P3(x ′u ′,G) = ξn(ai+Di−a j−D j)

and similarly, K3(J ′)− K3(G) = ξn(a j + D j − ai − Di) = −(K3(J )− K3(G)).
If ai +Di 6= a j +D j , then either J or J ′ has at least ξn fewer triangles than G, a
contradiction. Thus ai+Di = a j+D j for all i, j ∈ [k−1] for which X i , X j 6= ∅.
This proves (i).

For (ii), it suffices to show that, for any i, j ∈ [k−1], if G ′ is obtained from G
by replacing one X i -Ai edge ei with one X j -A j edge e j , then K3(G) = K3(G ′).
Then this can be iterated to obtain any required G ′. But this follows from (i)
since

K3(G ′)− K3(G) = P3(e j ,G ′)− P3(ei ,G) = P3(e j ,G)− P3(ei ,G)
= a j + D j − ai − Di = 0.

It is now easy to complete the proof of Theorem 1.7 in the case under
consideration.

Proof of Theorem 1.7 in the intermediate case and when m < Cn.
Propositions 8.14 and 8.15 imply that A1, . . . , Ak−1 are independent sets in
G and Y = ∅. By Proposition 6.12(i), every edge in G[Ak] has both endpoints in
X . Now Lemma 8.17 implies that xy ∈ E(G[Ak]) only if there are i j ∈

(
[k−1]

2

)
such that x ∈ X i and y ∈ X j .

If E(G[X ]) = ∅, then G is k-partite. But then we obtain a contradiction via
Corollary 4.4(i). Thus we may choose xy ∈ E(G[X ]) with x ∈ X i and y ∈ X j

for some i j ∈
(
[k−1]

2

)
. Note that dG(x, Ai) > 0 by the definition (6.32) of X i . Let

G ′ be an (n, e)-graph obtained from G by successively replacing arbitrary x-Ai

edges with arbitrary y-A j nonedges until

(S1) dG ′(x, Ai) = 1; or

(S2) dG ′(y, A j) = |A j | and dG ′(x, Ai) > 1.
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We claim that in both cases, dG ′(x, Ai) 6
√
βn. This is clearly true if (S1)

holds. If (S2) holds, note that

(k − 2)cn + k
(5.5)
> P3(xy,G) >

∑
`∈[k−1]\{i, j}

|A`| + dG(x, Ai)+ dG(y, A j)

P1(G)
> (k − 3)(c − β)n + dG(x, Ai)+ dG(y, A j).

Thus

dG ′(x, Ai) = dG(x, Ai)+dG(y, A j)−dG ′(y, A j)
(S2)
6 cn+kβn−|A j |

P1(G)
6

√
βn,

as required. Note that E(G ′) 4 E(G) ⊆ K [X i , Ai ] ∪ K [X j , A j ]. So
by Proposition 8.20(ii), we have K3(G ′) = K3(G). Recall that, by
Proposition 6.12(i), in G and also in G ′, there is no edge between X and
Rk . Then we can replace all x-Ai edges in G ′ with x-Rk nonedges to obtain a
new graph G ′′. This is possible as

|Rk |
P1(G),P3(G)

> (1− (k − 1)c − β)n − |Z |
(6.3),(6.31)

>
√
αn >

√
βn > dG ′(x, Ai).

Fix arbitrary u ∈ Ai and u ′ ∈ Rk . Note that
⋃

`∈[k−1]\{i} A` ⊆ NG(x) ∩ NG(u)
by P2(G) and P4(G). Further, y ∈ NG(u) ∩ NG(x) by the definition of X j 3 y.
Both of these statements also hold for G ′. Thus P3(xu,G ′) > ai+1. But P3(xu ′,
G ′′) = ai since dG ′′(x, Ai) = 0 and every X -Rk edge is incident to x in G ′′. Thus

K3(G ′′)− K3(G) = K3(G ′′)− K3(G ′) 6 −1 · dG ′(x, Ai)
(S1),(S2)
6 −1,

a contradiction.
This completes the proof of Theorem 1.7 in the intermediate case when m <

Cn.

9. The boundary case

We have shown that no worst counterexample to Theorem 1.7 can satisfy (5.4)
and (6.1). That is, we can assume that

tk(n)− αn2 6 e 6 tk(n)− 1, (9.1)

which we refer to as the boundary case. Let

r := tk(n)− e 6 αn2. (9.2)
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So r > 1. Now, Lemmas 4.11 and 4.13 and (4.9) imply that k(n, e) = k(2e/n2)

and

n
k
+

√
r(k
2

) 6 cn 6
n
k
+

√
r + k/8(k

2

) and so
√

r
k

6 cn −
n
k
6
√

r . (9.3)

Therefore
n
k
< cn 6

n
k
+
√
αn. (9.4)

A useful consequence of this is that

1− (k − 1)c >
1
k
− (k − 1)

√
α >

1
2k
. (9.5)

9.1. The boundary case: approximate structure. The first step is to obtain
an analogue of Lemma 6.1. Let

D := 169kk+9. (9.6)

LEMMA 9.1 (Approximate structure). Suppose that (9.1) holds. Let G be a
worst counterexample as defined in Section 5.2 and let A1, . . . , Ak be a max-cut
partition of V (G). Let m :=

∑
i j∈([k]2 )

e(G[Ai , A j ]) and h :=
∑

i∈[k] e(G[Ai ]).

Then there exists Z ⊆ V (G) such that G has a weak (A1, . . . , Ak; Z ,
√

Dr/n,
ξ ′, ξ ′, δ′)-partition in which, for all i ∈ [k],∣∣∣∣|Ai | −

n
k

∣∣∣∣, ∣∣∣∣|Ai | − cn
∣∣∣∣ 6 √Dr , m 6 Dr and h 6 δ′m. (9.7)

Recall from Section 4.5 that a weak partition requires that P1, P3 and P5 all
hold with the appropriate parameters. Note that the partition in Lemma 9.1 is in
terms of primed constants ξ ′, δ′, which are both large compared to α, unlike ξ, δ
in the intermediate case, which are small compared to α.

We will need the following analogue of Lemma 6.4, which is essentially the
same as Theorem 2 in [26]. Since this theorem is not phrased in a way applicable
to our situation, we reprove it here. In fact, this lemma applies for all, say, r 6 n2

2k2 ,
but is only meaningful when r = o(n2).

