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We will go over some geometric constructions in extremal combinatorics.

1 3-AP-free sets and corner-free sets

We have seen previously that Roth’s theorem states that any subset of [n] without 3-term
arithmetic progressions (3-AP-free) has size o(n). The classical lower bound construction, due
to Behrend, gives a 3-AP-free subset of [n] of size m, where ¢ = 2v/2.

Here, we consider a 2-dimension problem in which we want to avoid a 2-dimension configura-
tion defined as follows. A corner in [n]? is a triple of points of the form (x, %), (x+d, y), (z,y+d),
where d > 0. Then as you might already guess, we call a subset of the grid A C [n?] corner-free
if it does not contain any corner.

How large a corner-free subset of [n]? can be? We have similar bounds as in the 3-AP-free
case.

1.1 Upper bound via triangle removal lemma
Theorem 1.1. If A C [n]? is corner-free, then |A| = o(n?).

Sketch of proof. Construct a tripartite graph G with vertices being horizontal, vertical lines and
lines with slope —1. That is, V(G) = XUY UZ, where X ={y =1i,i € [n]}, Y ={x =1i,i € [n]}
and Z = {x+y =1, € [2n]}. Two vertices in G are adjacent if their corresponding line intersect
at a point in our corner-free set A. By definition, each point a € A give rises to a triangle T, in G,
and so e(G) = 3|A|. Note also that Ty, a € A, are pairwise edge-disjoint triangles. Suppose that
|A| = 2(n?), then G contains £2(n?) many edge-disjoint triangles. Consequently, by triangle
removal lemma, GG must contain in fact 2(n?) triangles in total. That means there is a triangle
in G not corresponding to a point in A. A moment of thought shows that such triangle in G
corresponds to a corner in A, a contradiction. O

1.2 Dense corner-free sets

Previously best known corner-free sets construction is coming from using dense 3-AP-free sets
construction of Behrend. To see this, consider a 3-AP-free set B C [n], and define A = {(z,v) :
. N 2
x —y € B}. This yields |A| = O(|B|n) = m, where ¢ = 21/2 ~ 2.828....
The constant ¢ above was improved by Linial and Shraibman earlier this year, and further
improved by Green. We shall present Green’s construction which yields a corner-free set of size

2 4 ~
Mw, where ¢ = 2\/210g2 3~ 1.822....

The geometric idea behind this construction is the same as Behrend’s: any line can intersects
a sphere on at most two points.

We will consider n of the form n = ¢%, with ¢, d to be determined later. We make use of the
1-to-1 correspondence between [¢? — 1] and the high-dimension grid/cube {0,1,...,q — 1}¢ via



base ¢ expansion. That is, consider the map 7 [¢¢ — 1] — {0,1,...,q — 1}%, where

d—1

w(x) = (xo, 21, ..., 2q-1), S.t. x= Zmiqi, 0 <z <q,Vi.
i=0

Consider the set A, C [n]? consisting of all the points (,y) such that

() = (y)3 =1, (1)

3
and % <zi+y < ?",\ﬁ. (2)

We shall show that A, is corner-free, and the desired bound follows from taking the densest slice
A, and optimising the parameters ¢, d.
Suppose for a contradiction that there is a corner (z,y), (z + d,y), (z,y +d) € A,.

Claim 1.2. n(zx +d) + 7 (y) = w(x) + 7(y + d).

Proof of claim. Induct on i = 0,1,... to show that (x + d); + v; = x; + (y + d);. Suppose
for 7 > 0, it holds for all 7 < j. Write z>; = Zz’z j z;q*. Then the induction hypothesis and
(r+d) +y =2+ (y+d) imply that

(@ +d)2j +y>j = 225 + (y + d)>j,
which in turns implies that
(x+d)j+yj=xj+ (y+d);, modygq.
But both sides above lie in [, %] due to ([2). Thus in fact (z +d); +y; = z; + (y + d);. [ |

Now let a = 7(x) — 7(y) and let b = w(z + d) — 7(z) = 7(y + d) — 7(y) due to the above
claim. Then as (z,y), (x + d,y), (z,y +d) € A, by , we have

lall3 = lIm(z)=m()|3 =7, Natbl = [n(@+d)—nW)|3 =7, lla=bl} = |ln(z)—m(y+d)|3 = 7.
We obtain a contradiction as a — b,a,a + b lie on a line and so cannot all be on the sphere of
radius /7.
d
To estimate the size of A,, note that there are (%q2 + O(q)) many points satisfying ,

and there are at most d - ¢? choices of r. Thus, by Pigeonhole Principle, there exists r such that

d
|A| > # (%qQ + O(q)) . Setting ¢ = (%)d and n = ¢¢, we get the desired bound.

We leave as an exercise to work out the details of Behrend’s construction of 3-AP-free sets.
Start with again n = ¢% and a set B, consisting of all z € [¢? — 1] such that

()13 =7,

and 0<uz; < g,Vi.

We remark that Green’s improvement on corner-free set comes from using the 2-dimension strip
in rather than just the (1-dimension) half-size interval in Behrend’s construction.

