Lecture 8. Spectral proof of regularity lemma

Hong Liu

14th April 2021

1 Chvátal-Rödl-Szemerédi-Trotter theorem

In this section, we present an application of the regularity lemma in graph Ramsey theory. Recall that the Ramsey number $r(G, G)$ for a graph G is the minimum integer N such that any 2-edge-colouring of K_{N} contains a monochromatic copy of G. The Ramsey number for cliques K_{t} is exponential in t. It is intuitive to guess that it is easy to force monochromatic copy of sparser graphs, i.e. the Ramsey number for sparser graphs might be smaller. A classical result of Chvátal-Rödl-Szemerédi-Trotter states that bounded degree graphs have linear Ramsey number.

Theorem 1.1. Let $d \in \mathbb{N}$ and G be a graph with $\Delta(G) \leq d$, then

$$
r(G, G)=O_{d}(|G|) .
$$

We will make use of the multicolour version of the Szemerédi Regularity Lemma. For a k-edge-coloured graph G, a partition $V(G)=V_{1} \cup \ldots \cup V_{r}$ is an ε-regular partition if

- for all $i j \in\binom{[r]}{2},\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$;
- for all but at most $\varepsilon\binom{r}{2}$ choices of $i j \in\binom{[r]}{2}$, the pair $\left(V_{i}, V_{j}\right)$ is ε-regular in every colour.

Lemma 1.2 (Multicolour regularity lemma). For every real $\varepsilon>0$ and integers $k \geq 1$ and m, there exists $M=M(\varepsilon, m, k)$ such that every k-edge-coloured graph G with $n \geq m$ vertices admits an ε-regular partition $V(G)=V_{1} \cup \ldots \cup V_{r}$ with $m \leq r \leq M$.

We can similarly define a reduced graph corresponding to a regular partition, with the only difference that $i j \in E(R)$ if and only if $\left(V_{i}, V_{j}\right)$ is regular with respect to every colour. The reduced graph inherits a (multi)edge-colouring from G : we can assign each edge $i j \in E(R)$, the set of all colours that is dense in $G\left[V_{i}, V_{j}\right]$. For the application here, it suffices to just assign the majority colour, that is, the densest colour between the pair. Thus, if $i j \in E(R)$ is red, then $G\left[V_{i}, V_{j}\right]$ has red-density at least $1 / k-o(1)=\Omega(1)$.

Let us recall Brook's theorem, which will be needed in the proof.
Theorem 1.3 (Brook's theorem). Every graph G can be properly vertex-coloured using $\Delta(G)+1$ colours, i.e. $\chi(G) \leq \Delta(G)+1$.

Proof of Theorem 1.1. Let $m \geq 5 r\left(K_{d+1}, K_{d+1}\right)$ be sufficiently large, $\varepsilon=1 / m$, and

$$
C:=2 M /(1 / 2-\varepsilon)^{d},
$$

where $M=M(\varepsilon, m, 2)$ is the constant returned from Lemma 1.2. Let $N \geq C|G|$ and fix an arbitrary 2-edge-colouring of K_{N}. We shall find a monochromatic copy of G, which then implies $r(G, G) \leq C|G|$ as desired.

Apply multicolour regularity lemma to the given 2 -edge-coloured K_{N} and let R be the corresponding reduced graph with a 2 -edge-colouring indicating the majority colour. Note that as there are at most $\varepsilon\binom{r}{2}$ irregular pairs, R is almost complete:

$$
e(R) \geq(1-\varepsilon)\binom{r}{2}>\left(1-\frac{1}{m / 3-1}\right) \frac{r^{2}}{2} .
$$

Now, by Turán theorem, R contains a clique $K_{m / 3}$. As $m \geq 5 r\left(K_{d+1}, K_{d+1}\right)$, in this 2 -edge-coloured clique $K_{m / 3}$, there is a monochromatic K_{d+1}. By Brook's theorem, K_{d+1} is a homomorphic image of G, as $\Delta(G) \leq d$. Then by the embedding lemma, the original 2-edgecoloured K_{N} contains a monochromatic copy of G.

2 Spectral proof of regularity lemma

Finally, we give a proof of the regularity lemma. The original proof proceeds by refining partition and energy increment strategy. Here, we shall give a proof based on the spectral decomposition of the adjacency matrix given by Tao, and independently by Szegedy. This idea originates from Frieze-Kannon's proof of the weak regularity lemma.

