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1 Even cycles and BFS argument

Besides the complete bipartite graph Ks,t, another class of bipartite graphs that attracts lots
of attention is even cycles C2k. For the upper bound, Bondy and Simonovits proved that
ex(n,C2k) = O(n1+1/k). We shall give a proof of this shortly. The matching lower bound
Ω(n1+1/k) is only known for k = 2, 3, 5 coming from constructions using finite geometry. The
first open case is 8-cycle, where the lower bound is due to Lazebnik, Ustimenko and Woldar.

Open problem 1.1. Improve Ω(n6/5) ≤ ex(n,C8) ≤ O(n5/4).

Another interesting question is to construct dense asymmetric graphs without short even
cycles. Write ex(m,n,H) for the maximum number of edges in an H-free subgraph of Km,n. It
is known that

ex(m,n,C2k) =

{
O(m

1
k (mn)

1
2 +m+ n), even k;

O((mn)
1
2
(1+ 1

k
) +m+ n), odd k.

Erdős initially conjectured that ex(n2/3, n, C6) = O(n), which was disproved by a construction
showing ex(n2/3, n, C6) ≥ Ω(n16/15).

Open problem 1.2. Is ex(n2/3, n, C6) = Ω(n10/9)?

Coming back to the promised upper bound, we give a proof of the bound below, following
an argument of Pikhurko.

Theorem 1.3. For large n, ex(n,C2k) ≤ 4kn1+1/k.

Before giving his proof, let us mention some recent development. Determining the extremal
number for even cycles is another main open problem in this area. People have split opin-
ions: some believe in a matching lower bound Ω(n1+1/k); while some believe that ex(n,C2k) =
o(n1+1/k). The best upper bound, due to He, is O(

√
k log kn1+1/k). As a step forward, it would

be interesting to show the following bound.

Open problem 1.4. Is ex(n,C2k) = o(
√
kn1+1/k)?

We now present some definitions and lemmas needed for the proof of Theorem 1.3. The first
two are basic tools which finds a subgraph which is either bipartite or having high minimum
degree. Recall that d(G) is the average degree of a graph G.

Exercise 1.5. Every graph G contains a bipartite subgraph H with e(H) ≥ e(G)/2.

Exercise 1.6. Every graph G contains a subgraph H with δ(H) ≥ d(G)/2.

Definition 1.7. A Θk-graph is a cycle of length at least 2k with a chord.

Given high minimum degree, it is easy to embed such a graph greedily.
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Exercise 1.8. Let k ≥ 3 and H be a bipartite graph with d(H) ≥ 2k. Then H contains a
Θk-graph.

The following lemma shows that Θk-graphs contain paths of varying lengths.

Lemma 1.9. Let F be a Θk-graph and A ∪ B be a non-trivial partition of V (F ). If F is not
bipartite with bipartition A ∪B. Then there are A,B-paths of all lengths less than |F |.

Sketch of proof. We shall prove the contrapositive. That is, fixing ` < n = |F |, if there is no
A,B-path of length `, then F is bipartite with bipartition A ∪B.

Identify V (F ) with Zn so that i is adjacent to i ± 1 for all i ∈ Z. Think of the partition
A ∪B as a 2-colouring c of Zn. Define the set of periods of c:

P = {m ∈ Zn : ∀i ∈ Zn, c(i) = c(i+m)}.

By assumption, ` ∈ P . Note that as A∪B is a non-trivial partition, the smallest period m ∈ P
divides n and furthermore P = {mi : i ∈ Zn}. We may assume m > 2 for otherwise A ∪ B is a
bipartition of F as desired.

Now, say the chord in F connects vertices 0 and r. If n − r ≡ r ≡ 1 mod m, then n ≡ 2
mod m, contradicting m > 2 and m | n. Say, then, r − 1 6∈ P . Recall that ` ∈ P , so there must
exist some j ∈ Zn such that c(j) 6= c(j + `+ r− 1). We may further assume −m < j ≤ 0. Then
the `-walk

j, j + 1, . . . ,−1, 0, r, r + 1, . . . , j + `+ r − 1

is from A to B. This is a contradiction unless ` + r − 1 ≥ n. The rest cases can be handled
similarly.

