
Lecture 9. Extremal set theory

Hong Liu

27th April 2021

We now turn to another central area in extremal combinatorics, which studies set systems
(or hypergraphs). We will sample a couple of beautiful results in this area, and see 1) how
results here connect to other areas, e.g. geometry, and 2) how tools from e.g. probability and
linear algebra can be used to prove statements here. The themes of the results we shall see are
nicely captured by the following quote of Tibor.

What do humans do? Well, they think and they love. What do sets do? They intersect and
they contain. –Tibor Szabó.

1 Sperner’s theorem

A partial order set, or poset, (P,≺) is a set P with a binary relation≺ that is reflexive (∀x, x ≺ x),
antisymmetric (x ≺ y, y ≺ x ⇒ x = y) and transitive (x ≺ y, y ≺ z ⇒ x ≺ z). Two elements
x, y are comparable if x ≺ y or y ≺ x. A subset C ⊆ P is a chain if elements in C are
pairwise comparable; and a subset A ⊆ P is called an antichain if elements in A are pairwise
incomparable.

For example, the Boolean poset (2[n],⊆) is the poset on the family of all subsets of [n] with
containment relation. A family of sets F is a chain if non-containment is forbidden, i.e. sets in
F can be ordered as F1, . . . , Fi, . . . such that for any i < j, Fi ⊆ Fj . Here, antichains forbid
containment, i.e. no set is a subset of another.

The classical Sperner’s theorem states that in a Boolean poset, the size of the largest antichain
is the same as that of the middle layer.

Theorem 1.1 (Sperner 1928). If F ⊆ 2[n] is an antichain, then |F| ≤
(

n
bn/2c

)
.

Sperner’s theorem follows immediately from the Lubell–Yamamoto–Meshalkin inequality.

Theorem 1.2 (LYM inequality). For any antichain F ⊆ 2[n],
∑

F∈F
1

( n
|F |)
≤ 1.

We will leave as an exercise to derive LYM inequality from Bollobás set-pairs inequality
which will be introduced shortly.

2 Bollobás set-pairs inequality

Theorem 2.1 (Bollobás 65). Given sets A1, . . . , Am, B1, . . . , Bm, if

• Ai ∩Bi = ∅ for all i ∈ [m]; and

• Ai ∩Bj 6= ∅ for any i 6= j,

then ∑
i∈[m]

1(|Ai|+|Bi|
|Ai|

) ≤ 1.

In particular, if for all i ∈ [m], |Ai| = a, |Bi| = b, then m ≤
(
a+b
a

)
.
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Proof. Let Ω = ∪i∈[m](Ai ∪Bi) be the ground set. Without loss of generality, say Ω = [n].
Take a permutation σ ∈ Sn uniformally at random over all permutations on [n]. For each

i ∈ [m], let Pi denote the event that Ai precedes Bi in σ, that is, maxσ(Ai) < minσ(Bi). Note
that the event Pi depends only on relative positions of σ(Ai) and σ(Bi) in σ(Ai ∪ Bi). Since
there are exactly |Ai|! · |Bi|! many ways to arrange all elements of Ai to come before all of those
in Bi, and σ is a chosen uniformly over Sn, we see that

Pr(Pi) =
|Ai|! · |Bi|!

(|Ai|+ |Bi|)!
.

It suffices then to show that Pi, i ∈ [m], are pairwise disjoint events. Indeed, this would
imply ∑

i∈[m]

1(|Ai|+|Bi|
|Ai|

) =
∑
i∈[m]

|Ai|! · |Bi|!
(|Ai|+ |Bi|)!

=
∑
i∈[m]

Pr(Pi) = Pr
(
∪i∈[m] Pi

)
≤ 1.

Take distinct i, j ∈ [m] and suppose that Pi occurs, i.e. maxσ(Ai) < minσ(Bi). As both
Ai ∩Bj and Aj ∩Bi are non-empty, we get that

minσ(Bj) ≤ maxσ(Ai) < minσ(Bi) ≤ maxσ(Aj).

Thus, Pj does not occur as desired.

Exercise 2.2. Give an example showing that Theorem 2.1 is tight.

2.1 Skewed version

Theorem 2.1 was generalised independently by Lovász, Alon and Kalai to a skewed version as
follows.

Theorem 2.3 (Lovász 70s). Given sets A1, . . . , Am, B1, . . . , Bm, if

• |Ai| ≤ a, |Bi| ≤ b for all i ∈ [m]; and

• Ai ∩Bi = ∅ for all i ∈ [m]; and

• Ai ∩Bj 6= ∅ for any j > i,

then

m ≤
(
a+ b

a

)
.

Remark 2.4. While there is a short combinatorial proof of Bollobás set-pairs inequality, for
the skewed version, Theorem 2.3, only a linear algebraic proof is known. It would be interesting
to have a combinatorial one.

We will see a proof of the skewed version using exterior algebra. Let us first collect the useful
basics. The exterior algebra

∧
V of a vector space V over a field K is defined as the quotient

algebra of the tensor algebra by the two-sided ideal I generated by all elements of the form x⊗x,
x ∈ V . For any x ∈ V , we have x ∧ x = 0. The k-th exterior power of V , denoted by

∧k V , is
the vector subspace of

∧
V spanned by elements of the form

x1 ∧ x2 ∧ . . . ∧ xk, xi ∈ V, i ∈ [k].

