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We will go over some geometric constructions in extremal combinatorics.

1 3-AP-free sets and corner-free sets

We have seen previously that Roth’s theorem states that any subset of [n] without 3-term
arithmetic progressions (3-AP-free) has size o(n). The classical lower bound construction, due
to Behrend, gives a 3-AP-free subset of [n] of size n

2(c+o(1))
√

log2 n
, where c = 2

√
2.

Here, we consider a 2-dimension problem in which we want to avoid a 2-dimension configura-
tion defined as follows. A corner in [n]2 is a triple of points of the form (x, y), (x+d, y), (x, y+d),
where d > 0. Then as you might already guess, we call a subset of the grid A ⊆ [n2] corner-free
if it does not contain any corner.

How large a corner-free subset of [n]2 can be? We have similar bounds as in the 3-AP-free
case.

1.1 Upper bound via triangle removal lemma

Theorem 1.1. If A ⊆ [n]2 is corner-free, then |A| = o(n2).

Sketch of proof. Construct a tripartite graph G with vertices being horizontal, vertical lines and
lines with slope −1. That is, V (G) = X∪Y ∪Z, where X = {y = i, i ∈ [n]}, Y = {x = i, i ∈ [n]}
and Z = {x+y = i, i ∈ [2n]}. Two vertices in G are adjacent if their corresponding line intersect
at a point in our corner-free set A. By definition, each point a ∈ A give rises to a triangle Ta in G,
and so e(G) = 3|A|. Note also that Ta, a ∈ A, are pairwise edge-disjoint triangles. Suppose that
|A| = Ω(n2), then G contains Ω(n2) many edge-disjoint triangles. Consequently, by triangle
removal lemma, G must contain in fact Ω(n3) triangles in total. That means there is a triangle
in G not corresponding to a point in A. A moment of thought shows that such triangle in G
corresponds to a corner in A, a contradiction.

1.2 Dense corner-free sets

Previously best known corner-free sets construction is coming from using dense 3-AP-free sets
construction of Behrend. To see this, consider a 3-AP-free set B ⊆ [n], and define A = {(x, y) :

x− y ∈ B}. This yields |A| = Θ(|B|n) = n2

2(c+o(1))
√

log2 n
, where c = 2

√
2 ≈ 2.828....

The constant c above was improved by Linial and Shraibman earlier this year, and further
improved by Green. We shall present Green’s construction which yields a corner-free set of size

n2

2(c+o(1))
√

log2 n
, where c = 2

√
2 log2

4
3 ≈ 1.822....

The geometric idea behind this construction is the same as Behrend’s: any line can intersects
a sphere on at most two points.

We will consider n of the form n = qd, with q, d to be determined later. We make use of the
1-to-1 correspondence between [qd − 1] and the high-dimension grid/cube {0, 1, . . . , q − 1}d via
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base q expansion. That is, consider the map π: [qd − 1] 7→ {0, 1, . . . , q − 1}d, where

π(x) = (x0, x1, . . . , xd−1), s.t. x =

d−1∑
i=0

xiq
i, 0 ≤ xi < q,∀i.

Consider the set Ar ⊆ [n]2 consisting of all the points (x, y) such that

‖π(x)− π(y)‖22 = r, (1)

and
q

2
≤ xi + yi <

3q

2
,∀i. (2)

We shall show that Ar is corner-free, and the desired bound follows from taking the densest slice
Ar and optimising the parameters q, d.

Suppose for a contradiction that there is a corner (x, y), (x+ d, y), (x, y + d) ∈ Ar.

Claim 1.2. π(x+ d) + π(y) = π(x) + π(y + d).

Proof of claim. Induct on i = 0, 1, . . . to show that (x + d)i + yi = xi + (y + d)i. Suppose
for j ≥ 0, it holds for all i < j. Write x≥j =

∑
i≥j xiq

i. Then the induction hypothesis and
(x+ d) + y = x+ (y + d) imply that

(x+ d)≥j + y≥j = x≥j + (y + d)≥j ,

which in turns implies that

(x+ d)j + yj = xj + (y + d)j , mod q.

But both sides above lie in [ q2 ,
3q
2 ] due to (2). Thus in fact (x+ d)j + yj = xj + (y + d)j . �

Now let a = π(x) − π(y) and let b = π(x + d) − π(x) = π(y + d) − π(y) due to the above
claim. Then as (x, y), (x+ d, y), (x, y + d) ∈ Ar, by (1), we have

‖a‖22 = ‖π(x)−π(y)‖22 = r, ‖a+b‖22 = ‖π(x+d)−π(y)‖22 = r, ‖a−b‖22 = ‖π(x)−π(y+d)‖22 = r.

We obtain a contradiction as a − b, a, a + b lie on a line and so cannot all be on the sphere of
radius

√
r.

To estimate the size of Ar, note that there are
(
3
4q

2 + O(q)
)d

many points satisfying (2),

and there are at most d · q2 choices of r. Thus, by Pigeonhole Principle, there exists r such that

|Ar| ≥ 1
dq2

(
3
4q

2 +O(q)
)d

. Setting q = ( 2√
3
)d and n = qd, we get the desired bound.

We leave as an exercise to work out the details of Behrend’s construction of 3-AP-free sets.
Start with again n = qd and a set Br consisting of all x ∈ [qd − 1] such that

‖π(x)‖22 = r,

and 0 ≤ xi <
q

2
, ∀i.

We remark that Green’s improvement on corner-free set comes from using the 2-dimension strip
in (2) rather than just the (1-dimension) half-size interval in Behrend’s construction.