The idea of the proof for Theorem 1.3 is to take a Breadth First Search (BFS) tree T . If
there is a Θk-subgraph between any of the first k pairs of two consecutive layers of T , then we
can find a C2k using Lemma 1.9. Then, by Exercise 1.8, lacking Θk-subgraph implies that each
of the first k layers expands by a factor of Ω(d(G)/k), yielding the desired bound.

Proof of Theorem 1.3. Let G be an n-vertex C2k-free graph with e(G) ≥ kn1+1/k. By Exer-
cises 1.5 and 1.6, we can pass to a bipartite subgraph H with δ(H) ≥ d(G)/4 ≥ 2kn1/k.

Take a vertex x in H and, for i ≥ 0, let Vi = N i
H(x) be the set of vertices of distance i from

x and denote by Hi = H[Vi, Vi+1] the induced bipartite subgraph.

Claim 1.10. For all i ∈ [k − 1], Hi has no Θk-subgraph.

Proof of claim. Suppose Hi contains a Θk-subgraph F , which must be bipartite. Let Y ∪Z be a
bipartition of F , and let T ⊆ H be a BFS tree rooted at x. For a vertex v ∈ T , we write DT (v)
its descendents in T .

Let y be a minimal ancestor of Yi = Y ∩Vi, that is, y is the farthest vertex from x such that
Yi ⊆ DT (y). Let z be a child of y such that A = DT (z)∩Yi 6= ∅. By the minimality of y, we see
that Yi \A 6= ∅. Hence, letting B = (Y ∪Z) \A, A ∪B, clearly non-trivial, is not a bipartition
of F .

Now, let ` be the distance between x and y. So ` < i and 2k− 2(i− `) < 2k ≤ |F |. Then by
Lemma 1.9, there is an a, b-path P of length 2k−2(i− `) with a ∈ A ⊆ Yi and b ∈ B. As P is of
even length, we must have b also in Yi. Let Pa and Pb be the y, a-path and y, b-path respectively
in T , each of length i − `. By the choices of y and F ⊆ Hi, P , Pa and Pb are internally vertex
disjoint. Therefore, P, Pa, Pb form a copy of C2k, a contradiction. �

Thus, by Exercise 1.8, d(Hi) ≤ 2k − 1. Consequently, as n � k, for each i ∈ [k − 1], on
average, each vertex in Vi sends forward to Vi+1 at least δ(H) − O(k) edges, while each vertex
in Vi+1 sends back to Vi at most 2k − 1 edges. Therefore, for each 0 ≤ i ≤ k − 1, the ratio

|Vi+1|/|Vi| ≥ δ(H)−O(k)
2k−1 , implying that ( δ(H)−O(k)

2k−1 )k ≤ n, or δ(H) < 2kn1/k, a contradiction.
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2 Supersaturation

By the definition of extremal number, if an n-vertex graph has more than ex(n,H) number
of edges, then there must be a copy of H in G. The supersaturation phenomenon refers to
the situation that when the size of a graph goes beyond the extremal bound, then often time,
not just one, but many copies of forbidden structures are guaranteed to appear. This is called
Erdős-Rademacher problem when H is non-bipartite. Here is an example.

Proposition 2.1 (Rademacher). Every n-vertex graph with n2

4 + 1 edges contains at least bn2 c
triangles.

We would like to take a look at the case when H is bipartite, in particular C4. This is also
related to the Sidorenko’s conjecture. We will come back to this conjecture when we introduce
informatic theoretic methods.

Here, let us see how we can extend the double counting and convexity argument in bounding
ex(n,C4) to get the following supersaturation result for C4 for graphs with at least 2 ex(n,C4)
edges.

Theorem 2.2. Let G be an n-vertex graph with n large and d(G) ≥ 2
√
n. Then there are at

least d(G)4

8 copies of C4 in G.

Proof. Let d = d(G). For vertices u, v, write du,v = |N(u)∩N(v)| for their codegree. As before,
by Jensen’s inequality, the number of cherries K1,2 in G is at least

∑
v∈V (G)

(
d(v)

2

)
≥ n

( 1
n

∑
d(v)

2

)
= n

(
d

2

)
.

Then we see that the average codegree in G is

dco =
1(
n
2

) ∑
u,v∈(V (G)

2 )

du,v =
#K1,2(

n
2

) ≥ d(d− 1)

n− 1
≥ 2.