We shall only prove the following weaker version in which we do not require equipartition. One can refine this regular partition further to get a equipartition.

Lemma 2.1. Let G be an n-vertex graph and let $\varepsilon>0$. Then there exists a partition $V=$ $V_{1} \cup \cdots \cup V_{M}, M \leq M(\varepsilon)$, such that apart from an exceptional set $\Lambda \subseteq\binom{[M]}{2}$ with

$$
\sum_{(i, j) \in \Sigma}\left|V_{i}\right|\left|V_{j}\right|=O\left(\varepsilon|V|^{2}\right),
$$

we have for every $(i, j) \notin \Lambda, A \subseteq V_{i}$ and $B \subseteq V_{j}$ that

$$
\left|e(A, B)-d_{i j}\right| A||B||=O\left(\varepsilon\left|V_{i}\right|\left|V_{j}\right|\right) .
$$

Before we dive into the details of the proof, let us sketch briefly how it goes. We write the adjacency matrix T of G as the sum of the rank- 1 matrices from eigenvectors of T with weights being the associated eigenvalues. Then the structure of T is dictated mostly by the part with large eigenvalues (main term); while the part with small eigenvalues is more like noise (error term). Thus, to capture the behaviour of T, we shall get a partition in which each eigenvector with large eigenvalue is approximately constant in each part.

We need Cauchy-Schwarz inequality for the proof, let us recall it here.
Lemma 2.2 (Cauchy-Schwarz inequality). Let $u, v \in \mathbb{C}^{n}$, then

$$
\sum_{i=1}^{n} u_{i} \overline{v_{i}}=\langle u, v\rangle \leq\|u\|_{2}\|v\|_{2}=\sqrt{\sum_{i=1}^{n}\left|u_{i}\right|^{2} \sum_{i=1}^{n}\left|v_{i}\right|^{2}} .
$$

Furthermore, equality holds if and only if u and v are linearly dependent.
Proof of the regularity lemma, Lemma 2.1. Let T be the adjacency matrix of G. As T is a real symmetric matrix, it is self-adjoint and has eigenvalue decomposition $\left\{^{1}\right.$

$$
T=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*},
$$

[^0]where u_{1}, \ldots, u_{n} form an orthonormal basis of \mathbb{C} with real eigenvalues ordered as $\left|\lambda_{1}\right| \geq \ldots \geq$ $\left|\lambda_{n}\right|$.
$\underline{\text { Splitting } T}$. As outlined above, we shall splits $T=T_{1}+T_{2}+T_{3}$ into main term T_{1} and error terms T_{2}, T_{3}. To do so, we need a bound on the eigenvalues. Note that the (i, j)-th entry in T^{k} records the number of v_{i}, v_{j}-walks with length k in G. In particular, each diagonal entry of T^{2} is the degree of the corresponding vertex. Thus, the trace
$$
\operatorname{tr}\left(T^{2}\right)=\sum_{i} d_{i}=2 e(G) \leq n^{2},
$$
and for each $i \in[n]$, we have
\[

$$
\begin{equation*}
i \cdot\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\operatorname{tr}\left(T^{2}\right) \leq n^{2} \Longrightarrow\left|\lambda_{i}\right| \leq \frac{n}{\sqrt{i}} . \tag{1}
\end{equation*}
$$

\]

Let $F=F(\varepsilon): \mathbb{N} \rightarrow \mathbb{N}$ be a function to be chosen later with $F(i) \geq i$. By averaging, for some $J \leq F^{1 / \varepsilon^{3}}(1)^{2}$, we can take out a piece in the middle with small weight ${ }^{3}$:

$$
\begin{equation*}
\sum_{i \in[J, F(J)]}\left|\lambda_{i}\right|^{2} \leq \varepsilon^{3} n^{2} . \tag{2}
\end{equation*}
$$

We can now write $T=T_{1}+T_{2}+T_{3}$, where

- $T_{1}=\sum_{i \leq J} \lambda_{i} u_{i} u_{i}^{*}$ is the "structured" term;
- $T_{2}=\sum_{i \in[J, F(J)]} \lambda_{i} u_{i} u_{i}^{*}$ is the "small" term;
- $T_{3}=\sum_{i>F(J)} \lambda_{i} u_{i} u_{i}^{*}$ is the "pseudorandom" term.