LEMMA 9.2. There exist integers n1, . . . , nk summing to n with |ni−n/k|, |ni−

cn| 6 6k
k+3

2
√

r for all i ∈ [k] such that |E(G)4 E(Kn1,...,nk )| < 40kk+4r .
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Proof. Define s ∈ R by setting

e =
(

1−
1
s

)
n2

2
and so

2r
n2

6
1
s
−

1
k
6

2(r + k/8)
n2

(9.2)
6 3α. (9.8)

(Here we used Lemma 4.11.) For 0 6 i 6 3, write Ni for the (unique) 3-vertex
graph with exactly i edges, and write Ni(G) for the number of induced copies of
Ni in G. So, for example, N3(G) = K3(G). We claim that

K3(G) =
(

s
3

)(n
s

)3
+

1
3

( ∑
x∈V (G)

qG(x)2 + N1(G)

)
, (9.9)

where qG(x) := 2e/n − dG(x). This is a special case of inequality (14) in [26],
but we repeat the simple proof of this case here for the reader’s convenience.

For each edge f of G and 1 6 i 6 3, let ni, f denote the number of vertices
adjacent to exactly i − 1 vertices of f . Then for all f ∈ E(G), we have n1, f +

n2, f + n3, f = n − 2, and
∑

f ∈E(G) ni, f = i Ni(G). So

e(n − 2) = 3N3(G)+ 2N2(G)+ N1(G). (9.10)

Additionally,

2(N2(G)+ 3N3(G)) = 2
∑
v∈V (G)

(
dG(v)

2

)
=

∑
v∈V (G)

2
(

2e/n − qG(v)

2

)

=
4e2

n
+

∑
v∈V (G)

qG(v)
2
− 2e,

where we used the fact that
∑

v∈V (G) qG(v) = 0. Thus

en (9.10)
= −3N3(G)+

4e2

n2
+

∑
v∈V (G)

qG(v)
2
+ N1(G).

So

K3(G) = N3(G) =
1
3

(
e ·
(

4e
n
− n

)
+

∑
v∈V (G)

qG(v)
2
+ N1(G)

)

=
1
3

((
s
2

)(n
s

)2
(

s − 1
2
·

4n
s
− n

)
+

∑
v∈V (G)

qG(v)
2
+ N1(G)

)

=

(
s
3

)(n
s

)3
+

1
3

( ∑
v∈V (G)

qG(v)
2
+ N1(G)

)
,

as required.
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We now consider G. Certainly G has at most as many triangles as the (n, e)-
graph obtained by deleting r edges between the two smallest classes of Tk(n).
By convexity, K3(Tk(n)) 6

(k
3

)
(n/k)3, so

K3(G) 6 K3(Tk(n))− r
(

n − 2
⌊n

k

⌋) (9.8)
6

(
s
3

)(n
s

)3
+ rn +

kn
8

6

(
s
3

)(n
s

)3
+ rkn.

Thus (9.9) implies that∑
x∈V (G)

qG(x)2 6 3rkn and N1(G) 6 3rkn. (9.11)

Let W be an arbitrary copy of Kk in G. Let AW denote the set of vertices adjacent
in G to at most k − 2 vertices in W . Each vertex in AW lies in at least one copy
of N1 (together with any pair of its missing neighbours in W ). On the other hand,
for every copy of N1, its single edge lies in at most nk−2 copies of Kk . Thus∑

W⊆G:W∼=Kk

|AW | 6 N1(G) · nk−2 6 3rknk−1.

Denote by BW the set of xy ∈ E(G) such that dG(x, V (W )) = k − 1 and either
(i) dG(y, V (W )) = k − 1, but NG(x, V (W )) 6= NG(y, V (W )), or (ii) dG(y,
V (W )) = k. Then for every xy ∈ BW , there is z ∈ V (W ) such that x, y, z span a
copy of N1 in G, where x plays the role of the isolated vertex and there are two
choices for z. On the other hand, there are at most

(n−1
k−1

)
6 nk−1/2 copies of Kk

that contain z. Thus∑
W⊆G:W∼=Kk

|BW | 6 N1(G) · 2 · nk−1/2 6 3rknk .

Let qW :=
∑

x∈V (W ) qG(x)2. Any x ∈ V (G) lies in at most nk−1 copies of Kk , so∑
W⊆G:W∼=Kk

qW 6 3rknk .

Thus ∑
W⊆G:W∼=Kk

(n|AW | + |BW | + qW ) 6 9rknk .

Now, G certainly contains many copies of Kk . For example, Theorem 1 in [26]
implies that

Kk(G) > gk(n, e) >
(

s
k

)(n
s

)k (9.8)
>

1
2

(n
k

)k
.
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Thus, by averaging, there exists a copy W of Kk in G for which

|AW | 6
18rkk+1

n
; |BW | 6 18rkk+1

; and (9.12)

|qG(x)| 6 3
√

2rkk+1 for all x ∈ V (W ).

We will use this W to construct a partition of V (G). Let w1, . . . , wk be the
vertices of W . For all i ∈ [k], let Ci := {x ∈ V (G) : NG(x, V (W )) = {wi}}.
Let also

C0 := {x ∈ V (G) : dG(x, V (W )) = k} and Ck+1 := AW .

So C0, . . . ,Ck+1 is a partition of V (G).
We will now estimate the sizes of each of these sets. We have that

|Ck+1| = |AW | 6
18rkk+1

n

(9.2)
6 18kk+1√α

√
r . (9.13)

Now, (9.12) implies that, for all i ∈ [k],∣∣∣∣dG(wi)−

(
1−

1
s

)
n
∣∣∣∣ = |qG(wi)| 6 3

√

2rkk+1.

But

dG(wi) = |C0| +
∑

j∈[k]\{i}

|C j | + dG(wi ,Ck+1) = n − |Ci | ± |Ck+1|,

so

|Ci | =
n
s
±

(
3
√

2rkk+1 + |Ck+1|

)
(9.8),(9.13)
=

n
k
±

(
2(r + k/8)

n
+ 3
√

2rkk+1 + 18kk+1√α
√

r
)

(9.2)
=

n
k
±

(
3
√
α + 3

√

2kk+1 + 18kk+1√α
)√

r =
n
k
± 5k

k+1
2
√

r .

