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1 Chvátal-Rödl-Szemerédi-Trotter theorem

In this section, we present an application of the regularity lemma in graph Ramsey theory.
Recall that the Ramsey number r(G,G) for a graph G is the minimum integer N such that any
2-edge-colouring of KN contains a monochromatic copy of G. The Ramsey number for cliques
Kt is exponential in t. It is intuitive to guess that it is easy to force monochromatic copy of
sparser graphs, i.e. the Ramsey number for sparser graphs might be smaller. A classical result of
Chvátal-Rödl-Szemerédi-Trotter states that bounded degree graphs have linear Ramsey number.

Theorem 1.1. Let d ∈ N and G be a graph with ∆(G) ≤ d, then

r(G,G) = Od(|G|).

We will make use of the multicolour version of the Szemerédi Regularity Lemma. For a
k-edge-coloured graph G, a partition V (G) = V1 ∪ . . . ∪ Vr is an ε-regular partition if

• for all ij ∈
(
[r]
2

)
,
∣∣ |Vi| − |Vj | ∣∣ ≤ 1;

• for all but at most ε
(
r
2

)
choices of ij ∈

(
[r]
2

)
, the pair (Vi, Vj) is ε-regular in every colour.

Lemma 1.2 (Multicolour regularity lemma). For every real ε > 0 and integers k ≥ 1 and m,
there exists M = M(ε,m, k) such that every k-edge-coloured graph G with n ≥ m vertices admits
an ε-regular partition V (G) = V1 ∪ . . . ∪ Vr with m ≤ r ≤M .

We can similarly define a reduced graph corresponding to a regular partition, with the only
difference that ij ∈ E(R) if and only if (Vi, Vj) is regular with respect to every colour. The
reduced graph inherits a (multi)edge-colouring from G: we can assign each edge ij ∈ E(R), the
set of all colours that is dense in G[Vi, Vj ]. For the application here, it suffices to just assign the
majority colour, that is, the densest colour between the pair. Thus, if ij ∈ E(R) is red, then
G[Vi, Vj ] has red-density at least 1/k − o(1) = Ω(1).

Let us recall Brook’s theorem, which will be needed in the proof.

Theorem 1.3 (Brook’s theorem). Every graph G can be properly vertex-coloured using ∆(G)+1
colours, i.e. χ(G) ≤ ∆(G) + 1.

Proof of Theorem 1.1. Let m ≥ 5r(Kd+1,Kd+1) be sufficiently large, ε = 1/m, and

C := 2M/(1/2− ε)d,

where M = M(ε,m, 2) is the constant returned from Lemma 1.2. Let N ≥ C|G| and fix an
arbitrary 2-edge-colouring of KN . We shall find a monochromatic copy of G, which then implies
r(G,G) ≤ C|G| as desired.
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Apply multicolour regularity lemma to the given 2-edge-coloured KN and let R be the
corresponding reduced graph with a 2-edge-colouring indicating the majority colour. Note that
as there are at most ε

(
r
2

)
irregular pairs, R is almost complete:

e(R) ≥ (1− ε)
(
r

2

)
>

(
1− 1

m/3− 1

)
r2

2
.

Now, by Turán theorem, R contains a clique Km/3. As m ≥ 5r(Kd+1,Kd+1), in this 2-
edge-coloured clique Km/3, there is a monochromatic Kd+1. By Brook’s theorem, Kd+1 is a
homomorphic image of G, as ∆(G) ≤ d. Then by the embedding lemma, the original 2-edge-
coloured KN contains a monochromatic copy of G.

2 Spectral proof of regularity lemma

Finally, we give a proof of the regularity lemma. The original proof proceeds by refining partition
and energy increment strategy. Here, we shall give a proof based on the spectral decomposition
of the adjacency matrix given by Tao, and independently by Szegedy. This idea originates from
Frieze-Kannon’s proof of the weak regularity lemma.

We shall only prove the following weaker version in which we do not require equipartition.
One can refine this regular partition further to get a equipartition.

