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In the last lecture we have seen how we can reduce a problem on a large graph G to one
on its reduced graph R. In this section, we shall formally define this reduced graph, state and
prove some key lemmas related to regularity lemma, in particular, the embedding lemma, the
counting lemma and the triangle removal lemma.

Roughly speaking, the embedding lemma says that we can embed any (appropriate) bounded
degree graphs (up to linear-size); and the counting lemma says for any fixed (small) graph H, we
can count accurately the number of copies of H in G. We remark that there is a stronger version
of embedding lemma, the blow up lemma, due to Komlós, Sárközy and Szemerédi, which we will
not cover for now. The blow up lemma states that we can embed any (appropriate) spanning
bounded degree graphs.

1 Reduced graph

Here is the formal definition of reduced graphs obtained from applying regularity lemma to a
large graph.

Definition 1.1 (Reduced graph). Given an ε-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vr of G,
and δ > 0, the reduced/cluster graph R = R(ε, δ) of G is defined as follows:

• V (R) = [r];

• ij ∈ E(R) if and only if (Vi, Vj) is ε-regular with density at least δ.

It is often helpful to think of a reduced graph as a weighted graph, assigning weight

dij := d(Vi, Vj)

to the edge ij in R, and define the weighted degree of vertex i ∈ V (R) to be

dR(i) =
∑

j∈NR(i)

dij .

We will specify it when we treat R as a weighted graph.

Exercise 1.2. Normalised minimum degree is inherited by the reduced graph R = R(ε, δ), i.e.1

δ(R) + 1

r
≥ δ(G)

n
− δ − ε

(
=
δ(G)

n
− o(1)

)
.

Exercise 1.3. Bound the edge-density of G by that of R’s, i.e.

e(G)(|G|
2

) ≤ e(R)(|R|
2

) + o(1).

As we shall soon see in the counting lemma, the notion of reduced graph R(ε, δ) captures
essentially the whole (asymptotic) information of G on subgraphs densities.

1For this, we use the degree version of the regularity lemma. That is, we can assume that each part Vi, i ∈ [r],
is in at most εr irregular pairs.
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2 Embedding lemma

Given a graph F , denote by F (s) the blow-up of F obtained from replacing each vertex u ∈ V (F )
by an independent set Iu of size s and make (Iu, Iv) complete bipartite in F (s) if and only if
uv ∈ E(F ). Observe that

the blow-up F (s) contains H as a subgraph ⇐⇒ F contains a homomorphic copy of H.

We now present the embedding lemma, which is a formal statement of property that if a
graph is H-free, then its reduced graph does not contain any homomorphic image of H. One
thing to notice here is that we can embed appropriate bounded degree graphs of order up to
linear size Ω(n) (so think of d,∆ below as constants and |G| = Θ(`), |H| = Θ(s) and s = Ω(`)).
Later we will embed a graph of order linear in the order of the host graph in Chvátal-Rödl-
Szemerédi-Trotter theorem about Ramsey number of bounded degree graphs.

Lemma 2.1 (Embedding lemma). For any d ∈ (0, 1], ∆ ≥ 1, there exists ε0 > 0 such that the
following holds for any ε ≤ ε0. Let G and H be graphs with ∆(H) ≤ ∆, s ∈ N and R = R(ε, d)
be a reduced graph of G. Suppose the corresponding regular partition of G has each of its part
of size ` ≥ 2s/d∆. Then

H ⊆ R(s) ⇒ H ⊆ G.

Sketch of proof. Given d,∆, choose ε0 < d, such that

(d− ε0)∆ − ε0∆ ≥
1

2
d∆ ≥ ε0.

Let ϕ : V (H) → V (R) be a homomorphism (exists as H ⊆ R(s)). Order vertices in H as
u1, . . . , uh. Initially, set Yj = Vj , for j ∈ [r]. Embed vertices u1, . . . , ui−1 one by one, and update
the sets of eligible vertices Yϕ(uj) ⊆ Vϕ(uj) for each uj , j ≥ i and ui−1uj ∈ E(H), to embed by
intersecting it with N(ui−1), maintaining always |Yϕ(uj)| ≥ ε|Vϕ(uj)|. When embedding ui in
Yϕ(ui) ⊆ Vϕ(ui), note that for each j > i with uiuj ∈ E(H), in Vϕ(ui), all but ε|Vϕ(ui)| vertices u,
by Lemma 2.5 from last lecture, satisfy d(u, Yϕ(uj)) ≥ (d− ε)|Yϕ(uj)|. Since

|Vi|(d− ε)∆ − ε∆|Vi| ≥ max{s, ε|Vi|},

we never get stuck.

Exercise 2.2. Make the proof of the upper bound of Erdős-Simonovits-Stone theorem rigorous.

3 Counting lemma

The counting lemma below states that a (weighted) reduced graph preserves subgraph densities.
Notice that the count given below is what we would expect if graphs between pairs (Vi, Vj) are
completely random.