Thus |C0| 6 5k
k+3

2
√

r .
For each i ∈ {2, . . . , k}, let Ai := Ci and let A1 := C0 ∪C1 ∪Ck+1. So, for all

i ∈ [k],∣∣∣∣ |Ai | − cn
∣∣∣∣, ∣∣∣∣ |Ai | −

n
k

∣∣∣∣ 6

∣∣∣∣|Ci | −
n
k

∣∣∣∣+ |C0| + |Ck+1| +

∣∣∣∣ n
k
− cn

∣∣∣∣
(9.3)
6 5k

k+1
2
√

r + 5k
k+3

2
√

r + 18kk+1√α
√

r +
√

r

6 6k
k+3

2
√

r . (9.14)
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Let i j ∈
(
[k]
2

)
and e ∈ E(G[Ai , A j ]). Then, by definition, either e ∈ BW or {x,

y} ∩ AW 6= ∅ (note that any such e intersecting C0 lies in BW ). Thus by (9.12)
and (9.13), we have∑

i j∈([k]2 )

e(G[Ai , A j ]) 6 |BW | + |Ck+1|n 6 36kk+1r. (9.15)

Let di := n/k − |Ai | for all i ∈ [k]. Now,
∑

i∈[k] di = 0 and

∑
i j∈([k]2 )

|Ai ||A j | =
1
2

(
n2
−

∑
i∈[k]

((n
k

)2
−

2di n
k
+ d2

i

))
> tk(n)− k ·max

i∈[k]
{d2

i }

(9.14)
> e − 36kk+4r.

Thus∑
i∈[k]

e(G[Ai ]) = e −
∑

i j∈([k]2 )

(|Ai ||A j | − e(G[Ai , A j ]))
(9.15)
6 36kk+4r + 36kk+1r

6 38kk+4r

and so, letting ni := |Ai | for all i ∈ [k], we have

|E(G)4 E(Kn1,...,nk )| 6 36kk+1r + 38kk+4r < 40kk+4r,

as required.

The previous lemma together with Lemma 5.1 combine to prove Lemma 9.1.

Proof of Lemma 9.1. Choose a max-cut k-partition V (G) = A1 ∪ · · · ∪ Ak . Let

Z :=
⋃
i∈[k]

{z ∈ Ai : dG(z, Ai) > ξ ′n}. (9.16)

(In fact, there can be no other choice for Z .) We need to show that P1(G) holds
with parameter

√
Dr/n, P3(G) holds with parameter δ′ and P5(G) holds with

parameter ξ ′.
Let p := 6k

k+3
2
√

r , d := 40kk+4r and ρ := 40kk+4α. Then

p2
= 36kk+3r < d 6 ρn2 and 2ρ1/6 6 4kk/6+4/6α1/6 < α1/7 <

1
2k

(9.5)
< 1− (k − 1)c.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


The minimum number of triangles 129

Thus, by Lemma 9.2, we can apply Lemma 5.1 with parameters p, d, ρ to imply
that A1, . . . , Ak satisfy conclusions (i)–(v) of Lemma 5.1.

Thus, by (i), P1(G) holds with parameter 2k2
√

d/n = 2
√

40kk/2+4√r/n. This
together with (9.3) and (9.6) implies the required bound on

∣∣|Ai | −
n
k

∣∣ and thus
P1(G) holds with parameter

√
Dr/n. Lemma 5.1(ii) implies that

m :=
∑

i j∈([k]2 )

e(G[Ai , A j ]) 6 2k2
√

d(kc−1)n+d
(9.3)
6 (6
√

40kk/2+5
+40kk+4)r

(9.6)
< Dr.

(9.17)
For P3(G), as in the intermediate case, every missing edge is incident to at most
two vertices in Z , so

|Z | 6
2m
ξ ′n

6
2Dr
ξ ′n

<
2Dαn
ξ ′

(9.6)
< δ′n. (9.18)

Furthermore, Lemma 5.1(iii) implies that for every i ∈ [k] and e ∈ E(G[Ai ]),
there is at least one endpoint x of e with

dG(x, Ai) >
1
2

(
(1− (k − 1)c)n − 3k2√ρn

) (9.5)
>

1
2

(
1

2k
− 3
√

40kk/2+4√α

)
n

>
n
5k
> ξ ′n.

Thus x ∈ Z . The final part of P3(G) follows from Lemma 5.1(iv) and the fact
that α � δ′. Finally, P5(G) holds immediately from the definition of Z . The
assertion about m was proved in (9.17) and the assertion about h is an immediate
consequence of Lemma 5.1(v) and the fact that α � δ′.

9.2. The boundary case: the remainder of the proof. Apply Lemma 9.1
to the worst counterexample G as defined in Section 5.2 (so G satisfies (C1)–
(C3)). Now fix a weak (A1, . . . , Ak; Z ,

√
Dr/n, ξ ′, ξ ′, δ′)-partition of G with Z

(uniquely) defined as in (9.16) and define m as in the statement. For all i ∈ [k],
let

Ri := Ai \ Z .

As before, P3(G) implies that Ri is an independent set for all i ∈ [k]. Suppose
first that Z = ∅. Then G is a k-partite graph. So Corollary 4.4(i) implies that
G ∈ H2(n, e), a contradiction. Thus, exactly as in (9.18),

1 6 |Z | 6
2m
ξ ′n

and ξ ′ 6
2m
n
. (9.19)
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Given disjoint subsets A, B ⊆ V (G), write A ∼ B if G[A, B] is complete.
For any I ⊆ [k], write

RI :=
⋃
i∈I

Ri .

We would like to measure quite accurately the difference between |RI |/|I | and
its ‘expected’ size cn for I 6= ∅ (recalling that cn, n − (k − 1)cn and n/k are all
very close in the boundary case). Thus we define

diff(I ) :=
(
|RI |

|I |
− cn

)
n
m
, i.e. |RI | =

(
cn + diff(I ) ·

m
n

)
|I |.

We will write diff(i) as shorthand for diff({i}). A trivial but useful observation is
that, for pairwise-disjoint I1, . . . , Ip ⊆ [k], we have

min
i∈[p]
{diff(Ii)} 6 diff(I1 ∪ · · · ∪ Ip) 6 max

i∈[p]
{diff(Ii)}. (9.20)

Note also that(
cn −

m
α1/3n

)
k
(9.3),(9.7)

> n+
√

r−
k Dr
α1/3n

(9.2)
> n+

√
r
(
1− k Dα1/6) (9.6)> n, (9.21)

so we have the following:

(∗) If I ⊆ [k] satisfies diff(I ) > −1/α1/3, then |RI | > |I |n/k.

We cannot guarantee that P2(G) and P4(G) hold in this setting since there is
no part that is significantly smaller than the other parts. However, the next lemma
shows that an analogue of these properties holds.

LEMMA 9.3. There exists a partition Z =
⋃

I∈( [k]k−2)
Z I of Z such that, for all

i j ∈
(
[k]
2

)
, the following properties hold. We have Z[k]\{i, j} ∼ R[k]\{i, j}, Z[k]\{i, j} ⊆

Ai ∪ A j and for every z ∈ Z[k]\{i, j} ∩ Ai , we have that dG(z, Ri) 6 δ′n and
dG(z, R j) > ξ ′n/2.