Lemma 2.1. Let G be an n-vertex graph and let ε > 0. Then there exists a partition V =
V1 ∪ · · · ∪ VM , M ≤M(ε), such that apart from an exceptional set Λ ⊆

(
[M ]
2

)
with∑

(i,j)∈Σ

|Vi||Vj | = O(ε|V |2),

we have for every (i, j) /∈ Λ, A ⊆ Vi and B ⊆ Vj that∣∣e(A,B)− dij |A||B|
∣∣ = O(ε|Vi||Vj |).

Before we dive into the details of the proof, let us sketch briefly how it goes. We write the
adjacency matrix T of G as the sum of the rank-1 matrices from eigenvectors of T with weights
being the associated eigenvalues. Then the structure of T is dictated mostly by the part with
large eigenvalues (main term); while the part with small eigenvalues is more like noise (error
term). Thus, to capture the behaviour of T , we shall get a partition in which each eigenvector
with large eigenvalue is approximately constant in each part.

We need Cauchy-Schwarz inequality for the proof, let us recall it here.

Lemma 2.2 (Cauchy-Schwarz inequality). Let u, v ∈ Cn, then

n∑
i=1

uivi = 〈u, v〉 ≤ ‖u‖2‖v‖2 =

√√√√ n∑
i=1

|ui|2
n∑
i=1

|vi|2.

Furthermore, equality holds if and only if u and v are linearly dependent.

Proof of the regularity lemma, Lemma 2.1. Let T be the adjacency matrix of G. As T is a real
symmetric matrix, it is self-adjoint and has eigenvalue decomposition:1

T =

n∑
i=1

λiuiu
∗
i ,

1We treat all vectors here as column vectors.
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where u1, . . . , un form an orthonormal basis of C with real eigenvalues ordered as |λ1| ≥ . . . ≥
|λn|.

Splitting T . As outlined above, we shall splits T = T1 + T2 + T3 into main term T1 and error

terms T2, T3. To do so, we need a bound on the eigenvalues. Note that the (i, j)-th entry in T k

records the number of vi, vj-walks with length k in G. In particular, each diagonal entry of T 2

is the degree of the corresponding vertex. Thus, the trace

tr(T 2) =
∑
i

di = 2e(G) ≤ n2,

and for each i ∈ [n], we have

i · |λi|2 ≤
n∑
i=1

|λi|2 = tr(T 2) ≤ n2 =⇒ |λi| ≤
n√
i
. (1)

Let F = F (ε) : N → N be a function to be chosen later with F (i) ≥ i. By averaging, for some
J ≤ F 1/ε3(1)2, we can take out a piece in the middle with small weight3:∑

i∈[J,F (J)]

|λi|2 ≤ ε3n2. (2)

We can now write T = T1 + T2 + T3, where

• T1 =
∑

i≤J λiuiu
∗
i is the “structured” term;

• T2 =
∑

i∈[J,F (J)] λiuiu
∗
i is the “small” term;

• T3 =
∑

i>F (J) λiuiu
∗
i is the “pseudorandom” term.

Partition for the structured term T1. We now construct a partition of V (G) such that T1 is
approximately constant in most parts. For each i ≤ J , we partition V (G) into OJ,ε(1) parts

in which ui only fluctuates by O( ε
3/2

J n−1/2) apart from an exceptional part of size at most ε
Jn

where |ui| is excessively large (of value at least
√

J
εn
−1/2). Let u = ui and write u(j) for the

j-th coordinate of u. Recall that ‖u‖22 =
∑

j∈[n] u(j)2 = 1, so the number of coordinates with

value at least
√

J
εn
−1/2 is at most ε

Jn. Thus, for the rest of the coordinates, we can partition it

into at most
√

J
εn
−1/2/( ε

3/2

J n−1/2) = OJ,ε(1) parts as claimed.