In particular, x1 ∧ x2 ∧ . . . ∧ xk = 0 if xi = xj for some distinct i, j ∈ [k].
If the dimension of V is n, then

dim
∧k

V =

(
n

k

)
.
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Proof of Theorem 2.3. We may assume that each Ai has size exactly a. Assume that [n] =
∪i∈[m](Ai ∪Bi) is the ground set. Let V = Ra+b be the (a+ b)-dimension Euclidean space, and
let v1, . . . , vn be vectors in general position in V , i.e. every set of at most a+b of them is linearly
independent.

For each i ∈ [m], let yi =
∧

j∈Ai
vj ∈

∧a V and zi =
∧

k∈Bi
vk. Then as vis are in general

position, we get from Ai ∩Bi = ∅ that

yi ∧ zi 6= 0; (1)

on the other hand, for any j > i, Ai ∩Bj 6= ∅ implies that

yi ∧ zj = 0. (2)

To finish the proof, it suffices to show that y1, . . . , ym are linearly independent in
∧a V , since

then m ≤ dim
∧a V =

(
a+b
a

)
. Suppose α1y1 + . . .+ αmym = 0. Then, by (2), we see that

0 = 0 ∧ zm = (α1y1 + . . .+ αmym) ∧ zm = αmym ∧ zm.

Thus, due to (1), αm = 0. Repeating this shows that all αm−1, . . . , α1 are zero as desired.

3 Applications

Here we give some applications of Sperner’s theorem and set-pairs inequalities.

3.1 Littlewood-Offord problem

A classical result of Littlewood-Offord bounds the atom probability of Rademacher sum. It plays
an important role in random matrix theory. For instance, it is used to bound the singularity
probability of random matrices. Here we present a beautiful proof due to Erdős using Sperner’s
theorem. Recall that a Rademacher random variable takes value in {−1, 1} uniformly.

Theorem 3.1 (Erdős 1945). Let a1, . . . , an ∈ Z \ {0} be non-zero integers, and x1, . . . , xn be
i.i.d. Rademacher random variables. Then

sup
z∈Z

Pr
(∑

i∈[n]

aixi = z
)
≤

(
n
bn/2c

)
2n

.

Proof. There are 2n choices for values of x1, . . . , xn. Fix z ∈ Z and let S ⊆ {−1, 1}n be the set
of choices that results in

∑
i∈[n] aixi = z. It suffices to show that |S| ≤

(
n
bn/2c

)
. By symmetry of

Rademacher random variables, we may assume all a1, . . . , an are positive.
Identify S with a subset of Boolean poset as follows: each vector (y1, . . . , yn) ∈ S corresponds

to a set Y ⊆ [n] where each i ∈ [n] falls in Y if and only if yi = 1. Now, if S contains two
comparable elements, say Y ⊆ Y ′ or (y1, . . . , yn) ≺ (y′1, . . . , y

′
n), then as all ais are positive, we

get that

0 =
∑
i∈[n]

aiy
′
i −

∑
i∈[n]

aiyi = 2
∑

i∈Y ′\Y

ai > 0,

a contradiction.
Thus, S is an antichain in 2[n] and by Sperner’s theorem |S| ≤

(
n
bn/2c

)
as desired.

We remark that the bound here is optimal. Indeed, consider the case when n is even, all
ai = a are equal and z = 0. Then the probability that

∑
i∈[n] axi = 0 is precisely

(
n

n/2

)
/2n as we

have to choose precisely half of the elements to be 1.
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3.2 LYM inequality

The first one is that it implies the LYM inequality and Sperner’s theorem.

Exercise 3.2. Prove the LYM inequality, Theorem 1.2, using Theorem 2.1.

3.3 Saturation number

Given a k-graph (k-uniform hypergraph) H, we say a k-graph G is H-saturated if G is H-free,

but adding any edge to G would create a copy of H, i.e. H ⊆ G∪{e} for any e ∈
(V (G)

k

)
\E(G).

In other words, a graph is H-saturated if it is maximally H-free. The saturation number of H
is defined as follows:

sat(n,H) = min{e(G) : G is an n-vertex H-saturated graph}.

For example, take H = K3 to be the triangle, then clearly the bipartite Turán graph Kn/2,n/2

is K3-saturated, which has quadratic number of edges. By definition, we always have sat(n,H) ≤
ex(n,H). But how small can the saturation number be? Note that the star K1,n−1 is also K3-
saturated and has merely n− 1 edges. Can we have even fewer edges? We shall see below that
the answer is no. While the Turán problem for hypergraphs are wide open, we can resolve the

saturation problem completely. We write K
(k)
t for the complete k-graph on t vertices.

Exercise 3.3 (Bollobás 65). Let n ≥ t ≥ k ≥ 2. Then

sat(n,K
(k)
t ) =

(
n

k

)
−
(
n− t+ k

k

)
.
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