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Today, we will consider set systems with restricted intersections and introduce a dimension
argument, which is very useful when the extremal problem has many distinct extremal structures.
The idea is that, when counting the number of objects in a discrete family F , if we can map F
injectively into a vector space such that the image is linearly independent, then the dimension
of the space bounds the size of F from above.

For a set A, we write 1A for the indicator function/characteristic vector of A.

1 Odd town even town

Let us start with a basic but classical example of dimension argument of odd town even town
problem.

In a town of n residents, people want to form clubs such that any two different clubs have
even number of common members. If each club must be of also even size, then how many
clubs there can be? A moment of thoughts yields that we can have exponentially many: pair
up elements {1, 2}, {3, 4}, . . . , {2bn/2c − 1, 2bn/2c} and then we can let clubs Ci be all possible
combinations of pairs, for which there are 2bn/2c many choices.

What if we require instead that each club has odd size? We can then take Ci = {i}, i ∈ [n],
to be the singletons, or if n is even, take Ci = [n]\{i}. Though these examples are only of linear
size. Somewhat surprisingly, this is the best we can do under such restrictions.

Theorem 1.1. Let F ⊆ 2[n] be a family of sets such that

• for each F ∈ F , |F | = 1 mod 2, and

• for distinct F, F ′ ∈ F , |F ∩ F ′| = 0 mod 2.

Then |F| ≤ n.

Proof. Associate F ∈ F with 1F ∈ Fn2 . Note that, as for any F, F ′ ∈ F , 〈1F ,1F ′〉 = 1 (in F2)
if and only if F = F ′, 1F , F ∈ F , form orthonormal basis of Fn2 , which has dimension n. Thus
|F| ≤ n as desired.

2 Sets with at most two distinct distances

Sometimes additional tricks are available to further reduce the dimension of the space when we
do dimension argument. Let us consider the following problem.

Given a set X ⊆ Rn of points, if there is only one distinct distance between pairs of points
in X, then X is a regular simplex, which has size at most n+ 1 in Rn. What if we are allowed
to have two distinct distances? First, for a lower bound, we can take X to be ei + ej , ij ∈

(
[n]
2

)
,

i.e. sums of pairs of standard basis vectors. This set has size
(
n
2

)
. It is an open problem to find

the exact maximum size of such set. The best current upper bound, due to Blokhuis, is
(
n+2
2

)
.

We prove here a slightly weaker bound.

1



Theorem 2.1. Let X ⊆ Rn be a set with at most two distinct distances between pairs of its
points, then |X| ≤ 1

2(n+ 4)(n+ 1).

Proof. Let X = {v1, . . . , vt} and let d,D be the two distinct distances. Associate to each point
vi ∈ X the n-variate degree-4 polynomial Pi defined as follows: for x ∈ Rn,

Pi(x) =
(
‖x− vi‖2 − d2

)(
‖x− vi‖2 −D2

)
1.

We claim that Pi, i ∈ [t], are linearly independent. It follows from that Pi(vj) is 0 if i = j
and d2D2 otherwise. Indeed, if

∑
i αiPi = 0, then for any j ∈ [t], we have

0 =
∑
i

αiPi(vj) = αjPj(vj) = d2D2αj ,

implying that αj = 0. This yields a O(n4) upper bound on |X|. We can however do much better
by choosing a more economic set of vectors spanning Pis.

Note that ‖x − vi‖2 =
∑

j∈[n] x
2
j − 2

∑
j∈[n] xjvij +

∑
j∈[n] v

2
ij . Thus, each Pi is a linear

combination of the following polynomials:

•
(∑

j∈[n] x
2
j

)2
;

• xk ·
∑

j∈[n] x
2
j , k ∈ [n] (n of them);

• xj · xk, 1 ≤ j ≤ k ≤ n ((n+ 1)n/2 of them);

• xj , j ∈ [n] (n of them);

• the constant term 1.

Thus the dimension of the space containg all Pi is at most 1 + n + (n + 1)n/2 + n + 1 =
(n+ 4)(n+ 1)/2, which upper bounds t = |X| as Pis are linearly independent.

3 Families with restricted intersections

There are 2n subsets of [n]. We have seen that if we forbid empty intersection (between pairs of
sets in a family), then the family can have size at most 1

2 · 2
n, with equality holds for families

whose sets contain a common elements. Even in the uniform case, we could still have k-uniform
intersecting families of size

(
n−1
k−1
)
; when k is close to n/2, such families are still quite large. Is

there a restriction of a single forbidden size between pair intersections that would drastically
change how large a family can be, in particular, forcing the family to have size expenentially
smaller than 2n? As we shall see soon that, the answer is yes.

Theorem 3.1 (Frankl-Wilson 81). Let p be an odd prime and F ⊆ 2[n]. If

• for any F ∈ F , |F | = 0 mod p;

• for any distinct F, F ′ ∈ F , |F ∩ F ′| 6= 0 mod p,

then

|F| ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
.

1Here we use `2-norm, i.e. ‖u‖ =
√∑

i u
2
i .
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Proof. We associate to each set F ∈ F an n-variate degree-(p− 1) polynomial PF over the field
Fp as follows: for x ∈ Fnp ,

PF (x) = 1−
(∑
i∈F

xi

)p−1
.