Combining all of these J partitions together, we get V (G) = V1 ∪ · · · ∪ VM−1 ∪ VM , M =
OJ,ε(1), where the exceptional part |VM | ≤ J · εJn = εn, and for any 1 ≤ i ≤ M − 1, the

eigenvectors u1, . . . , uJ all fluctuate at most O( εJn
−1/2). We claim that T1 fluctuates at most

O(ε) on each block Vi × Vj , for 1 ≤ i, j ≤ M − 1, and consequently, writing dij for the mean
value of entries of T1 on Vi × Vj , we have for any A ⊆ Vi, B ⊆ Vj , that

1∗AT11B = dij |A||B|+O(ε|Vi||Vj |). (3)

Indeed, recall that |λi| ≤ n/
√
i, we see that each Vi × Vj-entry of T1 =

∑
i≤J λiuiu

∗
i fluctuates

by at most

∑
i≤J

λi ·
√
J

ε
n−1/2 ·O

(
ε3/2

J
n−1/2

)
= O

(
ε√
J
n−1

)
·
∑
i≤J

n√
i

= O(ε).

2We use F k = F ◦ · · · ◦ F for k iteration of F .
3Proof: Consider the partition of [n] into intervals [1, F (1)) ∪ [F (1) ∪ F 2(1)) ∪ [F 2(1), F 3(1)) · · · . As∑
i∈[n] |λi|2 ≤ n2, one of the first 1/ε3 intervals should be at most ε3n2.
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Bounding error term T2. By the choice of T2 and (2), tr(T 2
2 ) ≤ ε3n2. On the other hand, let

xab be (a, b)-th entry of T2, as T2 is self-adjoint, we have tr(T 2
2 ) =

∑
a,b∈V (G) |xab|2. Then by

Markov inequality, we get ∑
a∈Vi,b∈Vj

|xab|2 ≤ ε2|Vi||Vj |, (4)

for all 1 ≤ i, j ≤M − 1 apart from an exceptional set Λ′ ⊆
(
[M−1]

2

)
with

∑
(i,j)∈Λ′ |Vi||Vj | ≤ εn2.

Hence, for any (i, j) 6∈ Λ′ and A ⊆ Vi, B ⊆ Vj , by (4) and Cauchy-Schwarz inequality, we have

1∗AT21B ≤
∑

a∈Vi,b∈Vj

|xab| ≤
( ∑
a∈Vi,b∈Vj

|xab|2
)1/2(

|Vi||Vj |
)1/2

= O(ε|Vi||Vj |). (5)

Bounding error term T3. By the choice of T3 and (1), the operator norm of T3 is at most
‖T3‖op ≤ n√

F (J)
. Then by Cauchy-Schwarz inequality, we have

1∗AT31B = 〈1A, T31B〉 ≤ ‖1A‖2 · ‖T31B‖2 ≤ ‖1A‖2 · ‖T3‖op · ‖1B‖2 = O
( n2√

F (J)

)
. (6)

Set Λ := Λ′ ∪ {(i, j) : i or j = M} ∪ {(i, j) : min{|Vi|, |Vj |} ≤ εn/M}. Then it is easy to
check that

∑
(i,j)∈Λ |Vi||Vj | ≤ O(εn2). By (3), (5), (6), we have

e(A,B) = 1∗AT1B =
3∑
i=1

1∗ATi1B = dij |A||B|+O(ε|Vi||Vj |) +O
( n2√

F (J)

)
.

As |Vi|, |Vj | ≥ εn/M , we have n2√
F (J)

≤ M2|Vi||Vj |
ε2
√
F (J)

. To absorb the 2nd error term into the first

one, we need 1√
F (J)

= O(ε3/M2).

Remark 2.3. The point of having T2-term is to have local control on the fluctuation of e(A,B),

i.e. O(ε|Vi||Vj |). For the tail T3, we only have a global type control O( n2√
F (J)

), and we need√
F (J) ≥ M2

ε3
, to make it into a local error. Recall that M ≥ JJ when we combine the

partitions for each ui, i ≤ J . Thus, we need to create a gap between F (J) and J by splitting
out a small term T2 in the middle.
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