Proof. Let z ∈ Z be arbitrary, and let i ∈ [k] be such that z ∈ Ai . By the definition
of Z , there is some j ∈ [k]\{i} such that dG(z, A j) > ξ ′n/k. Let I := [k]\{i, j}
and x ∈ RI be arbitrary, and let h ∈ I be such that x ∈ Rh . Then

P3(zx,G) 6 dG(z, Ai )+ dG(z, A j )+ dG(x, Ah)+ (n − |Ai | − |A j | − |Ah|)

P3(G),(9.7)
6 2δ′n + n − 2

(n
k
−
√

Dr
)
−
ξ ′n
k

(9.2)
< (k − 2) ·

n
k
−
ξ ′n
2k

(9.4)
< (k − 2)cn −

ξ ′n
3k
.
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Thus (5.5) implies that xz ∈ E(G). Since x was arbitrary, we have shown that we
can assign z to Z[k]\{i, j}. The second statement follows from P3(G), which says,
since z ∈ Ai , that dG(z, Ri) 6 dG(z, Ai) 6 δ′n and P5(G), which together with
the first statement says that dG(z, R j) > ξ ′n − |Z | > (ξ ′ − δ′)n > ξ ′n/2.

The next lemma shows that diff(I ) can only be large when |I | 6 k − 2.

LEMMA 9.4. If I ⊆ [k] has diff(I ) > −1/α1/3, then |I | 6 k − 2.

Proof. Note first that, by (∗), we have diff([k]) < −1/α1/3. Suppose that there
exists a set I ∈

(
[k]

k−1

)
such that diff(I ) > −1/α1/3. Without loss of generality,

suppose that I = [k − 1]. Let q := m
α1/3n . Then (∗) implies that |RI | > (k −

1)n/k. Since
∑

i j∈(k
2)
|Ai ||A j | is maximized when the parts Ai are as balanced as

possible and cn − q > n/k due to (9.3) and (9.7), we have

e + m −
∑
i∈[k]

e(G[Ai ]) =
∑

i j∈([k]2 )

|Ai ||A j | 6 e(K k
cn−q,...,cn−q,n−(k−1)(cn−q))

= e −
(

k
2

)
q2
+ (k − 1)q(kc − 1)n

(9.3)
6 e +

(k − 1)m
α1/3n

· k

√
r + k/8(k

2

)
6 e +

2km
√

r + k
α1/3n

(9.2)
6 e + 3kα1/6m.

But then ∑
i∈[k]

e(G[Ai ]) > (1− 3kα1/6)m >
√
δ′m,

a contradiction to Lemma 9.1.

We now show that if there is a missing edge between some Ri and R j , where
i 6= j , then the union of the other sets R` must be large.

LEMMA 9.5. For all i j ∈
(
[k]
2

)
, if Ri 6∼ R j , then diff([k] \ {i, j}) > −1/(2α1/3).

Proof. Set I := [k] \ {i, j}. Since Ri 6∼ R j , there exist x ∈ Ri and y ∈ R j such
that xy /∈ E(G). Then, since Ri and R j are both independent sets in G,

(k − 2)cn − k
(5.5)
6 P3(xy,G) 6 |Z | + |RI |

(9.19)
6

2m
ξ ′n
+ |RI |
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and so

|RI | > (k − 2)cn − k −
2m
ξ ′n

(9.19)
> (k − 2)cn −

2km
ξ ′n

>
(

cn −
m

2α1/3n

)
|I |,

as required.

Our next goal is to show that Ri is in fact small for every i ∈ [k], which will
in turn imply that G[R1, . . . , Rk] is complete k-partite. To do this, we need the
following lemma.

LEMMA 9.6. For all i ∈ [k], if diff(i)>−1/(2α1/3), then there exists j ∈ [k]\{i}
such that Ri 6∼ R j .

Proof. Let i ∈ [k] such that diff(i) > −1/(2α−1/3) be arbitrary. We begin by
proving the following claim.

CLAIM 9.7. It suffices to show that Z I = ∅ for all I ∈
(
[k]\{i}
k−2

)
.

Proof of Claim. Suppose that Z I = ∅ for all I ∈
(
[k]\{i}
k−2

)
. Lemma 9.3 implies that

Z ∼ Ri . Suppose now that Ri ∼ R j for all j ∈ [k] \ {i}. Thus Ri ∼ Ri , and Ri is
an independent set. Let n′ := n−|Ri | and e′ := e(G[Ri ]) = e−n′(n−n′). Note
that J := G[Ri ] satisfies K3(J ) = g3(n′, e′) (since otherwise we could replace
it in G with an (n′, e′)-graph with fewer triangles to obtain an (n, e)-graph with
fewer triangles than G, contradicting (C1)). Using (9.2), (9.7) and (9.19), we
have

|Ri | = |Ai | ± |Z | =
n
k
±
√

Dr ±
2m
ξ ′n
=

n
k
± α1/3n. (9.22)

By (9.22), we have

n′(n − n′) >
(n

k
− α1/3n

)(k − 1
k

n + α1/3n
)
>

k − 1
k2

n2
− α1/3 k − 1

k
n2.

Recall from the very beginning of Section 5.2 that α1.3 is the constant obtained by
applying Theorem 1.3 with parameters k and r := 3. Together with e < tk(n) 6
(k − 1)n2/(2k), we have that

e′ = e − n′(n − n′) 6
k − 1

k
·

n2

2
−

(
k − 1

k2
n2
− α1/3 k − 1

k
n2

)
=

k − 1
k
·

n2

2

(
1−

2
k
+ 2α1/3

)
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(9.22)
6

k − 1
2k

(
k − 2

k
+ 2α1/3

)(
k

k − 1
n′ + α1/4n′

)2

6 tk−1(n′)+ α1/5(n′)2

(5.1)
6 tk−1(n′)+ α1.3(n′)2 (9.23)

and similarly e′ > tk−2(n′)+ α1.3(n′)2. So k(n′, e′) ∈ {k − 1, k}. Further,

n′ = n−|Ri |
(9.22)
>

(
1−

1
k

)
n−α1/3n

(6.3)
> n/2 > n0/2

(5.2)
> max{n0(k−1, α/3), n1.3(k)}.

Suppose first that k(n′, e′) = k − 1. Then the minimality of k and the fact that
tk−2(n′)+α(n′)2/3 6 tk−2(n′)+α1.3(n′)2 6 e′ < tk−1(n′) implies that Theorem 1.7
holds for (n′, e′), that is, g3(n′, e′) = h(n′, e′), and every extremal graph lies
in H(n′, e′). So J ∈ H(n′, e′). If J ∈ H1(n′, e′), then since G is obtained by
adding an independent set Ri of vertices to J and adding every edge between
Ri and V (J ), we have that G ∈ H1(n, e), a contradiction to (C1). Otherwise,
J ∈ H2(n′, e′), and in particular, J is (k − 1)-partite. So G is k-partite, and
Corollary 4.4(i) implies that G ∈ H2(n, e), again contradicting (C1).