As every C4 can be obtained by picking two common neighbours of a pair of vertices, applying
again Jensen’s inequality, we have the number of C4 in G is at least∑

u,v∈(V (G)
2 )

(
du,v

2

)
≥
(
n

2

)(
dco
2

)
≥ d4

8
.

3 Regularisation

In this section, we present a useful lemma of Erdős and Simonovits, which allows us to assume
the host graph is almost regular when working on bipartite Turán problem. We say a graph G
is K-almost regular if ∆(G) ≤ K · δ(G).

Lemma 3.1. Let 0 < ε < 1 and c > 0 and n be sufficiently large. Let G be an n-vertex graph

e(G) ≥ cn1+ε. Then G contains an m-vertex K-almost regular subgraph H with m ≥ n
ε−ε2

4+4ε and

e(H) ≥ 2c
5 m

1+ε, where K = 20 · 2
1
ε2

+1.

Its proof is not long, but we do not see the need to include all details.
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Sketch of proof. Let p = 2
1

ε2+1 = K
20 and take a 2p-equipartition V1 ∪ . . . ∪ V2p of V (G) with V1

containing the highest degree vertices.
If at most half of the edges are incident to V1, we say G is of type 1. In this case, delete

V1 and then repeatedly delete vertices of degree less than c
10n

ε until no such vertex exists. The
resulting graph H is as desired.

If more than half of the edges are incident to V1, we call G type 2. Then by pigeonhole, we
can find Vi such that G1 = G[V1, Vi] has at least 1

2p proportion of edges incident to V1. Now we
iterate the analysis. If G1 is of type 1, we are done; if not, then find a subgraph in G1 as above
and repeat. I can be shown that this process terminates at a large type 1 subgraph.

4 Cube and graphs with bounded degeneracy

Yet, another major open problem is about graphs with bounded degeneracy. A graph is k-
degenerate if every subgraph of it contains a vertex of degree at most k. The best known upper
bound for k-degenerate graphs is ex(n,H) = O(n2−

1
4k ) due to Alon-Krivelevich-Sudakov.

Conjecture 4.1. Let H be a k-degenerate bipartite graph. Then ex(n,H) = O(n2−1/k).

The special case when one side of H has maximum degree k can be proved by dependent
random choice. Conlon and Lee conjectured that such bound is only tight when H contains
Kk,k.

Conjecture 4.2. Let H be a Kk,k-free bipartite graph with maximum degree k on one side, then
ex(n,H) = O(n2−1/k−Ω(1)).

They solved the k = 2 case via studying 1-subdivision of complete graphs. For general k, the
best bound is o(n2−1/k) due to Sudakov-Tomon. We sugguest hypercubes as a test case. Write
Qk for the k-dimensional hypercube. Note that Qk is k-regular and K3,3-free.

Open problem 4.3. Is it true that ex(n,Qk) ≤ O(n2−1/k−Ω(1)).

In particular, the above is true for 3-dimensional cube. We shall in fact prove a bound for Q+
3 ,

the graph obtained from adding the long diagonal to cube. Note that to embed Q+
3 , it suffices

to find an edge xy and then embed a C6 between their neighbourhoods Gx,y = G[N(x), N(y)].
The idea is to use supersaturation for C4 to find a ‘heavy’ edge which sits in many copies of C4.
This implies that Gx,y has many edges and must then contain a C6.

Theorem 4.4. ex(n,Q+
3 ) = O(n8/5).

Proof. By Lemma 3.1, we may assume that our graph is almost regular. So take 0 < 1/C �
1/K � 1 and let G be an n-vertex K-almost regular graph with average degree d = Cn3/5. By
Theorem 2.2, there are at least d4/8 many C4. Thus, there is an edge xy sitting in

d4/8

e(G)
=
d4/8

dn/2
=
d3

4n
=
C3

4
n4/5 > ex(2Kd,C6)

many C4. Note that the number of C4 containing xy is precisely the number of edges in Gx,y =
G[N(x), N(y)]. As |Gx,y| ≤ 2Kd, there is a C6 in Gx,y, which together with x, y, forms a copy
of Q+

3 .

Sadly, we do not know the order of magnitude for ex(n,Q3). The best known lower bound
comes from dense C4-free graphs.

Open problem 4.5. Improve Ω(n3/2) ≤ ex(n,Q3) ≤ O(n8/5).
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