Lecture 13. Geometric constructions, part 1

Hong Liu

3rd July 2021

We will go over some geometric constructions in extremal combinatorics.

1 3-AP-free sets and corner-free sets

We have seen previously that Roth's theorem states that any subset of [n] without 3-term arithmetic progressions (3-AP-free) has size $o(n)$. The classical lower bound construction, due to Behrend, gives a 3-AP-free subset of $[n]$ of size $\frac{n}{2^{(c+o(1))} \sqrt{\log _{2} n}}$, where $c=2 \sqrt{2}$.

Here, we consider a 2 -dimension problem in which we want to avoid a 2 -dimension configuration defined as follows. A corner in $[n]^{2}$ is a triple of points of the form $(x, y),(x+d, y),(x, y+d)$, where $d>0$. Then as you might already guess, we call a subset of the grid $A \subseteq\left[n^{2}\right]$ corner-free if it does not contain any corner.

How large a corner-free subset of $[n]^{2}$ can be? We have similar bounds as in the 3-AP-free case.

1.1 Upper bound via triangle removal lemma

Theorem 1.1. If $A \subseteq[n]^{2}$ is corner-free, then $|A|=o\left(n^{2}\right)$.
Sketch of proof. Construct a tripartite graph G with vertices being horizontal, vertical lines and lines with slope -1 . That is, $V(G)=X \cup Y \cup Z$, where $X=\{y=i, i \in[n]\}, Y=\{x=i, i \in[n]\}$ and $Z=\{x+y=i, i \in[2 n]\}$. Two vertices in G are adjacent if their corresponding line intersect at a point in our corner-free set A. By definition, each point $a \in A$ give rises to a triangle T_{a} in G, and so $e(G)=3|A|$. Note also that $T_{a}, a \in A$, are pairwise edge-disjoint triangles. Suppose that $|A|=\Omega\left(n^{2}\right)$, then G contains $\Omega\left(n^{2}\right)$ many edge-disjoint triangles. Consequently, by triangle removal lemma, G must contain in fact $\Omega\left(n^{3}\right)$ triangles in total. That means there is a triangle in G not corresponding to a point in A. A moment of thought shows that such triangle in G corresponds to a corner in A, a contradiction.

1.2 Dense corner-free sets

Previously best known corner-free sets construction is coming from using dense 3-AP-free sets construction of Behrend. To see this, consider a 3-AP-free set $B \subseteq[n]$, and define $A=\{(x, y)$: $x-y \in B\}$. This yields $|A|=\Theta(|B| n)=\frac{n^{2}}{2^{(c+o(1)) \sqrt{\log _{2} n}}}$, where $c=2 \sqrt{2} \approx 2.828 \ldots$

The constant c above was improved by Linial and Shraibman earlier this year, and further improved by Green. We shall present Green's construction which yields a corner-free set of size $\frac{n^{2}}{2^{(c+o(1))} \sqrt{\log _{2} n}}$, where $c=2 \sqrt{2 \log _{2} \frac{4}{3}} \approx 1.822 \ldots$.

The geometric idea behind this construction is the same as Behrend's: any line can intersects a sphere on at most two points.

We will consider n of the form $n=q^{d}$, with q, d to be determined later. We make use of the 1-to- 1 correspondence between $\left[q^{d}-1\right]$ and the high-dimension grid/cube $\{0,1, \ldots, q-1\}^{d}$ via
base q expansion. That is, consider the map $\pi:\left[q^{d}-1\right] \mapsto\{0,1, \ldots, q-1\}^{d}$, where

$$
\pi(x)=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right), \quad \text { s.t. } x=\sum_{i=0}^{d-1} x_{i} q^{i}, 0 \leq x_{i}<q, \forall i \text {. }
$$

Consider the set $A_{r} \subseteq[n]^{2}$ consisting of all the points (x, y) such that

$$
\begin{align*}
& \tag{1}\\
& \tag{2}\\
& \text { and } \quad \frac{q}{2} \leq x_{i}+y_{i}<\frac{3 q}{2}, \forall i .
\end{align*}
$$

We shall show that A_{r} is corner-free, and the desired bound follows from taking the densest slice A_{r} and optimising the parameters q, d.

Suppose for a contradiction that there is a corner $(x, y),(x+d, y),(x, y+d) \in A_{r}$.
Claim 1.2. $\pi(x+d)+\pi(y)=\pi(x)+\pi(y+d)$.
Proof of claim. Induct on $i=0,1, \ldots$ to show that $(x+d)_{i}+y_{i}=x_{i}+(y+d)_{i}$. Suppose for $j \geq 0$, it holds for all $i<j$. Write $x_{\geq j}=\sum_{i \geq j} x_{i} q^{i}$. Then the induction hypothesis and $(x+d)+y=x+(y+d)$ imply that