Thus we may assume that k(n′, e′) = k. Theorem 1.3 implies that we can
obtain a graph F ′ ∈ H1(n′, e′) with canonical partition AF ′

1 , . . . , AF ′
k−2, B F ′ and

K3(F ′) = K3(G[Ri ]). Let F be the graph obtained from G by replacing G[Ri ]

with F ′, so K3(F) = K3(G). By Corollary 4.18, for every xy ∈ E(F),

P3(xy, F) 6 (k − 2)cn + k
(9.4)
6 (k − 2)

n
k
+ α1/3n. (9.24)

For each j ∈ [k − 2] for which AF ′
j is nonempty, fix an arbitrary edge x j y j ∈

F[AF ′
j , Ri ]; then

P3(x j y j , F) > n − |AF ′
j | − |Ri |,

which together with (9.22) and (9.24) implies that |AF ′
j | > n/k − 2α1/3n.

Similarly, for an edge xB yB in F[B F ′
] (there must exist one such edge as

otherwise k(n, e) < k), we have P3(xB yB, F) > n − |B F ′
|. Hence, |B F ′

| >
2n/k − α1/3n. But then

n = |Ri | +
∑

j∈[k−2]

|AF ′
j | + |B

F ′
| >

k + 1
k

n − α1/4n > n,

a contradiction. This completes the proof of the claim.

Suppose now that there is some I ∈
(
[k]\{i}
k−2

)
such that Z I 6= ∅. Let j ∈ [k] \ {i}

be such that [k] \ {i, j} = I . Let z ∈ Z I and let n` := dG(z, R`) for all ` ∈ [k].
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Lemma 9.3 implies that, for some i ′, j ′ ∈ [k] with {i ′, j ′} = {i, j}, we have
dG(z, Ri ′) 6 δ′n, dG(z, R j ′) > ξ ′n/2 and, for all ` ∈ I , we have n` = |R`|. Thus

|R`| − ni − n j = |R`| − ni ′ − n j ′ > |R`| − δ′n −
(
|R j | −

ξ ′n
2

)
>

(
ξ ′

2
− δ′

)
n −

∣∣∣∣|A`| − n
k

∣∣∣∣− ∣∣∣∣|A j | −
n
k

∣∣∣∣− |Z |
P3(G),(9.7)
>

(
ξ ′

2
− 2δ′

)
n − 2

√
Dr

(9.2)
>

(
ξ ′

2
− 2δ′ − 2

√
Dα
)

n

>
ξ ′n
3
. (9.25)

Lemma 9.4 implies that diff([k] \ { j}) < −1/α1/3. So, using (9.20) and the fact
that diff(i) > −1/(2α1/3), there exists ` ∈ [k]\{i, j} such that diff(`) < −1/α1/3,
so

|R`| < cn −
m
α1/3n

6 |Ri | −
m

2α1/3n
. (9.26)

Let I ′ := [k] \ {i, j, `} and W := Ri ∪ R j ∪ R` ∪ Z . Then

dG(z,W ) = ni + n j + |R`| + dG(z, Z), (9.27)

RI ′ = W and {z} ∼ RI ′ . Recalling that n` = |R`| for all ` ∈ I , we have that

K3(z,G) > e(G[RI ′])+ |RI ′ |(ni + n j + |R`|)+ |R`|(ni + n j)− m. (9.28)

We have

dG(z,W )
(9.27)
= ni + n j + n` + dG(z, Z)
(9.25)
6 2|R`| −

ξ ′n
3
+ |Z |

P3(G)
6 2|R`| −

ξ ′n
4

(9.7)
6 |Ri | + |R j | + 2D

√
r + 2|Z | −

ξ ′n
4

P3(G),(9.2)
6 |Ri | + |R j | + 2D

√
αn + 2δ′n −

ξ ′n
4

6 |Ri | + |R j | −
ξ ′n
5
.

Let ki := min{dG(z,W ), |Ri |} and k j := max{dG(z,W ) − ki , 0}. The previous
equation implies that

ki + k j = dG(z,W ) and

ki k j =

{
0 if dG(z,W ) 6 |Ri |,

|Ri |(dG(z,W )− |Ri |) otherwise.
(9.29)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.7
Downloaded from https://www.cambridge.org/core. IP address: 182.224.112.242, on 20 Apr 2020 at 10:27:26, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2020.7
https://www.cambridge.org/core


The minimum number of triangles 135

Obtain a new graph G ′ from G as follows. Let Ki ⊆ Ri with |Ki | = ki and
K j ⊆ R j with |K j | = k j be arbitrary. Note that this is possible as ki 6 |Ri | and
if k j > 0, then k j 6 dG(z,W )− |Ri | 6 |R j | − ξ

′n/5. Let V (G ′) := V (G) and

E(G ′) :=
(
E(G) ∪ {zx : x ∈ Ki ∪ K j }

)
\ {zy : y ∈ NG(z,W )}.

That is, we obtain G ′ by changing the W -neighbourhood of z to a new
neighbourhood of the same size by adding as many edges as possible to Ri and
(if necessary) additional edges to R j . Note that NG ′(z, R` ∪ Z) = ∅ and G ′ is an
(n, e)-graph. We have

K3(z,G ′) 6 e(G[RI ′])+ |RI ′ |dG ′(z,W )+ ki k j . (9.30)

Suppose first that dG(z,W ) > |Ri |. Then by (9.29), we have

K3(z,G ′) 6 e(G[RI ′])+ |RI ′ |dG(z,W )+ |Ri |(dG(z,W )− |Ri |)

and so

K3(G ′)− K3(G) = K3(z,G ′)− K3(z,G)
(9.28)
6 |RI ′ |(dG(z,W )− (ni + n j + |R`|))+ |Ri |(dG(z,W )− |Ri |)

−|R`|(ni + n j)+ m
(9.27)
6 |RI ′ ||Z | + |Ri |(ni + n j + |R`| + |Z | − |Ri |)− |R`|(ni + n j)+ m
= |RI ′ ||Z | + (|Ri | − |R`|)(ni + n j − |Ri |)+ |Z ||Ri | + m
(9.25),(9.26)

6 −(|Ri | − |R`|)
(
|Ri | − |R`| +

ξ ′n
3

)
+ |Z |n + m

(9.19),(9.26)
6 −

mξ ′

7α1/3
+

2m
ξ ′
+ m < −

2m
ξ ′

(9.19)
6 −n,

a contradiction.
Therefore we may assume that dG(z,W ) 6 |Ri |. We need the following claim

that n j is large.

