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In this lecture, we will see some applications of triangle removal lemma.

1 (6, 3)-theorem

In this section, we present Ruzsa-Szemerédi (6, 3)-theorem, which implies Roth’s theorem on 3-
term arithmetic progression (3AP). This can be viewed as a Turán type problem for hypergraphs.

Throughout this section, we will work with 3-uniform hypergraphs H = (V,E), where the
edge set E ⊆

(
V
3

)
consists of triples in V . We say a hypergraph is linear if any two of its edges

share at most one vertex in common. For s, t ∈ N, an (s, t)-configuration (or simply (s, t)) in a
hypergraph is a set of s vertices inducing at least t edges. A hypergraph is (s, t)-free if it does
not contain any (s, t)-configurations.

Theorem 1.1 ((6,3)-theorem). If an n-vertex 3-uniform hypergraph H is (6, 3)-free, then

e(H) = o(n2).

We remark that this upper bound is not very far from optimal: there exists n-vertex 3-

uniform H that is (6, 3)-free and have e(H) > n2 · e−c
√
lnn, which is larger than n2−ε for any

constant ε > 0. We shall give this lower bound construction later.

Proof of (6, 3)-theorem. Suppose to the contrary that there exists c > 0 such that for infinitely
many n, there is a (6, 3)-free 3-uniform n-vertexH with e(H) > cn2. By zooming into a subgraph
with higher average degree (which is still a counterexample), we may in addition assume that
H is maximal in the sense that no subgraph of H has larger average degree than H.

The maximality of H implies that it is linear. Indeed, if there are two edges intersecting at
two points, we have a (4, 2)-configuration, then no other edges intersect at these four points, as
otherwise we get a (6, 3). Thus these two edges form a component themselves. Then deleting
this component results in a subgraph with higher average degree than H, contradicting the
maximality of H. Note that, since H is linear, H is a partial steiner triple system on n vertices,
which is known to have at most (1/6 + o(1))n2 hyperedges.

Let G be the shadow graph of H, obtained by setting V (G) = V (H) and turning every
hyperedge in H into a triangle in G. We say a triangle in G is an H-triangle if it corresponds to
a hyperedge in H. Since H is linear, no two H-triangles in G share an edge. Thus, there are at
least e(H) > cn2 edge-disjoint H-triangles in G. Consequently, G cannot be made triangle-free
by removing at most cn2 edges, and so the triangle removal lemma implies that G contains at
least an3 triangles in G, where a = a(c). For large n, an3 > n2 > e(H), meaning that there are
triangles in G that does not come from a hyperedge in H. Such a triangle in G corresponds to
a (6, 3) in H as H is linear, a contradiction.
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2 Roth’s theorem

In this section, we will see a surprising connection between hypergraph Turán type results and
number theoretic results. In particular, we will show how (6, 3)-theorem implies Roth’s theorem
on 3APs.

Theorem 2.1 (Roth’s theorem). For any δ > 0, there exists n0 such that for n ≥ n0, any subset
S ⊆ [n] with size δn contains a three-term arithmetic progression.

Theorem 2.2. (6, 3)-theorem =⇒ Roth’s theorem.

Proof. Suppose there is a 3AP-free set A ⊆ [n] with |A| ≥ δn. Define a 3-partite 3-uniform
hypergraph H as follows: V (H) = V1 ∪ V2 ∪ V3, where V1 = [n], V2 = [2n] and V3 = [3n]; for the
edge set, for each x ∈ [n] and a ∈ A, add the hyperedge (x, x+ a, x+ 2a). So

e(H) = |A||V1| ≥ δn2.

Thus, Theorem 1.1 implies that there is a (6, 3)-configuration in H. Say the three hyperedges in
this (6, 3)-configuration are (x, x+a, x+2a), (y, y+b, y+2b) and (z, z+c, z+2c). Since two points
completely determine an edge in H, this (6, 3)-configuration has to have two points from each
Vi, 1 ≤ i ≤ 3. Without loss of generality, say x = z 6= y, then x+ a 6= z+ c and x+ 2a 6= z+ 2c,
otherwise two edges coinside. Again without loss of generality, say y+2b = x+2a, then similarly
y + b 6= x + a and so y + b = z + c. Then a simple calculation shows that b + c = 2a. Note
that a, b, c ∈ A and a 6= c since x = z and x + a 6= z + c. Thus {b, a, c} ⊆ A forms a 3AP, a
contradiction.

Dense (6,3)-free H. In the above proof, in fact A is 3AP-free if and only if H is (6,3)-free.
Behrend constructed a 3AP-free subset of [n] of size n ·e−c

√
logn. The corresponding hypergraph

H then is (6,3)-free and has n2 · e−c
√
logn edges.

3 Induced matchings

A matching M in a graph G is an induced matching if between any pair of matching edges, there
is no other edges, i.e. E(G[V (M)]) = E(M).

Theorem 3.1 (Induced matching theorem). If an n-vertex graph G is a union of n induced
matchings, then e(G) = o(n2).

Before we prove it, we give some of its applications: induced matching theorem implies both
(6, 3)-Theorem and Roth’s theorem.

Theorem 3.2. Induced matching theorem =⇒ (6, 3)-Theorem.