$$
(x+d)_{\geq j}+y_{\geq j}=x_{\geq j}+(y+d)_{\geq j},
$$

which in turns implies that

$$
(x+d)_{j}+y_{j}=x_{j}+(y+d)_{j}, \quad \bmod q .
$$

But both sides above lie in $\left[\frac{q}{2}, \frac{3 q}{2}\right]$ due to (2). Thus in fact $(x+d)_{j}+y_{j}=x_{j}+(y+d)_{j}$.
Now let $a=\pi(x)-\pi(y)$ and let $b=\pi(x+d)-\pi(x)=\pi(y+d)-\pi(y)$ due to the above claim. Then as $(x, y),(x+d, y),(x, y+d) \in A_{r}$, by (1), we have
$\|a\|_{2}^{2}=\|\pi(x)-\pi(y)\|_{2}^{2}=r, \quad\|a+b\|_{2}^{2}=\|\pi(x+d)-\pi(y)\|_{2}^{2}=r, \quad\|a-b\|_{2}^{2}=\|\pi(x)-\pi(y+d)\|_{2}^{2}=r$.
We obtain a contradiction as $a-b, a, a+b$ lie on a line and so cannot all be on the sphere of radius \sqrt{r}.

To estimate the size of A_{r}, note that there are $\left(\frac{3}{4} q^{2}+O(q)\right)^{d}$ many points satisfying (2), and there are at most $d \cdot q^{2}$ choices of r. Thus, by Pigeonhole Principle, there exists r such that $\left|A_{r}\right| \geq \frac{1}{d q^{2}}\left(\frac{3}{4} q^{2}+O(q)\right)^{d}$. Setting $q=\left(\frac{2}{\sqrt{3}}\right)^{d}$ and $n=q^{d}$, we get the desired bound.

We leave as an exercise to work out the details of Behrend's construction of 3-AP-free sets. Start with again $n=q^{d}$ and a set B_{r} consisting of all $x \in\left[q^{d}-1\right]$ such that

$$
\begin{array}{ll}
& \|\pi(x)\|_{2}^{2}=r, \\
\text { and } \quad & 0 \leq x_{i}<\frac{q}{2}, \forall i .
\end{array}
$$

We remark that Green's improvement on corner-free set comes from using the 2-dimension strip in (2) rather than just the (1-dimension) half-size interval in Behrend's construction.

2 Erdős-Rothschild's question on book

A book is a set of triangles sharing one common edge, and the size of the book is the number of triangles it contains. Denote by $b(G)$ the size of the largest book in a graph G. It was proved by Edwards, and independently Khadžiivanov and Nikiforov, that any n-vertex graph with at
least $n^{2} / 4+1$ edges contain a book of size at least $n / 6$. On the other hand, if an n-vertex graph has at most $n^{2} / 4$ edges, it could just be a subgraph of $K_{n / 2, n / 2}$ and so has no triangle, not to mention a book. What if we require that every edge of the graph must lie in a triangle? This was a question of Erdős and Rothschild. Is it true that for any $c>0$, there exists $c^{\prime}>0$ such that the following holds: given an n-vertex graph G with $c n^{2}$ edges, if every edge lies in at least one triangle, then $b(G) \geq n^{c^{\prime}}$.

This was disproved by Fox and Loh. They gave a geometric construction of a graph with edge density almost $1 / 2$ and every edge lying in a triangle, but having sub-polynomial book size.
Theorem 2.1 (Fox-Loh 12). There is an n-vertex graph with $\frac{n^{2}}{4}\left(1-e^{-(\log n)^{1 / 6}}\right)$ edges and every edge lying in a triangle, such that $b(G) \leq n^{14 / \log \log n}$.

The idea of their construction is the following. By concentration of measure, a high dimensional cube has a nice property that almost all pair of points are at a typical distance apart. Take three copies of cubes, say A, B, C. Then add edges between A and B when points are at typical distance; so A, B are almost completely joined. Between A (same for B) and C, add edges when points are at about half of the typical distance. Then it is not hard to show that every edge lies in a triangle. The fact that there is no large book follows from the geometric fact that two not-so-close high dimension balls have intersection size exponentially smaller than their volumes. Finally, blow up A and B to boost the edge density to $1 / 2$.

Let us now see the detailed construction.
Step 1. Fix integer $r>2, d=r^{5}$, and $n=r^{d}$. Define

$$
\mu=\frac{r^{2}-1}{6} \cdot d .
$$

Let $A=B=C=[r]^{d}$. Vertices $a \in A$ and $b \in B$ are adjacent if and only if their distance satisfies $\|a-b\|_{2}^{2}=\mu \pm d$. Vertices $a \in A$ (same for $b \in B$) and $c \in C$ are adjacent if and only if their distance satisfies $\|a-c\|_{2}^{2}=\frac{1}{4} \mu \pm 2 d$.

Step 2. Blow up $A \cup B$. More precisely, replace each vertex of $A \cup B$ with 2^{d} copies of itself. Two copies of vertices are adjacent if their original vertices were adjacent.

The following lemma says that most of the pairs of points in the cube $[r]^{d}$ are at a typical distance apart, and so A, B are almost complete to each other. The proof follows from a simple application of concentration inequality; we leave it as an exercise.