CLAIM 9.8. n j >
km

4α1/3n .

Proof of Claim. If diff(I ) > −1/α1/3, then since diff(i) > −1/(2α1/3), we also
have that diff(I ∪ {i}) > −1/α1/3, a contradiction to Lemma 9.4. So diff(I ) <
−1/α1/3. The second part of Lemma 9.3 implies that there is some u ∈ NG(z, Ri).
Since Ri is an independent set in G, we have that

(k − 2)cn − k
(5.5)
6 P3(zu,G) 6 |Z | + n j + |RI |
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and so, using the fact that diff(I ) < −1/α1/3,

n j > (k − 2)cn − k − |Z | − |RI |

(9.19)
> (k − 2)cn − k −

2m
ξ ′n
− (k − 2)

(
cn −

m
α1/3n

)
>

(
k − 2
α1/3

−
3k
ξ ′

)
m
n

>
km

4α1/3n
,

completing the proof of the claim.

Now (9.28)–(9.30) and Claim 9.8 imply that

K3(z,G ′)− K3(z,G)
(9.27)
6 |RI ′ ||Z | + m − |R`|(ni + n j)

(9.7)
6 n|Z | + m −

(n
k
−
√

Dr − |Z |
)
·

km
4α1/3n

6
2m
ξ ′
+ m −

n
2k
·

km
4α1/3n

6 −
m

9α1/3

(9.19)
< 0,

another contradiction. Thus there is no z ∈ Z I , as required.

The final ingredient is the following lemma, which states that every Ri is small;
G induced on the union of the Ri is complete partite; and every z ∈ Z has large
degree into every Ri .

LEMMA 9.9. The following hold in G:

(i) For all i ∈ [k], we have diff(i) < −1/(2α1/3).

(ii) G[R1 ∪ · · · ∪ Rk] is a complete k-partite graph (with partition R1, . . . , Rk).

(iii) For all i ∈ [k] and z ∈ Z, we have dG(z, Ri) > km/(9α1/3n).

Proof. For (i), suppose that there is some i ∈ [k] for which diff(i) >
−1/(2α−1/3). Apply Lemma 9.6 to obtain j ∈ [k] \ {i} such that Ri 6∼ R j .
But Lemma 9.5 implies that diff([k] \ {i, j}) > −1/(2α1/3). Thus
diff([k] \ { j}) > −1/(2α1/3), a contradiction to Lemma 9.4.

We now turn to (ii). Since Ri is an independent set in G for all i ∈ [k], it
suffices to show that Ri ∼ R j for all i j ∈

(
[k]
2

)
. If there is some i j ∈

(
[k]
2

)
for which

this does not hold, then Lemma 9.5 implies that diff([k] \ {i, j}) > −1/(2α1/3).
Then, by averaging (that is, (9.20)), there is some ` ∈ [k] \ {i, j} for which
diff(`) > −1/(2α−1/3), contradicting (i).
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For (iii), let z ∈ Z be arbitrary. Lemma 9.3 implies that there is I ∈
(
[k]

k−2

)
such

that z ∈ Z I (and so z ∼ RI ). Let i j ∈
(
[k]
2

)
be such that I = [k] \ {i, j} and for all

` ∈ [k], write n` := dG(z, R`). We only need to show that ni , n j > (km)/(9α1/3n)
since for all ` ∈ I , we have

n` = |R`|
(9.7)
>

n
k
−
√

Dr − |Z | >
n
2k

(9.6)
>

k Dα2/3n
4

(9.2)
>

k Dr
4α1/3n

>
km

9α1/3n
.

The second part of Lemma 9.3 implies that there exist ui ∈ NG(z, Ri) and u j ∈

NG(z, R j). Then

(k − 2)cn − k
(5.5)
6 P3(zui ,G) 6 |Z | + n j + |RI |

and so

n j

(9.19)
> (k − 2)cn − k −

2m
ξ ′n
−

∑
`∈I

|R`|

(i)
> (k − 2)cn −

2km
ξ ′n
− (k − 2)

(
cn −

m
2α1/3n

)
>

km
9α1/3n

,

where we used the fact that k > 3. An identical proof works for ni .

Proof of Theorem 1.7 in the boundary case. We will show that Z = ∅,
contradicting (9.19). Suppose not, and let z ∈ Z . Then Lemma 9.3 implies
that there is I ∈

(
[k]

k−2

)
for which z ∈ Z I . So z ∼ RI . Write I = [k] \ {i, j}

and suppose without loss of generality that z ∈ Ai . Let n` := dG(z, R`) for
all ` ∈ [k]. Let FZ , j := G[NG(z, Z), NG(z, R j)] and FZ ,I := G[NG(z, Z), RI ].
Then Lemma 9.9(ii) implies that

K3(z,G) > e(G[RI ])+ |RI |(ni + n j)+ ni n j + e(FZ , j)+ e(FZ ,I ).

We have

NG(z, R j)
P5(G)
> ξ ′n − |Z |

P3(G)
> δ′n > dG(z, Ri)

and hence we can choose a set K j ⊆ NG(z, R j) with |K j | = dG(z, Ri). Obtain a
graph G ′ from G as follows. Let V (G ′) := V (G) and E(G ′) := (E(G) ∪ {zx :
x ∈ K j }) \ {zy : y ∈ NG(z, Ri)}. Clearly, G ′ is an (n, e)-graph in which z has no
neighbours in Ri , so

K3(z,G ′) 6 e(G ′[RI ])+ |RI |dG ′(z, R j)+ e(G ′[NG ′(z, Z), RI ])

+ e(G ′[NG ′(z, Z), NG ′(z, R j)])+ |Z |2

6 e(G[RI ])+ |RI |(ni + n j)+ e(FZ ,I )+ e(FZ , j)+ ni |Z | + |Z |2.
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Therefore, using Lemma 9.9(iii), we have

K3(G ′)− K3(G) 6 ni(|Z | − n j)+ |Z |2
(9.19)
6 ni

(
2m
ξ ′n
−

km
9α1/3n

)
+

4m2

(ξ ′)2n2

6 −
ni m

10α1/3n
+

4m2

(ξ ′)2n2
6

(
4
(ξ ′)2

−
k

90α2/3

)
m2

n2

(5.1)
< 0,

a contradiction. Thus Z = ∅, contradicting (9.19) as required.

This completes the proof of Theorem 1.7.

