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As mentioned previously, Kövári-Sós-Turán showed that ex(n,Ks,s) = O(n2−1/s). A match-
ing lower bound is known only for Ks,t-free graphs with t � s (norm graphs). Recently Bukh
used a random algebraic construction to get a new dense Ks,t-free graphs. We will study this
random algebraic construction. In the following subsections, we first explain why the natural
construction using G(n, p) fails; then show the dense Ks,t-free construction of Bukh; and sketch
the proof of a breakthrough of Bukh and Conlon on rational Turán exponents.

For a set of vertices U in a graph G, we will write N∗(U) = ∩v∈UN(v) for the common
neighbourhood.

1 Long smooth tail in binomial random construction

In this subsection, we briefly go through the construction using G(n, p) and see why it fails to
provide a good construction for ex(n,Ks,t).

Let us build a bipartite (n, n)-vertex graph G with each pair being an edge with probability
p independent of others. To have the desired density, we take p = n−1/s, so the expected number
of edges is n2−1/s and by standard concentration bound, e(G) ≥ 1

2n
2−1/s with high probability.

To be Ks,t-free, we need to show Pr(Ks,t ⊆ G) → 0 for some t. To bound this probability,
consider an s-set U in a partite set. As every vertex in the other partite set falls in N∗(U)
with probability p|U | = 1/n, |N∗(U)| is a binomial random variable B(n, 1/n) and distributed
roughly as a Poisson random variable with mean 1. In particular,

Pr(|N∗(U) ≥ t|) ≤ 1/t!. (1)

Then by union bound, Pr(Ks,t ⊆ G) ≤ 2
(
n
s

)
· 1t! , which is close to 0 if t ≥ 10s logn

log logn . The order
of t cannot be improved; it can be shown that with high probability this random graph contains
a Ks,t with t = s

10
logn

log logn .
To conclude, though the random variable |N∗(U)| has mean 1, its distribution has a long

smooth tail (1). It is therefore likely that |N∗(U)| is large as there are many choice of U .

2 Random algebraic construction

We first build a graph using a random polynomial over Fq and then get rid of (few) copies
of Ks,t by deletion method. Roughly speaking, this graph locally enjoys the independence as
that of an Erdős-Renyi random graph and so we can estimate its size and also the probabilities
of appearance of small subgraph, see Lemmas 2.1 and 2.2. On the other hand, as we use a
random polynomial, we can then view N∗(U), the common neighbourhood of an s-set U , as a
variety. Note that in the deletion part, we need to get rid of those Us with large N∗(U). What
is remarkable now is that, when viewed as a variety, by the Lang-Weil bound from algebraic
geometry, the attainable values of |N∗(U)| have a “discontinuity”, that is, |N∗(U)| is either
bounded, or at least q/2. Then, compared to (1), we can get a much better control on the
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probability of U being a bad s-tuple, as now Pr[|N∗(U)| > C] = Pr[|N∗(U)| > q/2]. Here
C = O(1) and q →∞.

Let s ≥ 4, d = s2−s+2, q be a sufficiently large prime power, and n = qs. Let f : Fsq×Fsq →
Fq be a uniform random polynomial on 2s variables with degree at most d. Now, let G be an
(n, n)-vertex bipartite graph with each partite set being a copy of Fsq, and uv ∈ E(G) if and only
if f vanishes on (u, v), i.e. f(u, v) = 0. As f is uniformly chosen, we have the correct density.

Lemma 2.1. Let f be a uniform 2s-variate random polynomial over Fq. Then for any u, v ∈ Fsq,

Pr(f(u, v) = 0) = 1/q.

Proof. Let c ∈ Fq be the constant term in f and set g = f − c. As f is uniformly chosen, c is
uniformly distributed in Fq. Then, conditioning on the value of g(u, v), f(u, v) = 0 if and only
if c = −g(u, v), which happens with probability 1/q.

The above lemma in particular implies that E(e(G)) = n2/q = n2−1/s. Similarly, we can
obtain the following. We omit its proof.

Lemma 2.2. Let f be a uniform 2s-variate random polynomial over Fq. Let U, V ⊆ Fsq be sets
of size s and r respectively with s, r ≤ min(

√
q, d). Then

Pr(f(u, v) = 0 for all u ∈ U , v ∈ V ) = q−sr.

