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1 Chvatal-Rodl-Szemerédi-Trotter theorem

In this section, we present an application of the regularity lemma in graph Ramsey theory.
Recall that the Ramsey number r(G, G) for a graph G is the minimum integer N such that any
2-edge-colouring of K contains a monochromatic copy of G. The Ramsey number for cliques
K, is exponential in £. It is intuitive to guess that it is easy to force monochromatic copy of
sparser graphs, i.e. the Ramsey number for sparser graphs might be smaller. A classical result of
Chviétal-Rodl-Szemerédi-Trotter states that bounded degree graphs have linear Ramsey number.

Theorem 1.1. Let d € N and G be a graph with A(G) < d, then
r(G,G) = 0a(|G]).

We will make use of the multicolour version of the Szemerédi Regularity Lemma. For a
k-edge-coloured graph G, a partition V(G) = V3 U... UV, is an e-regular partition if

e for all ij € ([g}),

Vil = Vil | < 1
e for all but at most 6(;) choices of ij € ([g]), the pair (V;,V}) is e-regular in every colour.

Lemma 1.2 (Multicolour regularity lemma). For every real ¢ > 0 and integers k > 1 and m,
there exists M = M (e, m, k) such that every k-edge-coloured graph G with n > m vertices admits
an e-reqular partition V(G) =V, U .. .UV, withm <r < M.

We can similarly define a reduced graph corresponding to a regular partition, with the only
difference that ij € E(R) if and only if (V;,Vj) is regular with respect to every colour. The
reduced graph inherits a (multi)edge-colouring from G: we can assign each edge ij € F(R), the
set of all colours that is dense in G[V;, V;]. For the application here, it suffices to just assign the
magority colour, that is, the densest colour between the pair. Thus, if ij € E(R) is red, then
G[Vi, Vj] has red-density at least 1/k — o(1) = £2(1).

Let us recall Brook’s theorem, which will be needed in the proof.

Theorem 1.3 (Brook’s theorem). Fvery graph G can be properly vertez-coloured using A(G)+1
colours, i.e. x(G) < A(G) + 1.

Proof of Theorem[1.1. Let m > 5r(Kg11, K441) be sufficiently large, ¢ = 1/m, and
C:=2M/(1/2 —¢)?,

where M = M(e,m,2) is the constant returned from Lemma Let N > C|G| and fix an
arbitrary 2-edge-colouring of K. We shall find a monochromatic copy of G, which then implies
r(G,G) < C|G| as desired.



Apply multicolour regularity lemma to the given 2-edge-coloured Ky and let R be the
corresponding reduced graph with a 2-edge-colouring indicating the majority colour. Note that
as there are at most s(g) irregular pairs, R is almost complete:

e(R) > (1—¢) @ > <1 - m/31_1)

Now, by Turén theorem, R contains a clique K, 3. As m > 5r(Kg1, Kqy1), in this 2-
edge-coloured clique K, /3, there is a monochromatic Kgy1. By Brook’s theorem, Kgi1 is a
homomorphic image of G, as A(G) < d. Then by the embedding lemma, the original 2-edge-
coloured K contains a monochromatic copy of G. O

|

2 Spectral proof of regularity lemma

Finally, we give a proof of the regularity lemma. The original proof proceeds by refining partition
and energy increment strategy. Here, we shall give a proof based on the spectral decomposition
of the adjacency matrix given by Tao, and independently by Szegedy. This idea originates from
Frieze-Kannon’s proof of the weak regularity lemma.

We shall only prove the following weaker version in which we do not require equipartition.
One can refine this regular partition further to get a equipartition.

Lemma 2.1. Let G be an n-vertex graph and let € > 0. Then there exists a partition V =
Viu---UVy, M < M(e), such that apart from an exceptional set A C ([1\2/[]) with

Y Willvil = O(elv?),

(1,5)ex
we have for every (i,j) ¢ A, ACV; and B CV; that
|e(A, B) — di| A||B| = O(e| Vil|Vj1).

Before we dive into the details of the proof, let us sketch briefly how it goes. We write the
adjacency matrix T of G as the sum of the rank-1 matrices from eigenvectors of T' with weights
being the associated eigenvalues. Then the structure of 1" is dictated mostly by the part with
large eigenvalues (main term); while the part with small eigenvalues is more like noise (error
term). Thus, to capture the behaviour of 7', we shall get a partition in which each eigenvector
with large eigenvalue is approximately constant in each part.

We need Cauchy-Schwarz inequality for the proof, let us recall it here.

Lemma 2.2 (Cauchy-Schwarz inequality). Let u,v € C", then

n n n
Y uity = (u,0) < Jullzlvlla = | D lal? Y Joif?.
i=1 i=1 i=1

Furthermore, equality holds if and only if u and v are linearly dependent.