Partition for the structured term T_{1}. We now construct a partition of $V(G)$ such that T_{1} is approximately constant in most parts. For each $i \leq J$, we partition $V(G)$ into $O_{J, \varepsilon}(1)$ parts in which u_{i} only fluctuates by $O\left(\frac{\varepsilon^{3 / 2}}{J} n^{-1 / 2}\right)$ apart from an exceptional part of size at most $\frac{\varepsilon}{J} n$ where $\left|u_{i}\right|$ is excessively large (of value at least $\sqrt{\frac{J}{\varepsilon}} n^{-1 / 2}$). Let $u=u_{i}$ and write $u(j)$ for the j-th coordinate of u. Recall that $\|u\|_{2}^{2}=\sum_{j \in[n]} u(j)^{2}=1$, so the number of coordinates with value at least $\sqrt{\frac{J}{\varepsilon}} n^{-1 / 2}$ is at most $\frac{\varepsilon}{J} n$. Thus, for the rest of the coordinates, we can partition it into at most $\sqrt{\frac{J}{\varepsilon}} n^{-1 / 2} /\left(\frac{\varepsilon^{3 / 2}}{J} n^{-1 / 2}\right)=O_{J, \varepsilon}(1)$ parts as claimed.

Combining all of these J partitions together, we get $V(G)=V_{1} \cup \cdots \cup V_{M-1} \cup V_{M}, M=$ $O_{J, \varepsilon}(1)$, where the exceptional part $\left|V_{M}\right| \leq J \cdot \frac{\varepsilon}{J} n=\varepsilon n$, and for any $1 \leq i \leq M-1$, the eigenvectors u_{1}, \ldots, u_{J} all fluctuate at most $O\left(\frac{\varepsilon}{J} n^{-1 / 2}\right)$. We claim that T_{1} fluctuates at most $O(\varepsilon)$ on each block $V_{i} \times V_{j}$, for $1 \leq i, j \leq M-1$, and consequently, writing $d_{i j}$ for the mean value of entries of T_{1} on $V_{i} \times V_{j}$, we have for any $A \subseteq V_{i}, B \subseteq V_{j}$, that

$$
\begin{equation*}
\mathbb{1}_{A}^{*} T_{1} \mathbb{1}_{B}=d_{i j}|A||B|+O\left(\varepsilon\left|V_{i}\right|\left|V_{j}\right|\right) . \tag{3}
\end{equation*}
$$

Indeed, recall that $\left|\lambda_{i}\right| \leq n / \sqrt{i}$, we see that each $V_{i} \times V_{j}$-entry of $T_{1}=\sum_{i \leq J} \lambda_{i} u_{i} u_{i}^{*}$ fluctuates by at most

$$
\sum_{i \leq J} \lambda_{i} \cdot \sqrt{\frac{J}{\varepsilon}} n^{-1 / 2} \cdot O\left(\frac{\varepsilon^{3 / 2}}{J} n^{-1 / 2}\right)=O\left(\frac{\varepsilon}{\sqrt{J}} n^{-1}\right) \cdot \sum_{i \leq J} \frac{n}{\sqrt{i}}=O(\varepsilon) .
$$

[^1]Bounding error term T_{2}. By the choice of T_{2} and (2), $\operatorname{tr}\left(T_{2}^{2}\right) \leq \varepsilon^{3} n^{2}$. On the other hand, let $x_{a b}$ be (a, b)-th entry of T_{2}, as T_{2} is self-adjoint, we have $\operatorname{tr}\left(T_{2}^{2}\right)=\sum_{a, b \in V(G)}\left|x_{a b}\right|^{2}$. Then by Markov inequality, we get

$$
\begin{equation*}
\sum_{a \in V_{i}, b \in V_{j}}\left|x_{a b}\right|^{2} \leq \varepsilon^{2}\left|V_{i}\right|\left|V_{j}\right| \tag{4}
\end{equation*}
$$

