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1 Erdős-Simonovits-Stone theorem

We have seen that Turán theorem determines the extremal number for cliques and describes the
unique extremal structure. The natural next step is what if we forbid general graphs other than
cliques? We shall see in this section a satisfying answer for all non-bipartite graphs.

The seminal result of Erdős and Stone shows that the extremal function of a general graph
is completely determined by another important graph parameter: the chromatic number. Recall
that the chromatic number of a graph H, denoted by χ(H), is the minimum number of colours
needed to colour V (H) so that adjacent vertices do not receive the same colour.

Theorem 1.1 (Erdős-Simonovits-Stone 1946). Let H be an arbitrary graph, then1

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)
n2

2
.

Remark 1.2. Erdős-Simonovits-Stone theorem gives the asymptotics of the extremal number
for all non-biparite H; while for bipartite H, it only implies that ex(n,H) = o(n2). In fact, it is
known that extremal number for bipartite graphs is polynomially smaller, i.e. for any bipartite
H, there exists c = cH such that

ex(n,H) = O(n2−c).

The proof of Erdős-Simonovits-Stone theorem proceeds by building a large (χ(H) − 1)-
partite subgraph. Here, we shall present a conceptually simpler ‘modern’ proof using Szemerédi
regularity lemma. Szemerédi regularity lemma is a fundamental tool in extremal graph theory.
We will come back to it systematically later and defer the proof of the embedding lemma below
till then.

The edge density of a graph G is e(G)/
(|G|

2

)
. A homomorphism from H to F is an adjacency

preserving map from V (H) to V (F ), i.e. ϕ : V (H) → V (F ) such that uv ∈ E(H) =⇒
ϕ(u)ϕ(v) ∈ E(F ); and we call F a homomorphic image of H. Note that Kχ(H) is a homomorphic
image of H.

Lemma 1.3 (Embedding lemma). Let H be a graph, then the following holds for all sufficiently
large n. For any n-vertex H-free graph G with edge density τ , there exists a (reduced) graph R,
with e(R) ≥ (τ − o(1))

(|R|
2

)
, containing no homomorphic image of H.

Proof of Theorem 1.1. By the definition of chromatic number, the (χ(H) − 1)-partite Turán
graph is H-free, yielding the lower bound.

For the upper bound, let G be an n-vertex H-free graph and R be the corresponding reduced
graph obtained from Lemma 1.3. Then R is Kχ(H)-free, and by Turán theorem, its edge density,

hence also that of G, is at most 1− 1
χ(H)−1 + o(1) as desired.

1The term o(1) throughout should be understood as a quantity tending to zero as n tends to infinity.
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2 Stability method

One standard technique in attacking an extremal problem is the so-called stability method. We
have seen Erdős-Simonovits stability theorem. Such kind of stability statements are not only
interesting on its own, but also helpful in obtaining exact results in extremal combinatorics.

Often time (but not always), we can tackle an extremal problem with the following three
steps:

• Step 1. Obtain asymptotic result;

• Step 2. Obtain stability;

• Step 3. Use the stability to get exact result.

The stability method is refered to Steps 2 and 3. Sometimes, the stability statement in
Step 2 can be derived by a more careful analysis of the proof for asymptotic result in Step 1,
e.g. Erdős-Simonovits stability can be derived from Motzkin-Straus symmetrisation proof. We
shall illustrate Step 3 via a baby application: determining the extremal number of pentagon C5.

Theorem 2.1. For large n, we have ex(n,C5) = bn2/4c.

Note that, for C5, Step 1 follows from Erdős-Simonovits-Stone Theorem 1.1: ex(n,C5) =
n2/4+o(n2). The stability statement in Step 2 reads as follows. It also has a simple proof using
Szemerédi regularity lemma and Erdős-Simonovits stability. We will cover it when studying the
regularity lemma.

Lemma 2.2. Let ε > 0, there exists δ > 0 such that the following holds for large n. Let G be
an n-vertex C5-free graph. If e(G) ≥ n2/4 − δn2, then G can be made bipartite by deleting at
most εn2 edges.

We now complete Step 3. The idea of stability method is to utilise the asymptotic structure
of the extremal configuration from stability to show that there cannot be imperfection.

Proof of Theorem 2.1. Let G be an n-vertex extremal C5-free graph. For the lower bound, as
T2(n) is also C5-free, extremality of G implies e(G) ≥ e(T2(n)) = bn2/4c.