2 Erdős-Rothschild’s question on book

A book is a set of triangles sharing one common edge, and the size of the book is the number of
triangles it contains. Denote by b(G) the size of the largest book in a graph G. It was proved
by Edwards, and independently Khadžiivanov and Nikiforov, that any n-vertex graph with at
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least n2/4 + 1 edges contain a book of size at least n/6. On the other hand, if an n-vertex graph
has at most n2/4 edges, it could just be a subgraph of Kn/2,n/2 and so has no triangle, not to
mention a book. What if we require that every edge of the graph must lie in a triangle? This
was a question of Erdős and Rothschild. Is it true that for any c > 0, there exists c′ > 0 such
that the following holds: given an n-vertex graph G with cn2 edges, if every edge lies in at least
one triangle, then b(G) ≥ nc′ .

This was disproved by Fox and Loh. They gave a geometric construction of a graph with
edge density almost 1/2 and every edge lying in a triangle, but having sub-polynomial book size.

Theorem 2.1 (Fox-Loh 12). There is an n-vertex graph with n2

4

(
1 − e−(logn)

1/6
)

edges and

every edge lying in a triangle, such that b(G) ≤ n14/ log logn.

The idea of their construction is the following. By concentration of measure, a high dimen-
sional cube has a nice property that almost all pair of points are at a typical distance apart.
Take three copies of cubes, say A,B,C. Then add edges between A and B when points are at
typical distance; so A,B are almost completely joined. Between A (same for B) and C, add
edges when points are at about half of the typical distance. Then it is not hard to show that
every edge lies in a triangle. The fact that there is no large book follows from the geometric
fact that two not-so-close high dimension balls have intersection size exponentially smaller than
their volumes. Finally, blow up A and B to boost the edge density to 1/2.

Let us now see the detailed construction.

Step 1. Fix integer r > 2, d = r5, and n = rd. Define

µ =
r2 − 1

6
· d.

Let A = B = C = [r]d. Vertices a ∈ A and b ∈ B are adjacent if and only if their distance
satisfies ‖a− b‖22 = µ± d. Vertices a ∈ A (same for b ∈ B) and c ∈ C are adjacent if and
only if their distance satisfies ‖a− c‖22 = 1

4µ± 2d.

Step 2. Blow up A∪B. More precisely, replace each vertex of A∪B with 2d copies of itself. Two
copies of vertices are adjacent if their original vertices were adjacent.

The following lemma says that most of the pairs of points in the cube [r]d are at a typical
distance apart, and so A,B are almost complete to each other. The proof follows from a simple
application of concentration inequality; we leave it as an exercise.

Lemma 2.2. Let x, y be two uniformly chosen points in [r]d. Then

Pr
(
‖x− y‖22 = µ± d

)
≥ 1− 2e−

d
2r4 .

The following lemma implies that the construction above has the properties as in The-
orem 2.1. For its proof, we need to estimate the volume of Euclidean balls: for even d and real
r > 0, the volume of the d-dimensional Euclidean ball with radius r is

πd/2rd

(d/2)!
< (2πe)d/2 · r

d

dd/2
. (3)

Lemma 2.3. Before blowing up A∪B, every edge is contained in between 2d−1 and 15d triangles.

Proof. Fix an edge ab, we first prove the lower bound that ab is in at least 2d−1 triangles. Let
m = (m1, . . . ,md) be the midpoint of a = (a1, . . . , ad) and b = (b1, . . . , bd), and let xi = bi − ai.
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Then mi − ai = xi
2 . For each i, let δi = 1

2 if xi is odd, and δi = 1 otherwise. Consider points
c = (c1, . . . , cd) ∈ C with ci = mi + δiεi, where εi ∈ {±1}. Then

‖c− a‖22 =
∑
i

(xi
2

+ δiεi

)2
=
‖b− a‖22

4
+
∑
i

δ2i +
∑
i

xiδiεi,

and similarly ‖b− c‖22 =
‖b−a‖22

4 +
∑

i δ
2
i −

∑
i xiδiεi. As ‖b− a‖22 = µ± d and

∑
i δ

2
i ≤ d, we see

that each choice of (ε1, . . . , εd) satisfying∣∣∣∑
i

xiδiεi

∣∣∣ ≤ 3

4
d

gives rise to a point c ∈ C forming a triangle with ab.
Consider now each εi being a Rademacher random variable (i.e. with equal probability to

be 1 or -1), then the random variable Z :=
∑

i xiδiεi is 2r-Lipschitz (as |xi| ≤ r) and has mean
0. An application of Azuma inequality gives

Pr
(
|Z| > 3

4
d
)
< 2 exp

(
−

(34d)2

2(2r)2d

)
< 2 exp

(
− d

15r2

)
.

Thus, the number of coneighbours c of a and b is at least Pr(|Z| ≤ 3
4d) · 2d > 2d−1.

We now move to upper bound. Let again xi = bi− ai and suppose c = forms a triangle with
ab, thus ‖b− c‖22 = ‖a− c‖22 = 1

4µ± 2d, say ci = ai + xi
2 + wi

2 for some wi ∈ Z. Then

‖c− a‖22 =
∑
i

(xi
2

+
wi

2

)2
=
‖b− a‖22

4
+

1

4

∑
i

w2
i +

1

2

∑
i

xiwi,

and similarly ‖b− c‖22 =
‖b−a‖22

4 + 1
4

∑
iw

2
i − 1

2

∑
i xiwi. So

µ

2
± 4d = ‖c− a‖22 + ‖b− c‖22 =

‖b− a‖22
2

+
1

2

∑
i

w2
i =

µ

2
± d

2
+

1

2

∑
i

w2
i ,

and consequently ∑
i

w2
i ≤ 9d.

We are left to bound the number of lattice points in a d-dimensional Euclidean ball of radius
3
√
d, which is at most the volume of a radius-3.5

√
d ball. The desired bound then follows

from (3).
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