for all $1 \leq i, j \leq M-1$ apart from an exceptional set $\Lambda^{\prime} \subseteq\binom{[M-1]}{2}$ with $\sum_{(i, j) \in \Lambda^{\prime}}\left|V_{i}\right|\left|V_{j}\right| \leq \varepsilon n^{2}$. Hence, for any $(i, j) \notin \Lambda^{\prime}$ and $A \subseteq V_{i}, B \subseteq V_{j}$, by (4) and Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\mathbb{1}_{A}^{*} T_{2} \mathbb{1}_{B} \leq \sum_{a \in V_{i}, b \in V_{j}}\left|x_{a b}\right| \leq\left(\sum_{a \in V_{i}, b \in V_{j}}\left|x_{a b}\right|^{2}\right)^{1 / 2}\left(\left|V_{i}\right|\left|V_{j}\right|\right)^{1 / 2}=O\left(\varepsilon\left|V_{i}\right|\left|V_{j}\right|\right) \tag{5}
\end{equation*}
$$

Bounding error term T_{3}. By the choice of T_{3} and (1), the operator norm of T_{3} is at most $\left\|T_{3}\right\|_{\mathrm{op}} \leq \frac{n}{\sqrt{F(J)}}$. Then by Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\mathbb{1}_{A}^{*} T_{3} \mathbb{1}_{B}=\left\langle\mathbb{1}_{A}, T_{3} \mathbb{1}_{B}\right\rangle \leq\left\|\mathbb{1}_{A}\right\|_{2} \cdot\left\|T_{3} \mathbb{1}_{B}\right\|_{2} \leq\left\|\mathbb{1}_{A}\right\|_{2} \cdot\left\|T_{3}\right\|_{\mathrm{op}} \cdot\left\|\mathbb{1}_{B}\right\|_{2}=O\left(\frac{n^{2}}{\sqrt{F(J)}}\right) \tag{6}
\end{equation*}
$$

Set $\Lambda:=\Lambda^{\prime} \cup\{(i, j): i$ or $j=M\} \cup\left\{(i, j): \min \left\{\left|V_{i}\right|,\left|V_{j}\right|\right\} \leq \varepsilon n / M\right\}$. Then it is easy to check that $\sum_{(i, j) \in \Lambda}\left|V_{i}\right|\left|V_{j}\right| \leq O\left(\varepsilon n^{2}\right)$. By (3), (5), (6), we have

$$
e(A, B)=\mathbb{1}_{A}^{*} T \mathbb{1}_{B}=\sum_{i=1}^{3} \mathbb{1}_{A}^{*} T_{i} \mathbb{1}_{B}=d_{i j}|A||B|+O\left(\varepsilon\left|V_{i}\right|\left|V_{j}\right|\right)+O\left(\frac{n^{2}}{\sqrt{F(J)}}\right)
$$

As $\left|V_{i}\right|,\left|V_{j}\right| \geq \varepsilon n / M$, we have $\frac{n^{2}}{\sqrt{F(J)}} \leq \frac{M^{2}\left|V_{i}\right|\left|V_{j}\right|}{\varepsilon^{2} \sqrt{F(J)}}$. To absorb the 2 nd error term into the first one, we need $\frac{1}{\sqrt{F(J)}}=O\left(\varepsilon^{3} / M^{2}\right)$.

Remark 2.3. The point of having T_{2}-term is to have local control on the fluctuation of $e(A, B)$, i.e. $O\left(\varepsilon\left|V_{i}\right|\left|V_{j}\right|\right)$. For the tail T_{3}, we only have a global type control $O\left(\frac{n^{2}}{\sqrt{F(J)}}\right)$, and we need $\sqrt{F(J)} \geq \frac{M^{2}}{\varepsilon^{3}}$, to make it into a local error. Recall that $M \geq J^{J}$ when we combine the partitions for each $u_{i}, i \leq J$. Thus, we need to create a gap between $F(J)$ and J by splitting out a small term T_{2} in the middle.

[^0]: ${ }^{1}$ We treat all vectors here as column vectors.

[^1]: ${ }^{2}$ We use $F^{k}=F \circ \cdots \circ F$ for k iteration of F.
 ${ }^{3}$ Proof: Consider the partition of $[n]$ into intervals $[1, F(1)) \cup\left[F(1) \cup F^{2}(1)\right) \cup\left[F^{2}(1), F^{3}(1)\right) \cdots$. As $\sum_{i \in[n]}\left|\lambda_{i}\right|^{2} \leq n^{2}$, one of the first $1 / \varepsilon^{3}$ intervals should be at most $\varepsilon^{3} n^{2}$.