For the upper bound, we first reduce it to graphs with high minimum degree.

Claim 2.3. There is a subgraph G′ ⊆ G with |G′| ≥ n/2 and δ(G′) ≥ (1/2− ε)|G′|.

Proof of claim. Repeatedly remove low degree vertices from G to get a sequence of graphs
G0 = G,G2, . . ., with V (Gi) = V (Gi−1) \ {vi} and dGi−1(vi) < (1/2 − ε)|Gi−1|, for all i ∈ N.
This process must terminate before dropping down to n/2, for otherwise it can be checked
that we would obtain an n/2-vertex subgraph H ⊆ G with e(H) ≥ (1/4 + Ω(ε2))|H|2. This
contradicts Theorem 1.1, as H ⊆ G is C5-free. �

By the above claim and passing to a subgraph if necessary, we may assume that

δ(G) ≥ (1/2− ε)n.

Let V (G) = X ∪ Y be a max-cut of G.2 By Lemma 2.2, we have

e(G[X]) + e(G[Y ]) ≤ εn2.
2A max-cut of a graph G is a bipartition V (G) = X ∪ Y that maximises the number of cross edges, i.e. edges

between the two partite sets X and Y . An important property of a max-cut, which we shall use shortly, is that
every vertex in one part, say X, has as many neighbours in the other part Y than in its own part X, since
otherwise moving this vertex from X to Y would increase the number of cross edges, contradicting to the fact
that X ∪ Y is a max-cut.
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Consequently, this max-cut is almost balanced, i.e.

|X|, |Y | = n/2± 2
√
εn.

Indeed, otherwise e(G) ≤ |X||Y | + e(G[X]) + e(G[Y ]) < n2/4, a contradiction. We shall show
that there is no edge inside X or Y , and so G is bipartite, which together with the extremality
of G implies that G has to be T2(n), as T2(n) has the maximum size among all bipartite graphs.

To get rid of the imperfections (edges in X and Y ), we first show that the inner degree is
o(n), i.e.

∆(G[X]), ∆(G[Y ]) ≤ 2
√
εn.

Suppose otherwise that there is some v ∈ X with d(v,X) ≥ 2
√
εn.3 As X ∪ Y is a max-cut,

d(v, Y ) ≥ d(v,X) ≥ 2
√
εn. Note that as G is C5-free, the bipartite graph induced between

XH := N(v,X) and YH := N(v, Y ) in G is P4-free, thus having only O(n) edges. Then for
large n, the number of missing edges in G[X,Y ]4 is at least |XH ||YH | − O(n) ≥ 3εn2. So
again e(G) ≤ |X||Y | − 3εn2 + e(G[X]) + e(G[Y ]) < n2/4, a contradiction. With the additional
information that inner degree is sublinear, we are now ready to show that there is not even a
tiny bit of imperfection, i.e. not a single edge is allowed in X or Y .

Suppose uv is an edge in X. Let w be a third vertex in X. Using that ∆(G[X]) ≤ 2
√
εn,

|X|, |Y | = n/2 ± 2
√
εn and δ(G) ≥ (1/2 − ε)n, we see that the common neighbourhood of

u, v, w contains almost the entire set Y : |N(u) ∩N(v) ∩N(w) ∩ Y | ≥ (1− 10
√
ε)|Y |. Then two

such common neighbours in Y together with u, v, w induces a copy of C5, a contradiction. This
completes the proof.

3 C4-free graphs and Sidon sets

We have seen a satisfying asymptotic solution in Erdős-Simonovits-Stone theorem for Turán
problem when the forbidden graph is non-bipartite; and commented that for bipartite forbidden
graph H, the extremal number is polynomially small, that is,

ex(n,H) = O(n2−cH ). (1)

We will now turn to bipartite Turán problem and present some classical and some recent
results. In general, the bipartite Turán problem is much less understood. There are many open
problems. For more comprehensive account of this topic, we refer the readers to a survey of
Füredi and Simonovits5.

The earliest such result was by Erdős, who studied the extremal problem for 4-cycle C4 when
he worked on Sidon sets. Let us first obtain an upper bound via a double-counting argument.

Theorem 3.1. ex(n,C4) ≤ n
4 (1 +

√
4n− 3) = (12 + o(1))n3/2.