Lemma 3.1 (Counting lemma). Given H, V1, ..., Vh with h = |H| and |Vi| = n, all pairs (Vi, Vj)
are ε-regular and d(Vi, Vj) = dij � ε. Then the number of canonical copies2 of H in V1, ..., Vh
is at least ∏

ij∈E(H)

(dij − Cε)nh,

where C = C(H) is a constant depending only on H.

We skip the proof for the counting lemma, instead leaving the baby case of triangle counting
as exercise.

2By canonical copy, we mean a copy of H with exactly one vertex in each Vi.
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Exercise 3.2. Prove counting lemma for the special case H = K3.

One can also count induced copies of a fixed size graph.

Exercise 3.3. Formulate and prove a counting lemma for induced C4.

4 Ruzsa-Szemerédi triangle removal lemma

In this section, we will present, yet, another important consequence of the regularity lemma, the
triangle removal lemma, due to Ruzsa and Szemerédi, which states that an almost triangle-free
graph (o(n3) triangles) can be made genuinely triangle-free by removing a negligible amount of
edges (o(n2) edges).

Lemma 4.1 (Ruzsa-Szemerédi triangle removal lemma 1976). Given c > 0, there exists a =
a(c) > 0, such that for sufficiently large n the following holds. Let G be an n-vertex graph. If G
has at most an3 triangles, then it can be made triangle-free by removing at most cn2 edges.

The contrapositive says if one cannot make a graph triangle-free by removing few edges (i.e.
there are many edge-disjoint triangles), then the graph contains lots (positive proportion) of
triangles. The removal lemma has many applications, e.g. (6, 3)-theorem and Roth’s theorem
on size of sets without 3-term arithmetic progressions.

4.1 Cleaning the graph G

Before proving the removal lemma, It is convenient to define the subgraph GR of G corresponding
to a reduced graph R = R(ε, δ), obtained by keeping only edges between (regular and dense)
pairs (Vi, Vj) for which ij ∈ E(R). We can obtain the subgraph GR via the following standard
cleaning process, showing that only a negligible amount of edges are deleted:

e(GR) = e(G)− o(n2).

• Remove inner edges, i.e. edges in Vi, i ∈ [r]. By choosing m ≥ 1/ε when applying the
regularity lemma to obtain the regular partition corresponding to R(ε, δ), we can guarantee
the number of parts satisfies r ≥ m ≥ 1/ε. Then the number of inner edges is at most(

n/r

2

)
· r ≤ n2

2r
≤ n2

2m
=

1

2
εn2.

• Remove edges between irregular pairs. As there are at most εr2 irregular pairs, the number
of edges of this kind is at most

εr2 · (n/r)2 = εn2.

• Remove edges between sparse pairs with density at most δ, i.e. (Vi, Vj) with ij 6∈ E(R).
The number of such edges is at most

δ
(n
r

)2(r
2

)
≤ 1

2
δn2.

Thus, in forming GR, we delete in total at most

1

2
(3ε+ δ)n2 = O(ε+ δ)n2

edges, which is negligible as we usually choose ε, δ sufficiently small.
The edges deleted in the cleaning process above is exactly the non-essential information we

discard when forming the reduced graph. Edges in GR all lie in regular and dense pairs and
so we can employ e.g. the counting lemma, which is how we shall prove the triangle removal
lemma.
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4.2 Proof of triangle removal lemma

Suppose the statement is not true. That is, there is some c > 0 such that for any a there exists
a counterexample G, i.e. G has at most an3 triangles, but the removal of any cn2 edges does not
make it triangle-free.

Apply Szemerédi’s regularity lemma with ε � c and m = 1/ε to G to get an ε-regular
partition V (G) = V1 ∪ ... ∪ Vr, where M ≥ r ≥ m and ||Vi| − |Vj || ≤ 1, for 1 ≤ i, j ≤ r. Let
R = R(ε, c/4) be the reduced graph, and GR ⊆ G be the cleaned subgraph, as in Section 4.1.
Then the number of edges deleted is at most cn2/2.

By the choice of G, there are still triangles in GR. Since edges inside Vi and edges between
sparse and irregular pairs have been deleted in forming GR. Each triangle in GR must have its
three vertices lying in three distinct clusters, say X,Y, Z, that are pairwise regular with density
larger than c/4. We can then apply the counting lemma, Lemma 3.1, to the tripartite graph
GR[X,Y, Z] to see that there are at least( c

4
−O(ε)

)3
·
(n
r

)3
≥
( c

8r

)3
n3 ≥

( c

8M

)3
n3

triangles. Note that M = M(ε,m) depends in fact only on c. Then choosing a = a(c) <
(
c

8M

)3
,

we get that G has more than an3 triangles, a contradiction.

Remark 4.2. Let us write a streamlined proof for triangle removal lemma without all the
calculations. Let G be an almost triangle-free graph. Then its reduced graph R must be
triangle-free, as otherwise, by the counting lemma, G would contain too many triangles. Thus,
G can be made triangle-free by removing few edges not corresponding to R.
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