Proof of the regularity lemma, Lemma[2.1l Let T be the adjacency matrix of G. As T is a real
symmetric matrix, it is self-adjoint and has eigenvalue decomposition

n
=1

'We treat all vectors here as column vectors.




where uq,...,u, form an orthonormal basis of C with real eigenvalues ordered as |A\;| > ... >

[Anl-

Splitting T'. As outlined above, we shall splits T' = T} + T5 + T3 into main term 77 and error
terms T, T3. To do so, we need a bound on the eigenvalues. Note that the (i, j)-th entry in T*
records the number of v;, vj-walks with length k in G. In particular, each diagonal entry of T
is the degree of the corresponding vertex. Thus, the trace

:Zdi = 2¢(@) < n?

and for each i € [n], we have

]A|2<Z|)\\2 tr(72%) < n? :>|)\\<\—ﬁ (1)

Let F' = F(¢) : N — N be a function to be chosen later with F'(i) > i. By averaging, for some
J < FY €3(1 we can take out a piece in the middle with small Weigh

S <tk (2)

i€[J,F(J)]

We can now write T' = T + T5 + T3, where
o T = Zig] Aiuguy is the “structured” term;
o TH = Zze[JF(J)} Aiwu) is the “small” term;

o T3 = Zi>F(]) Aiugu is the “pseudorandom” term.

Partition for the structured term T;. We now construct a partition of V(G) such that 77 is
approximately constant in most parts. For each ¢ < J, we partition V(G) into O;.(1) parts

in which u; only fluctuates by O(#n‘l/ 2) apart from an exceptional part of size at most wn

where |u;| is excessively large (of value at least gn_l/ ). Let u = u; and write u(j) for the

j-th coordinate of u. Recall that ||ul|3 = > jeln] u(4)? = 1, so the number of coordinates with
value at least \/znfl/ 2 is at most £n. Thus, for the rest of the coordinates, we can partition it

into at most J _1/2/( el/” n~1/2) = 0;.(1) parts as claimed.

Combining all of these J partitions together, we get V(G) = Vi U---UVy_1 UVy, M =
OJ(1), where the exceptional part [Vis| < J-Sn = en, and for any 1 < i < M — 1, the
eigenvectors uq,...,uy all fluctuate at most O(%nil/ 2). We claim that Ty fluctuates at most
O(e) on each block V; x Vj, for 1 < 4,5 < M — 1, and consequently, writing d;; for the mean
value of entries of 17 on V; x V;, we have for any A C V;, B C V}, that

UyTilp = dig|Al|B| + O(e|Vil[Vi]). (3)

Indeed, recall that |\;| < n/V/i, we see that each V; x Vj-entry of T = ZigJ Aiviu! fluctuates

by at most
3/2 e n
A - \/> -1/2 e _1)2 :O< 1>' L
2 7" ) a2

i<J

2We use F* = Fo---o F for k iteration of F.
3Proof: Con51der the partition of [n] into intervals [1, F (1)) U [F(1) U F2(1)) U [F2(1),F3(1)) As
Dicn A | < n?, one of the first 1/¢® intervals should be at most e*n?.



Bounding error term T. By the choice of T5 and , tr(T2) < e3n%. On the other hand, let
Tap be (a,b)-th entry of Ty, as Ty is self-adjoint, we have tr(T%) = 2 abev (G) |zap|?. Then by
Markov inequality, we get

> Jzal? < EWViIV, (4)
a€V;,beV;

for all 1 <i,5 < M — 1 apart from an exceptional set A" C ([Mz_l]) with Z(i,j)eA’ VillV;] < en?.
Hence, for any (i,7) ¢ A" and A CV;, B C Vj}, by and Cauchy-Schwarz inequality, we have

* 1/2 1/2
Ulip< 3 el < (X lewl?) T (VIVD = OIVIV). )
a€Vi,beV; a€V;,beV;

Bounding error term T3. By the choice of T3 and , the operator norm of T3 is at most
|T3|lop < ——=—=. Then by Cauchy-Schwarz inequality, we have

VEW)

2

n
UyTols = (La, Tola) < [Lall - [Tl < [Lalle- [ Tbllop - 28l = O(—s)- (@

Set A:= A U{(i,j): iorj=M}yU{(ij): min{|V;|,|V;|} <en/M}. Then it is easy to
check that 3_; - [VillV;] < O(en?). By (3)), (), (6)), we have

3 2
* * n
(A, B) = 13T1a = 3 13Tikn = dy AlIB| + OEViIV;1) + O( ).
i=1

As |V;|, |V} > en/M, we have ;f(J) < ]\/[22“/;”(‘;;‘. To absorb the 2nd error term into the first
&
1 (302
one, we need o O(e’/M?). O

Remark 2.3. The point of having Th-term is to have local control on the fluctuation of e(A, B),

i.e. O(e|Vi||Vj]). For the tail T3, we only have a global type control O(\/%), and we need

F(J) > J‘g—;, to make it into a local error. Recall that M > J7 when we combine the
partitions for each wu;, i < J. Thus, we need to create a gap between F'(J) and J by splitting
out a small term 75 in the middle.
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