Proof. Given a 3-uniform n-vertex H that is (6, 3)-free, we want to show e(H) = o(n2). Again
by passing to a subgraph with highest average degree, we may assume H is linear. Take a
random equipartition V (H) = V1 ∪ V2 ∪ V3, then the number of cross edges ecr is in expectation
2
9e(H). Choose one partition so that ecr ≥ 2

9e(H). Define the shadow graph G on [V2, V3]:
E(G) = {yz : xyz ∈ E(H), x ∈ V1, y ∈ V2, z ∈ V3}, namely G is the union of all link graphs of
vertices in V1. For each v ∈ V1, let Mv be its link graph. Since H is linear, Mv is a matching and
e(G) = | ∪Mv| = ecr ≥ 2

9e(H). Notice that Mv has to be an induced matching, since otherwise
there are two edges u1v1 and u2v2 in Mv such that {u1, v1, u2, v2} induces a third edge from
some Mv′ with v′ 6= v. Then we have 3 edges in H on 6 vertices {v, v′, v1, v2, u1, u2}. Thus G is
a union of |V1| induced matchings, and by Theorem 3.1, e(H) ≤ 9e(G)/2 = o(n2).

Exercise 3.3. Deduce Roth’s theorem from induced matching theorem.
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Proof of Theorem 3.1. Suppose to the contrary that there is an n-vertex graph G that is a
union of n induced matchings and e(G) > cn2. Apply regularity lemma on G with ε = c/10 and
m = 1/ε, let R = R(ε, 2ε) be a reduced graph corresponding to the regular partition obtained.
Do the standard cleaning to get the graph GR ⊆ G with e(GR) ≥ e(G) − 3εn2 ≥ cn2/2
(i.e. deleting edges inside each cluster Vi and edges between sparse or irregular pairs).

By the Pigeonhole Principle, there exists an induced matching M with more than cn/2 edges,
namely |V (M)| ≥ cn. Define Uj = Vj ∩ V (M) for each i ∈ [r] = V (R) and set

U = ∪{Uj : |Uj | ≥ ε|Vj |}.

From ∪Uj to U , we have removed at most εn = cn/10 vertices from V (M), thus |U | > 9
10cn.

Since U ⊆ V (M) and |U | > |M |, U spans an edge in M . We know, after the cleaning, this
edge has to go between some (U1, U2) in some ε-regular pair (V1, V2) with density at least 2ε.
Since |Ui| ≥ ε|Vi|, for i = 1, 2, by regularity d(U1, U2) ≥ ε. This implies e(U1, U2) > ε|U1||U2| >
|U1|, which means there is a non-M -edge in [U1, U2], thus M is not an induced matching, a
contradiction.

We end this section with an old well-known conjecture. The simplest open case is (7, 4).

Conjecture 3.4 (Brown-Erdős-Sós 1973). Let s ∈ N. If an n-vertex 3-uniform H is (s+ 3, s)-
free, then

e(H) = o(n2).

4 Ramsey-Turán problem for K4

In this section, we present an application of the regularity lemma in Ramsey-Turán problem.
Recall that Turán’s theorem states that among all n-vertex Kr+1-free graphs, the Turán graph
Tr(n) has the largest size. Notice that these Turán graphs have rigid structures, in particular,
there are independent sets of size linear in n. It is then natural to ask what happens when there
is no such big holes. Such problems, first introduced by Sós in 1969, are the substance of the
Ramsey-Turán theory.

Given a graph H and natural numbers m,n ∈ N, the Ramsey-Turán number for H is:

RT(n,H,m) := max{e(G) : |G| = n, α(G) ≤ m, and G is H-free}.

The most classical case is when m is sublinear in n, i.e. m = o(n).

Definition 4.1. Given a graph H, let

%(H) := lim
δ→0

lim
n→∞

RT(n,H, δn)(
n
2

) .

Define

RT(n,H, o(n)) = %(H) ·
(
n

2

)
+ o(n2).

A simple averaging argument shows that the limits in the above definition exist.

Exercise 4.2. Prove that RT(n,K3, o(n)) = o(n2).

When there is no restriction on the independence number, recall that ex(n,K4) = n2/3 ±
O(1). In comparison, we have the following.

Theorem 4.3 (Szemerédi 73). RT(n,K4, o(n)) ≤ n2/8 + o(n2).
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Sketch of proof. Let G be an n-vertex K4-free graph with α(G) = o(n). Let R be a weighted
reduced graph of G. It suffices to show that R is triangle-free and no edge in R has density
larger than 1/2. Indeed, K3-free implies that, as a graph, R has at most r2/4 edges; each edge
having weight at most 1/2 + o(1) implies that, as a weighted graph, e(R) ≤ r2/8 + o(r2), and
hence e(G) ≤ n2/8 + o(n2) as desired.

Suppose R has a triangle ijk. Consider the corresponding pairwise dense regular triple
Vi, Vj , Vk in G. We can find two typical adjacent vertices vivj ∈ E(G) with vi ∈ Vi and vj ∈ Vj ,
having linear codegree in Vk: |N(vi) ∩N(vj) ∩ Vk| = Ω(n). As α(G) = o(n), there is an edge in
N(vi) ∩N(vj) ∩ Vk, yielding a copy of K4, a contradiction.

Suppose R has a chubby edge ij, and so d(Vi, Vj) ≥ 1/2 + Ω(1). Then any two typical
vertices in Vi has codegree 2(n/2 + Ω(n)) − n = Ω(n) linear in Vj . This also yields a K4, as
almost all vertices (hence linear many) in Vi are typical, we can find two adjacent ones and pick
an edge in their coneighbourhood in Vj , again reaching a contradiction.

An ingenious geometric construction of Bollobás and Erdős later yields a matching lower
bound:

RT(n,K4, o(n)) =
n2

8
+ o(n2).

In general, we do not have a Erdős-Simonovits-Stone type theorem for the Ramsey-Turán
number RT(n,H, o(n)). The simplest open case is the following.

Open problem 4.4. Is RT(n,K2,2,2, o(n)) = o(n2)?
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