Say an s-set U in a partite set is bad, if |N∗(U)| ≥ t. We want to show that there are few
bad s-sets and a simple deletion suffices to get the desired graph. Let us estimate the moments
of |N∗(U)|. Note that we can write |N∗(U)| =

∑
v∈Fsq 1N∗(U)(v). Then for the d-th moment, we

have by linearity of expectation that

E
[
|N∗(U)|d

]
= E

[( ∑
v∈Fsq

1N∗(U)(v)
)d]

= E
[ ∑
v1,...,vd∈Fsq

1N∗(U)(v1) · · ·1N∗(U)(vd)
]

=
∑

v1,...,vd∈Fsq

E[1N∗(U)(v1) · · ·1N∗(U)(vd)]

Note that, by Lemma 2.2, the summand above is exactly q−sr if {v1, . . . , vd} has r ≤ d distinct
vertices. Let Mr = Od(1) be the number of surjective functions from [d] to [r]. Then we can
bound the d-th moment:

E[|N∗(U)|d] =
∑
r≤d

(
qs

r

)
·Mr · q−sr ≤

∑
r≤d

Mr = Od(1).

Notice crucially that, by construction, we can view N∗(U) as an algebraic variety:

N∗(U) = {v ∈ Fsq : f(u, v) = 0 for all u ∈ U} = ∩u∈U{f(u, ·) = 0}.

Then the Lang-Weil bound says, as a variety, N∗(U) has size either at most C (depending only
on s and d), or at least q/2. This discontinuity, together with Markov’s inequality, implies

Pr[|N∗(U)| ≥ C] = Pr[|N∗(U)| ≥ q/2] = Pr[|N∗(U)|d ≥ (q/2)d] ≤ E[|N∗(U)|d]
(q/2)d

=
Od(1)

qd
. (2)

And so the expected number of bad s-sets is at most

2

(
n

s

)
· O(1)

qd
= O(qs−2).

Here we use d is large compared to s, in particular, d ≥ s2 − s + 2. Then deleting one vertex
from each such bad s-set results in a loss of O(q2s−2) = o(E[e(G)]) negligible number of edges.
Taking t = C + 1, we have thus obtain a Ks,t-free graph on at most 2n vertices with 1

4n
2−1/s

edges as desired.
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3 Rational Turán exponents

A rational number r ∈ (1, 2) is a Turán exponent if there exists a bipartite graph H such that
ex(n,H) = Θ(nr). A long-standing open problem in extremal graph theory reads as follows.

Conjecture 3.1. Every rational number between 1 and 2 is a Turán exponent.

Recently, Bukh and Conlon use the random algebraic construction to show that if we are
allowed to forbid a finite set of graphs, then every rational in (1, 2) can be realised as an exponent.

Theorem 3.2. For every rational r ∈ (1, 2), there exists a finite family H of graphs such that
ex(n,H) = Θ(nr).

The forbidden family H comes from blowups of rooted trees.

Definition 3.3. A rooted tree (T,R) consists of a tree T with an independent set R as roots.
The density ρT of (T,R) is

e(T )

|T | − |R|
.

For a set of unrooted vertices S ⊆ V (T ) \ R, define its density ρS to be e(S)
|S| , where e(S) is the

number of edges in T incident to S. We call the rooted tree (T,R) balanced if ρS ≥ ρT , for every
S ⊆ V (T ) \R.

Given a rooted tree (T,R), the p-th power T p of (T,R) is the family of all possible unions
of p distinct labelled copies of T , all of which agree on the set of roots R.

By definition, if |R| ≥ 2, then every leaf in T is a root and leaves are evenly distributed
in balanced rooted trees. Note also that the power T p contains many different graphs as the
unrooted vertices from different copies of T could overlap in every possible ways.

We first show the upper bound, which follows from an averaging argument. Note that the
upper bound works for all blowups of rooted trees, not just balanced ones.

Lemma 3.4 (Upper bound). Let (T,R) be a rooted tree with at least one root, then ex(n, T p) =
Op(n

2−1/ρT ).

Proof. Let t = |T | andG be an n-vertex graph with cn2−a edges, where a = 1/ρT and c > 2(t+p).
Recall that we can find a subgraph H ⊆ G with δ(H) ≥ d(G)/2 = cn1−a. Say |H| = h ≤ n. By
greedily embedding one vertex at a time, we see that the number of labelled copies of unrooted
tree T is at least

|H| · δ(H) · (δ(H)− 1) · · · (δ(H)− t+ 2) ≥
( c

2

)t−1
hn(t−1)(1−a).

