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Szemerédi’s regularity lemma is one of the most important tools in extremal graph theory
dealing with dense graphs (positive edge-density). Here we give a gentle introduction to this
powerful lemma and see some of its applications and other classical results related to it.

Roughly speaking, the regularity lemma states that every large graph admits a partition
into bounded number of parts such that between almost all pairs of parts, the induced bipartite
subgraphs behave pseudorandomly. The essence of the regularity lemma is:

Approximating large structures by small structures with low complexity.

It usually offers conceptually simple proofs for asymptotic results. For instance, the regularity
lemma and its counting lemma together imply that, in terms of subgraph densities, any graph
can be approximated by one of the few (weighted) graphs with bounded order (reduced graphs
on Oε(1) vertices).

1 Informally...

To state the regularity lemma rigorously, we need to set up several notions. Before we do so, let
us informally describe a common way of applying the regularity lemma:

• Step 1. Reduce an extremal problem A on large graphs to a problem B on small weighted
graphs (using the random behaviour of the regular partition, embedding lemma, counting
lemma etc.);

• Step 2. Solve problem B (using e.g. classical results in graph theory).

Let us recall the proof sketch for Erdős-Simonovits-Stone theorem that

ex(n,H) ≤
(

1− 1

χ(H)− 1
+ o(1)

)
n2

2
.

Step 1 above in this case can be done using the following consequence of the regularity lemma
and counting lemma: for any graph G, there is a (weighted reduced) graph R on O(1) vertices
such that

P1 for any fixed H, the subgraph density of H in R is roughly the same as that in G;1

P2 if R contains a homomorphic copy of H, then G contains a copy of H.

By subgraphs densities, we mean the number of (not necessarily induced) copy of H in G,

normalised by
(|G|
|H|

)
, which can be viewed as the probability of a uniform chosen random |H|-set

from V (G) inducing a graph containing H.

1As we shall see in counting lemma, more precisely, here by subgraph density in R, we mean the weighted
subgraph homomorphism density.
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Informal proof of Erdős-Simonovits-Stone theorem. Step 1 . Let r := χ(H) − 1. By P1 with

H = K2, we just need to bound the edge-density of R from above by 1− 1
r .

Step 2 . Note that Kr+1 is a homomorphic image of H. Then by P2, R is Kr+1-free. The
desired bound on edge-density then follows from Turán’s theorem.

Before we dive into the details, let us point out a comprehensive survey of Komlós-Simonovits
on regularity lemma.2

2 Formal setup

The basic notion in regularity lemma is that of an ε-regular pair which measures the pseudor-
andomness/regularity of the induced bipartite subgraph between the pair. The parameter ε is
the precision of the regularity; the smaller ε is, the more random like the pair is.

Definition 2.1 (Regular pair). Given G = (V,E) and disjoint vertex subsets X,Y ⊆ V , let
e(X,Y ) := e(G[X,Y ]) and denote by

d(X,Y ) :=
e(X,Y )

|X||Y |

the density of the pair (X,Y ). For ε > 0, the pair (X,Y ) is ε-regular if for any A ⊆ X,B ⊆ Y
with |A| ≥ ε|X|, |B| ≥ ε|Y |, satisfy

|d(A,B)− d(X,Y )| < ε.

Additionally, if d(X,Y ) ≥ δ, for some δ > 0, we say that (X,Y ) is (ε, δ)-regular.

In other words, a regular pair (X,Y ) has “uniform” edge distribution in the sense that the
density of any pair of large (ε-proportion) subsets (A,B) is roughly the same as that of (X,Y ).

Definition 2.2 (Regular partition). A partition V = V0 ∪ V1 ∪ · · · ∪ Vr is ε-regular, if
(i) |V0| ≤ ε|V |; (called exceptional set)
(ii) |V1| = |V2| = · · · = |Vr|;
(iii) all but εr2 pairs (Vi, Vj) with 1 ≤ i < j ≤ r are ε-regular.

It is worth making a couple of quick remarks.