10. Concluding remarks

10.1. Related work. The more general supersaturation problem of
determining gF(n, e), the minimum number of copies of F in an (n, e)-edge
graph, is also an active area of research. The range of e for which gF(n, e) = 0 is
well understood. Indeed, given a fixed graph F , let ex(n,F) denote the maximum
number of edges in an F-free n-vertex graph, that is, the maximum e for which
gF(n, e) = 0. Erdős and Stone [9] proved that ex(n, F) = tχ(F)−1(n) + o(n2),
where χ(F) is the chromatic number of F . The supersaturation phenomenon
observed by Erdős and Simonovits [5] asserts that every (n, e)-graph G with
e > ex(n, F) + Ω(n2) contains not just one copy of F , but in fact a positive
proportion of all |V (F)|-sized vertex subsets in V (G) span a copy of F . (This
also extends to hypergraphs.)

We say that F is critical when there is an edge in F whose removal reduces
the chromatic number. Observe that cliques are critical. Simonovits [40] showed
that, for such F and large n, we have ex(n, F) = tχ(F)−1(n) and Tχ(F)−1(n) is
the unique extremal graph. That is, gF(n, e) = 0 if and only if e 6 tχ(F)−1(n).
Mubayi [29] showed that there is c > 0 such that, for large n, and 1 6 ` 6 cn,
we have

gF(n, tχ(F)−1(n)+ `) = (1+ o(1)) ` · copy(n, F),

where copy(n, F) is the minimum number of copies of F obtained by adding a
single edge to Tχ(F)−1(n). (This can generally be computed easily for any fixed
F .) Note that this result generalizes Erdős’s result [7] from triangles (which are
critical) to arbitrary critical F . Further, the error term can be removed in some
cases, for example, when F is an odd cycle. Pikhurko and Yilma [35] generalized
Mubayi’s result by raising the upper bound cn on ` to o(n2).
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The supersaturation problem for noncritical F with χ(F) > 3 seems hard; for
example, even the ‘simplest’ case when F consists of two triangles sharing a
vertex poses considerable difficulties (see [19]).

The case of bipartite F is very different. A famous conjecture of
Sidorenko [39] and Erdős–Simonovits [5] asserts, roughly speaking, that
the minimal number of F-subgraphs is asymptotically attained by a random
graph (we do not give a precise statement of the conjecture here). The conjecture
is known to be true for trees, cycles, complete bipartite graphs, ‘strongly
tree-decomposable graphs’ and others; see, for example, [2, 3, 15, 22, 24, 41].

A yet more general problem is the following. Let F := (F1, . . . , F`) be a tuple
of graphs with v1, . . . , v` vertices respectively. Let Fi(G) denote the number
of induced copies of Fi in a graph G, for all i ∈ [`]. To an n-vertex graph G,
associate a vector fF (G) := (F1(G)/

( n
v1

)
, . . . , F`(G)/

( n
v`

)
) of densities. What

is the set T (F) ⊆ R` consisting of the accumulation points of fF (G)? When
F = (K2, Kr ), it turns out that T (F) has an upper and a lower bounding
curve. The lower bounding curve of T (F) is by definition y = gr (x), which by
Reiher’s clique density theorem [38] is a countable union of algebraic curves.
The upper bounding curve is y = xr/2, which is a consequence of the Kruskal–
Katona theorem [20, 23]. This corresponds to the maximum r -clique density
in a graph with given edge density. The shaded region in Figure 1 is T (F) for
F = (K2, K3).

The case (F1, F2) = (K3, K3) was solved by Huang, Linial, Naves, Peled
and Sudakov [18] (here the lower bounding curve is x + y = 1/4, due to
Goodman [13]). Glebov, Grzesik, Hu, Hubai, Král’ and Volec [11] studied the
problem for every remaining pair (F1, F2) of three-vertex graphs. For larger
graphs, the problem becomes extremely challenging. Some general results
on the hardness of determining T (F) were obtained by Hatami and Norine
in [16, 17].

10.2. The range
(n

2

)
− εn2 < e 6

(n
2

)
. Our main result, Theorem 1.6,

determines g3(n, e) whenever 2e/n2 is bounded away from 1. There are a few
obstacles to extending it to the remaining range e =

(n
2

)
− o(n2). One is that

Theorem 1.2 does not tell us anything meaningful in this range, as the error in its
approximation is too large.

While it is trivial to determine g3(n, e) when e >
(n

2

)
− bn/2c (with each

extremal graph G being the complement of a matching) and this can be extended
a bit further with some work, the problem seems to become very difficult in
this regime quite quickly. In fact, the following observation shows that, under
the assumption that g3 ≡ h∗, pushing

(n
2

)
− e beyond O(n) is as difficult as

determining g3(n, e) for all pairs (n, e).
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LEMMA 10.1. Suppose that for every C > 0, there is n0 > 0 such that g3(n,
e) = h∗(n, e) for all n > n0 and e >

(n
2

)
− Cn. Then g3(n, e) = h∗(n, e) for all

n, e ∈ N with e 6
(n

2

)
.

Proof. Suppose on the contrary that some (n, e)-graph G satisfies K3(G) <
h∗(n, e). Let a∗ = a∗(n, e). Our assumption for C := n/2 returns some n0. Take
` such that n′ := `a∗1 + n is at least n0. Let H be the complete partite graph
with n′ vertices, ` parts of size a∗1 and the last part, call it A, of size n. Let
G ′ (respectively, H ′) be obtained from H by adding a copy of G (respectively,
H ∗(n, e)) into A. Each of these graphs has e′ :=

(n′

2

)
−`
(a∗1

2

)
−
(n

2

)
+e edges, which

are at least
(n′

2

)
−

n
2 n′ because the maximum degree of the graph complement is at

most n. Also, H ′ is isomorphic to H ∗(n′, e′): this follows by induction on ` ∈ N
using the easy claim that if we duplicate a largest part of any H ∗-graph, then we
get another H ∗-graph. However, since A is complete to the rest of H , we have

K3(G ′)− h∗(n′, e′) = K3(G ′)− K3(H ′) = K3(G)− K3(H ∗(n, e)) < 0,

a contradiction to the choice of n0.

An interesting corollary of Proposition 1.5 and Lemma 10.1 is that the validity
of Conjecture 1.4 for r = 3 will not be affected if we drop the assumption n > n0.

10.3. Extensions. It would be very interesting to extend Theorem 1.7 to the
gr (n, e)-problem, as many parts of our proof extend when we minimize the
number of r -cliques. A structure result for r -cliques with r > 4 (an analogue of
Theorem 1.2) was recently proved by Kim, Liu, Pikhurko and Sharifzadeh [21].