Lemma 2.2. Let x, y be two uniformly chosen points in $[r]^{d}$. Then

$$
\operatorname{Pr}\left(\|x-y\|_{2}^{2}=\mu \pm d\right) \geq 1-2 e^{-\frac{d}{2 r^{4}}} .
$$

The following lemma implies that the construction above has the properties as in Theorem 2.1. For its proof, we need to estimate the volume of Euclidean balls: for even d and real $r>0$, the volume of the d-dimensional Euclidean ball with radius r is

$$
\begin{equation*}
\frac{\pi^{d / 2} r^{d}}{(d / 2)!}<(2 \pi e)^{d / 2} \cdot \frac{r^{d}}{d^{d / 2}} \tag{3}
\end{equation*}
$$

Lemma 2.3. Before blowing up $A \cup B$, every edge is contained in between 2^{d-1} and 15^{d} triangles.
Proof. Fix an edge $a b$, we first prove the lower bound that $a b$ is in at least 2^{d-1} triangles. Let $m=\left(m_{1}, \ldots, m_{d}\right)$ be the midpoint of $a=\left(a_{1}, \ldots, a_{d}\right)$ and $b=\left(b_{1}, \ldots, b_{d}\right)$, and let $x_{i}=b_{i}-a_{i}$.

Then $m_{i}-a_{i}=\frac{x_{i}}{2}$. For each i, let $\delta_{i}=\frac{1}{2}$ if x_{i} is odd, and $\delta_{i}=1$ otherwise. Consider points $c=\left(c_{1}, \ldots, c_{d}\right) \in C$ with $c_{i}=m_{i}+\delta_{i} \varepsilon_{i}$, where $\varepsilon_{i} \in\{ \pm 1\}$. Then

$$
\|c-a\|_{2}^{2}=\sum_{i}\left(\frac{x_{i}}{2}+\delta_{i} \varepsilon_{i}\right)^{2}=\frac{\|b-a\|_{2}^{2}}{4}+\sum_{i} \delta_{i}^{2}+\sum_{i} x_{i} \delta_{i} \varepsilon_{i}
$$

and similarly $\|b-c\|_{2}^{2}=\frac{\|b-a\|_{2}^{2}}{4}+\sum_{i} \delta_{i}^{2}-\sum_{i} x_{i} \delta_{i} \varepsilon_{i}$. As $\|b-a\|_{2}^{2}=\mu \pm d$ and $\sum_{i} \delta_{i}^{2} \leq d$, we see that each choice of $\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$ satisfying

$$
\left|\sum_{i} x_{i} \delta_{i} \varepsilon_{i}\right| \leq \frac{3}{4} d
$$

gives rise to a point $c \in C$ forming a triangle with $a b$.
Consider now each ε_{i} being a Rademacher random variable (i.e. with equal probability to be 1 or -1), then the random variable $Z:=\sum_{i} x_{i} \delta_{i} \varepsilon_{i}$ is $2 r$-Lipschitz (as $\left|x_{i}\right| \leq r$) and has mean 0 . An application of Azuma inequality gives

$$
\operatorname{Pr}\left(|Z|>\frac{3}{4} d\right)<2 \exp \left(-\frac{\left(\frac{3}{4} d\right)^{2}}{2(2 r)^{2} d}\right)<2 \exp \left(-\frac{d}{15 r^{2}}\right)
$$

Thus, the number of coneighbours c of a and b is at least $\operatorname{Pr}\left(|Z| \leq \frac{3}{4} d\right) \cdot 2^{d}>2^{d-1}$.
We now move to upper bound. Let again $x_{i}=b_{i}-a_{i}$ and suppose $c=$ forms a triangle with $a b$, thus $\|b-c\|_{2}^{2}=\|a-c\|_{2}^{2}=\frac{1}{4} \mu \pm 2 d$, say $c_{i}=a_{i}+\frac{x_{i}}{2}+\frac{w_{i}}{2}$ for some $w_{i} \in \mathbb{Z}$. Then

$$
\|c-a\|_{2}^{2}=\sum_{i}\left(\frac{x_{i}}{2}+\frac{w_{i}}{2}\right)^{2}=\frac{\|b-a\|_{2}^{2}}{4}+\frac{1}{4} \sum_{i} w_{i}^{2}+\frac{1}{2} \sum_{i} x_{i} w_{i}
$$

and similarly $\|b-c\|_{2}^{2}=\frac{\|b-a\|_{2}^{2}}{4}+\frac{1}{4} \sum_{i} w_{i}^{2}-\frac{1}{2} \sum_{i} x_{i} w_{i}$. So

$$
\frac{\mu}{2} \pm 4 d=\|c-a\|_{2}^{2}+\|b-c\|_{2}^{2}=\frac{\|b-a\|_{2}^{2}}{2}+\frac{1}{2} \sum_{i} w_{i}^{2}=\frac{\mu}{2} \pm \frac{d}{2}+\frac{1}{2} \sum_{i} w_{i}^{2}
$$

and consequently

$$
\sum_{i} w_{i}^{2} \leq 9 d
$$

We are left to bound the number of lattice points in a d-dimensional Euclidean ball of radius $3 \sqrt{d}$, which is at most the volume of a radius $-3.5 \sqrt{d}$ ball. The desired bound then follows from (3).