As there are at most h|R| many choices for the roots R, there is a choice of roots R′ in at least

(c/2)t−1hn(t−1)(1−a)

h|R|
≥ (c/2)t−1n(t−1)(1−a)

n|R|−1
=
( c

2

)t−1
≥ p,

where the equality follows from a = 1/ρT = t−|R|
t−1 . These at least p copies of T sitting on R′

form a graph in T p.

To have a matching lower bound, we will have to impose that the rooted tree is balanced.

Exercise 3.5. Give an example of an unbalanced rooted tree (T,R), for which ex(n, T p) =
Ωp(n

2−1/ρT ) is not true.

Lemma 3.6 (Lower bound). For any balanced rooted tree (T,R), there exists p ∈ N such that
ex(n, T p) = Ωp(n

2−1/ρT ).
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Thus, to prove Theorem 3.2, it remains to find a balanced rooted tree (T,R) with 2−1/ρT = r
for each rational r ∈ (1, 2). We can e.g. take r = 2− a/b in the following example (which looks
like a caterpillar).

Example 3.7. Take a, b ∈ N with a− 1 ≤ b < 2a− 1, and let i = b− a. Let Ta,b be the rooted
tree obtained as follows. Take a unrooted path on [a] and then add an additional rooted leaf to
each of the i+ 1 vertices

1, b1 + a/ic, b1 + 2 · a/ic, . . . , b1 + (i− 1) · a/ic, a.

For b ≥ 2a − 1, define Ta,b recursively by attaching a rooted leaf to each unrooted vertex of
Ta,b−a. Note that Ta,b has a unrooted vertices and b edges, so ρT = b/a.

We now sketch a proof for the lower bound Lemma 3.6. It follows closely the construction
in Section 2.

Sketch of proof for Lemma 3.6. Let (T,R) be a rooted tree with a unrooted vertices, r = |R|
rooted vertices, and b edges. Let s = 2br, d = sb and n = qb for large prime power q. Take
2b-variate independent uniform random polynomials f1, . . . , fa : Fbq × Fbq → Fq, each of degree

at most d. Define (n, n)-vertex bipartite G with each partite set being Fbq, where uv ∈ E(G) if
and only if all of fi vanish on (u, v), i.e.

f1(u, v) = . . . = fa(u, v) = 0.

As f1, . . . , fa are independent, similar to Lemma 2.1, we see that the edge density is q−a and so
the expected number of edges in G is n2−a/b. We are left to show that the expected number of
copies of graphs in T p is negligible.

Fix now vertices w1, . . . , wr in G and let U be the collection of copies of T in G rooted
at {w1, . . . , wr}. We need to bound the moments of |U| (instead of moments of |N∗(U)| in
Section 2). One can similarly show that E(|U|s) = Os(1) and use the Lang-Weil bound to show
that either |U| ≤ C (depending only on T ) or |U| ≥ q/2. Thus, as before,

Pr(|U| > C) = Pr(|U| ≥ q/2) =
Os(1)

(q/2)s
.

Consequently, the number of bad {w1, . . . , wr} (i.e. sitting in more than C copies of T as roots)
is at most

2nr · Os(1)

(q/2)s
= o(1),

and we can remove one vertex from each of these bad choices to get the desired dense T p-free
graph with p = C + 1.

The rational Turán exponent conjecture, Conjecture 3.1, remains open. Given a rooted tree
(T,R) and p ∈ N. let T p be its non-degenerate p-blowup, that is, T p is obtained by taking p
copies of T and letting them agree on the roots but disjoint otherwise. Thanks to Lemma 3.6,
the following conjecture of Bukh and Conlon would imply Conjecture 3.1.

Conjecture 3.8. For any balanced rooted tree (T,R), ex(n, T p) = Op(n
2−1/ρT ).

Another related problem was raised recently by Kang, Kim and Liu. They showed that the
following conjecture about 1-subdivision of bipartite graph would imply Conjecture 3.1. For a
graph F , let sub(F ) be the 1-subdivision of F , obtained from F by replacing all edges of F with
pairwise internally disjoint paths of length two.

Conjecture 3.9 (Subdivision conjecture). Let F be a bipartite graph. If ex(n, F ) = O(n1+α)
for some α > 0, then

ex(n, sub(F )) = O(n1+
α
2 ).
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