A problem that may be more directly amenable to our method is as follows.
Recall that Ni(G) is the number of 3-subsets of V (G) that induce exactly i edges,
0 6 i 6 3. The question is to maximize N2(G) (the number of so-called cherries)
in an (n, e)-graph for n > n0. This problem was considered by Harangi [14], who
obtained some partial results that were enough for his intended application. Note
that for every (n, e)-graph G, we have (see (9.10))

e(n − 2) = 3N3(G)+ 2N2(G)+ N1(G).

Also, N1(H ∗(n, e)) 6 m∗n = o(n3). Since H ∗(n, e) asymptotically minimizes
N3 over (n, e)-graphs, it also asymptotically maximizes N2. Furthermore, a
stronger version of stability (that every almost N2-extremal (n, e)-graph is o(n2)-
close to H ∗(n, e)) can be easily derived from Theorem 1.2.

We hope that the method used here will be useful for further instances where
one has to convert an asymptotic result into an exact one.
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Boundary case (BC) tk (n)− αn2 < e 6 tk (n)− 1 123
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α (IC) e 6 tk (n)− αn2; (BC) e > tk (n)− αn2 37,42,123
α1.3 The minimum constant α(k) returned from Theorem 1.3

applied with r = 3 and 3 6 k 6 1/ε
37,8

β Deviation of A1, . . . , Ak−1 from cn is βn. 37
∆ (IC) Maximum degree of x ∈ R′k into Zk 62
δ (IC) |Z | 6 δn; h 6 δm, ∆(G[Ai ]) 6 δn for all i ∈ [k] 37
δ′ (BC) |Z | 6 δ′n; h 6 δ′m, ∆(G[Ai ]) 6 δ′n for all i ∈ [k] 37,124
ε e 6

(n
2
)
− εn2 37

η The number of missing edges m in G satisfies m 6 ηn2 37,58
γ x ∈ Zk is in Y if and only if it has degree less than γ n into

its corresponding part
37,59

ρ4, . . . , ρ0 Small constants used exclusively in the proof of Lemma 6.1 37,42
ξ (IC) z ∈ Z if and only if it has missing degree at least ξn 37,59
ξ ′ (BC) z ∈ Z if and only if it has missing degree at least ξ ′n 37,128

(n, e)-graph A graph with n vertices and e edges 2
a∗ Length-k vector whose i th entry is the size of the i th part in

H∗(n, e)
2

Gmin(n, e) Subfamily of a family G(n, e) of (n, e)-graphs which
contain the fewest triangles

10

H∗(n, e) Family of (n, e)-graphs generated from H∗(n, e) 5
H0, H1, H2, H Auxiliary families of (n, e)-graphs. H(n, e) =H1(n, e)∪

H2(n, e)
7

diff(I ) |RI | = (cn + diff(I ) · m
n )|I | 130

± x = a ± b if a − b 6 x 6 a + b, where b > 0 10
m = (m1, . . . ,mk−1) Missing vector, mi = e(G[Ai , Ak ]) 34,42,124

m′ (IC) Missing vector of G′ 60,93
m(i) (respectively m(i,`)) (IC) Missing vector of Gi (respectively of G`i ) 66,74,81

A′′1 , . . . , A′′k (IC) Partition of G′ 60,88
A′1, . . . , A′k (IC) Partition of G2 74
A1, . . . , Ak Parts of G 42,58

ai , i ∈ [k − 1] ai =
∑

j∈[k−1]\{i} |A j | 61
c Part ratio 24
D (BC) 169kk+9 124

D(x), D(x, y) (IC) External X -degree of x ∈ X , common external X -
degree of x, y ∈ X

76,116

dm
H (y) (IC) Missing degree of y into corresponding part 34
Di (IC) D(x) = Di for all x ∈ Xi , proved in Lemma 8.16 116
e Number of edges in G 37

e(K`α1,...,α` ) Continuous edge count 24
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f f (x)= (dG (x)−(k−2)cn)(k−2)cn+
(k−2

2
)
c2n2
−K3(x,

G) for x ∈ V (G)
42

G ‘Worst counterexample’ graph with n vertices and e edges
satisfying (C1)–(C3)

37

G′′ (IC) Graph obtained in Lemma 7.1 60
Gi , G`i (IC) Graph obtained from Gi−1 after Transformation i

(applied with `)
66,74,81

gr (n, e) Minimum number of r -cliques in an (n, e)-graph 2
h Number of bad edges,

∑
i∈[k] e(G[Ai ]) 39,124

h(n, e) Minimum number of triangles in graphs in H(n, e) 8
H∗(n, e) A conjectured extremal (n, e)-graph 2
h∗(n, e) K3(H

∗(n, e)) 2
k Minimum ` ∈ N such that e 6 t`(n) 2

K3(K
`
α1,...,α` ) Continuous triangle count 24

K3(x,G) Number of triangles in G containing vertex x 10
K3(x,G; A) Number of triangles in G containing vertex x and at least

one other vertex in A
10

K3(x,G; A, A) Number of triangles in G containing vertex x and both other
vertices in A

10

Kr (H) Number of r -cliques in a graph H 2
m Number of missing edges m =

∑
i∈[k−1] mi 34,42,124

m∗ Number of missing edges in H∗(n, e) 2
n Number of vertices in G 37

n0 Sufficiently large, we require n > n0 37
Ni (BC) 3-vertex graph with i edges 125

P1(G)–P5(G) (IC) Partition properties 34
P3(xy,G) Number of common neighbours of x, y in G 10

P3(xy,G; A) Number of common neighbours of x, y in G which lie in A 10
Q1, . . . , Qk−1 (IC) Qi ⊆ E(G[Ri , Rk ]) carefully chosen 61

qG (x) (BC) 2e
n − dG (x) 125

r (BC) e = tk (n)− r 123
R1, . . . , Rk Ri := Ai \ Z . 59,129
RI , I ⊆ [k]

⋃
i∈I Ri 129

R′k (IC) A large subset of Rk 62

s (BC) e = (1− 1
s )
(n
2
)

125
t (IC) m

(kc−1)n 59

Ts (n), ts (n) n-vertex s-partite Turán graph and the number of edges it
contains

2

Ui ,Wi (IC) See Lemma 7.1 85
X1, . . . , Xk−1 (IC) Xi := Zi

k \ Yi 59

Y1, . . . , Yk−1 (IC) Yi ⊆ Zi
k contains elements with at most γ n neighbours

in Ai

59

Z (IC) set of vertices z with dm
G (z) > ξn. Boundary case:

dm
G (z) > ξ ′n

59,128

Z1, . . . , Zk (IC) Zi := Ai ∩ Z 59

Z I , I ∈
( [k]
k−2

)
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