Proof. Let G be an n-vertex C4-free graph. We count cherries K1,2 in two different ways. We can
get a cherry by picking a middle vertex v and then two of its neighbours. Then, as f(x) =

(
x
2

)
is convex, using Jensen’s inequality E(f(X)) ≥ f(EX) and writing m = e(G), we see that the
number of cherries is∑

v∈V (G)

(
d(v)

2

)
≥ n

( 1
n

∑
d(v)

2

)
= n

( 1
n2e(G)

2

)
=

2m2

n
−m.

On the other hand, the number of cherries must be at most
(
n
2

)
, for otherwise we get two K1,2s

with different middle vertices and the same end vertices, yielding a copy of C4, a contradiction.
Thus, solving 2m2

n −m ≤
(
n
2

)
gives the desired bound.

3We write N(v,X) := N(v) ∩X for the set of neighbours of v in X, and d(v,X) = |N(v,X)| for the degree of
v in X.

4We write G[X,Y ] for the bipartite graph induced between X and Y in G.
5The history of degenerate (bipartite) extremal graph problems, arXiv:1306.5167.
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Note that C4 = K2,2. By counting stars instead of cherries, we can get the following upper
bound for complete bipartite graph Ks,t. We leave the proof as an exercise.

Theorem 3.2 (Kövari-Sós-Turán). Let s, t ∈ N with s ≤ t. Then ex(n,Ks,t) ≤ tn2−1/s.

In particular, this implies (1) as every bipartite graph H is a subgraph of Ks,t for some
s, t. It is a major open problem to determine the order of magnitude for ex(n,Ks,t). Matching
lower bounds are known only when s = 2, 3 (Erdős-Rényi-Sós, Brown) and when t ≥ (s−1)! + 1
(Norm graph by Alon, Rónyai and Szabó improving previous ones by Kollár, Rónyai and Szabó).
The simplest unknown case is K4,4, where the best lower bound comes from extremal K3,3-free
graphs.

Open problem 3.3. Improve Ω(n5/3) ≤ ex(n,K4,4) ≤ O(n7/4).

Let us see the connection between C4-free graphs and Sidon sets, from which we can see that
ex(n,C4) = Θ(n3/2).

Exercise 3.4. A set S = {a1, . . . , ak} ⊆ N is a Sidon set if all pairwise sums ai + aj , i ≤ j, are
distinct. In other words, there is no non-trivial solution to a+ b = c+ d.6 It is known that the
largest Sidon set in [n] has size (1 + o(1))

√
n.

• Prove the weaker upper bound that every Sidon set in [n] has size at most 2
√
n.

• Use a Sidon set to construct an n-vertex C4-free graph with Ω(n3/2) edges.

We now present a construction of polarity graph that shows that the bound in Theorem 3.1
is asymptotically tight.

Theorem 3.5 (Erdős-Rényi-Sós). ex(n,C4) ≥ (12 − o(1))n3/2.

Proof. For large enough n, it is known that there exists a prime p between (1−o(1))
√
n+ 1 and√

n+ 1. Consider the following graph G:

V (G) = F2
p \ {(0, 0)} and E(G) = {(a, b)(x, y) : ax+ by = 1}.

Delete loops. Take two distinct vertices vi = (ai, bi), i ∈ [2]. For each i ∈ [2], N(vi) consists of
vertices (x, y) satisfying aix + biy = 1, which is a line in F2

p. As v1,v2 are distinct, N(v1) and
N(v2) are distinct lines, and so intersecting at at most one point. That is, v1,v2 have at most
one common neighbour, hence G is C4-free.

Note that every vertex has degree p or p − 1 (at most one loop incident to a vertex), so
e(G)12(p− 1)(p2 − 1) ≥ (12 − o(1))n3/2.

There is a related extremal problem asked by Fischer and Matousek, for which finding new
algebraic constructions of dense C4-free graphs seems like a right way to go.

Open problem 3.6. Let G be an n× n× n-vertex 3-partite graph. If between any two partite
sets, the induced bipartite graph is C4-free, then how many triangles can G have?

An upper bound of n7/4 can be easily obtained via Cauchy-Schwarz. The best lower bound
is n5/3 due to Coulter-Matthews-Timmons.

6By trivial solution, we mean {a, b} = {c, d}.
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