• We do not assume that Vi, i ∈ [r], is larger than the exceptional set V0. In fact, quite the
contrary, most of the time, we take r ≥ m ≥ 1/ε to make the edges in Vi negligible.

• In the definition of regular partition, we can also have no exceptional set (by distributing
V0 equally to other parts) and instead have ||Vi| − |Vj || ≤ 1 for all 1 ≤ i ≤ j ≤ r.

• There is a degree version in which we can require that for each i ∈ [r], all but εr pairs
involving Vi are ε-regular.

We will use mostly the version of regular partition with no exceptional set V0, unless otherwise
specified.

We can now state the lemma.

Theorem 2.3 (Szemerédi regularity lemma 1976). Given ε > 0 and m ∈ N, there exists
M = M(ε,m), such that any graph G admits an ε-regular partition V = V0 ∪ V1 ∪ · · · ∪ Vr
with m ≤ r ≤M .

2Komlós and Simonovits, Szemerédi’s regularity lemma and its applications to graph theory, Bolyai Math. Soc.,
(1996).

2



Remark 2.4. Let us make some remarks about the parameters in the regularity lemma.

• We usually think of ε in the regularity lemma as a very small constant, i.e. o(1).

• Both the lower and upper bounds m ≤ r ≤M on the number of parts of the partition are
meaningful. If there is no lower bound, then the trivial partition V = V consisting of just
one part is vacuously a regular partition and clearly this partition is of no use for us. The
upper bound on r is also needed as we shall see shortly, the proof of the counting lemma
relies crucially on the fact that the reduced graph R we use to approximate the original
graph G is of bounded order.

• If the graph G does not have positive edge-density, then the regularity lemma does not
say much about G.

• The εr2 exceptional irregular pairs are needed. Consider the following example:

Half graph. G = (A∪B,E), where A = B = [n]. For any a ∈ A and b ∈ B, put ab ∈ E(G)
if and only if a ≥ b. Notice that d(A,B) = 1/2. Let the top half of A be X and bottom
half of B be Y , then d(X,Y ) = 0, while d(A−X,B−Y ) = 1. There are εr irregular pairs
in any partition.

• The upper bound on the size of the partition M coming from the proof of regularity lemma
is rather large, it is a tower of 2s with height 2ε−5. Gowers gave a construction showing
that a tower of 2s with height ε−1/16 is needed.

We end this section with two simple lemmas. The first one states that between a regular
dense pair, almost every vertex has the “correct” degree to any large subset of the other side.

Lemma 2.5. Let (X,Y ) be an ε-regular pair with density d, and B ⊆ Y with |B| ≥ ε|Y |, then
all but 2ε|X| vertices in X have degree (d± ε)|B| in B.

Proof. Let A ⊆ X be the set of vertices with “small” degree in B, i.e.

d(v,B)

|B|
< d− ε.

Suppose that |A| > ε|X|, consider the pair (A,B). By the choice of A, we have

d(A,B) =
e(A,B)

|A||B|
<
|A| · (d− ε)|B|
|A||B|

= d− ε,

contradicting (X,Y ) being ε-regular. Thus, |A| ≤ ε|X|. Similarly, the same bound holds for the
set of vertices of “large” degree, i.e. d(v,B)/|B| > d+ ε in B.

Given a regular pair (X,Y ), one can also show that almost all pairs from one part, say X,
have the “correct” codegree to large subsets of the other side.

Exercise 2.6. Formulate the above codegree statement rigorously and prove it.

The second lemma states that regularity is inherited by large subsets of pairs (with a slightly
worse precision/regularity). This lemma is useful as it implies that we can further refine a regular
partition to get additional properties without losing regularity.

Lemma 2.7 (Slicing lemma). Let V0 ∪ V1 ∪ · · · ∪ Vr be an ε-regular partition. Further refine
each part into s equal parts: Vi = V 1

i ∪ · · · ∪ V s
i . The new partition (with sr + 1 parts) is

O(sε)-regular.3

Exercise 2.8. Prove the slicing lemma.

3Note that O(sε)-regular implicitly requires that in the slicing lemma, s � 1/ε.
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