2 Erdos-Rothschild’s question on book

A book is a set of triangles sharing one common edge, and the size of the book is the number of
triangles it contains. Denote by b(G) the size of the largest book in a graph G. It was proved
by Edwards, and independently Khadziivanov and Nikiforov, that any n-vertex graph with at



least n2/4 + 1 edges contain a book of size at least n/6. On the other hand, if an n-vertex graph
has at most n?/4 edges, it could just be a subgraph of K, /2,n/2 and so has no triangle, not to
mention a book. What if we require that every edge of the graph must lie in a triangle? This
was a question of Erdés and Rothschild. Is it true that for any ¢ > 0, there exists ¢ > 0 such
that the following holds: given an n-vertex graph G with cn? edges, if every edge lies in at least
one triangle, then b(G) > n¢’.

This was disproved by Fox and Loh. They gave a geometric construction of a graph with
edge density almost 1/2 and every edge lying in a triangle, but having sub-polynomial book size.

Theorem 2.1 (Fox-Loh 12). There is an n-vertex graph with %2<1 — e*(log”)l/ﬁ) edges and

every edge lying in a triangle, such that b(G) < n'4/leglogn

The idea of their construction is the following. By concentration of measure, a high dimen-
sional cube has a nice property that almost all pair of points are at a typical distance apart.
Take three copies of cubes, say A, B,C. Then add edges between A and B when points are at
typical distance; so A, B are almost completely joined. Between A (same for B) and C, add
edges when points are at about half of the typical distance. Then it is not hard to show that
every edge lies in a triangle. The fact that there is no large book follows from the geometric
fact that two not-so-close high dimension balls have intersection size exponentially smaller than
their volumes. Finally, blow up A and B to boost the edge density to 1/2.

Let us now see the detailed construction.

Step 1. Fix integer r > 2, d = r°, and n = r¢. Define

r2—1
6

d.

M:

Let A= B = C = [r]%. Vertices a € A and b € B are adjacent if and only if their distance
satisfies |la — b||3 = p #+ d. Vertices a € A (same for b € B) and ¢ € C are adjacent if and
only if their distance satisfies |la — c||3 = $u & 2d.

Step 2. Blow up AU B. More precisely, replace each vertex of AU B with 2¢ copies of itself. Two
copies of vertices are adjacent if their original vertices were adjacent.

The following lemma says that most of the pairs of points in the cube [r]? are at a typical
distance apart, and so A, B are almost complete to each other. The proof follows from a simple
application of concentration inequality; we leave it as an exercise.

Lemma 2.2. Let x,y be two uniformly chosen points in [r]%. Then
d
Pr(le —yl} = p+d) > 12 5.

The following lemma implies that the construction above has the properties as in The-
orem For its proof, we need to estimate the volume of Euclidean balls: for even d and real
r > 0, the volume of the d-dimensional Euclidean ball with radius r is

/2
(d/2)!

Lemma 2.3. Before blowing up AUB, every edge is contained in between 24~ and 15% triangles.

apm,
< (2me)?= . FrIEh (3)

Proof. Fix an edge ab, we first prove the lower bound that ab is in at least 29! triangles. Let
m = (m1,...,mg) be the midpoint of a = (a1, ...,aq) and b = (b1,...,by), and let x; = b; — a;.



Then m; — a; = % For each i, let §; = % if x; is odd, and §; = 1 otherwise. Consider points
c=(c1y...,¢q) € C with ¢; = m; + d;¢;, where ¢; € {£1}. Then

T; 2 b— al|?
le—al3 =3 (% 4 oe) = Pl 552 4 S e,

and similarly [|b— ¢||3 = (L a”2 + 30,02 = > widigi. As |[b—al|3 =p+dand Y, 62 < d, we see
that each choice of (e, .. sd) satlsfymg

‘ E x;0i€;
p

gives rise to a point ¢ € C forming a triangle with ab.

Consider now each ¢; being a Rademacher random variable (i.e. with equal probability to
be 1 or -1), then the random variable Z := ), x;0;¢; is 2r-Lipschitz (as |z;| < r) and has mean
0. An application of Azuma inequality gives

Pr<|Z| > Zd) < 2exp< gd; d) < Qexp<— %)

3
< -d
!

Thus, the number of coneighbours ¢ of @ and b is at least Pr(|Z| < 3d) - 2¢ > 241,
We now move to upper bound. Let again x; = b; — a; and suppose ¢ = forms a triangle with
ab, thus |[b—c||3 = |la — ¢|3 = u £ 2d, say ¢; = a; + & + %4 for some w; € Z. Then

v, wi\2 |b—al} 1 1
le—alf =30 (5 +3) =g i+ g am

1

2
and similarly [|b — ¢||3 = % + 23w =33 w;. So

1 N 2 2 I ‘1H2 _
5 £dd=le—allf+ bl = += Z —i > ts Zw

and consequently

Zw? < 9d.

We are left to bound the number of lattice points in a d-dimensional Euclidean ball of radius
3\/&, which is at most the volume of a radius-3.5v/d ball. The desired bound then follows
from . ]
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