Observe first that the polynomials PF , F ∈ F , are linearly independent. To see this, take
F, F ′ ∈ F , then, as |F ∩ F ′| = 0 mod p if and only if F = F ′, we have by Fermat’s little
theorem that

PF (1F ′) = 1− |F ∩ F ′|p−1 =

{
1, if F = F ′;

0, otherwise.

We need one more trick to further reduce the dimension of the space.

Multilinearisation. Note that when we prove that PF , F ∈ F , are linearly independent, we
evaluate them over {0, 1}-vectors. Since over {0, 1}-vectors, any monomial say x31x

5
2x

2
3 takes the

same value as x1x2x3. We can then multilinearise PF by replacing all powers xai , a ≥ 2 in PF ,
by xi.

Finally, the dimension of the space of multilinear n-variate degree-(p− 1) polynomials is at
most the number of such monomials, which is(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
,

as desired.

The following special case of the above theorem is quite surprising. Consider n = 4p, then a
2p-uniform set system can have size up to

(
n
2p

)
∼ 1√

2πp
· 2n. But if we forbid intersections of size

p, then Theorem 3.1 implies that the family has to be exponentially small: at most
∑p−1

i=0

(
n
i

)
.

4 Sets with no orthogonal pairs are exponentially small

A nice geometric corollary of Theorem 3.1 is the following, implying that forbidding orthogonal
pairs in a set of vectors forces the set to be exponentially small. The idea is to discretise the
problem using (random) averaging; in the discrete set (L below) of unit vectors that we shall
use, orthogonal pairs correspond to pairs with forbidden intersection size.

Corollary 4.1. Let p be an odd prime, n = 4p and V ⊆ Sn−1 be a set of unit vectors in Rn. If
no pairs in V are orthogonal, then the measure2 µ(V ) is exponentially small.

Proof. Let F =
( [n]
n/2

)
=
(
[4p]
2p

)
be the family of all 2p-subsets of [n], and α = 1√

n
. Associate to

each F ∈ F a unit vector vF that takes value α on coordinates in F and −α otherwise, i.e.

vF = α
(
1F − 1[n]\F

)
.

Set
L = {vF : F ∈ F}.

Note that for any F,G ∈ F ,

〈vF , vG〉 = α2
(
|F ∩G|+ |[n] \ (F ∪G)| − |F4G|

)
=

1

n

(
n− 2|F4G|

)
= 1− 1

2p
|F4G|. (1)

Thus, 〈vF , vG〉 = 0 if and only if |F ∩G| = p. Thus by Theorem 3.1, |V ∩L| ≤
∑p−1

i=0

(
n
i

)
, which

is exponentially smaller3 than 2n.

2The normalised spherical measure, which is rotation-invariant.
3Using e.g. stirling’s formula
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We now do an averaging. Take a uniform random rotation ρ. Then any unit vector has
probability µ(X) to fall in ρV . Thus,

E|ρV ∩ L| = µ(X) · |L| = µ(X) ·
(
n

n/2

)
.

On the other hand, for any rotation ρ, ρV has no orthogonal pairs either, and so as above we
have |ρV ∩ L| ≤

∑p−1
i=0

(
n
i

)
. Solving E|ρV ∩ L| = µ(X) ·

(
n
n/2

)
≤
∑p−1

i=0

(
n
i

)
yields the desired

bound.

5 Disproof of Borsuk’s conjecture by Kahn and Kalai

Borsuk in 1933 conjectured that every bounded set in Rn can be decomposed into at most n+ 1
sets of smaller diameter. This old conjecture was disproved by Kahn and Kalai in 1993 in a
strong sense: if we want to cut a set into smaller pieces, then exponentially many pieces are
needed!

Their proof is an elegant use of Theorem 3.1 as follows. By taking tensor, we can construct
a set in which the orthogonal pairs are the ones that are furthest apart, and so any subset of
smaller diameter has to avoid orthogonal pairs which then has to be exponentially small.

Corollary 5.1. Let p be an odd prime and n = 4p. Then there exists a set X ⊆ Rn2
of size(

n
n/2

)
such that every subset of X with smaller diameter has size at most

∑p−1
i=0

(
n
i

)
.

Proof. As in Corollary 4.1, define

F =

(
[n]

n/2

)
and L =

{
vF =

1√
n

(
1F − 1[n]\F

)
: F ∈ F

}
.

Then let X ⊆ Rn2
be the set of rank-1 outer products of vectors4 in L:

X = {v ⊗ v : v ∈ L}.

Note that
〈v ⊗ v, w ⊗ w〉 =

∑
i,j

vivjwiwj =
∑
i

viwi ·
∑
j

vjwj = 〈v, w〉2 ≥ 0

with equality if and only if v, w are orthogonal, and that v ⊗ v ∈ Rn2
is a unit vector when

v ∈ Rn is a unit vector. Consequently,

‖v ⊗ v − w ⊗ w‖2 = ‖v ⊗ v‖2 + ‖w ⊗ w‖2 − 2〈v ⊗ v, w ⊗ w〉 = 2− 2〈v, w〉2 ≤ 2

with equality if and only if v, w are orthogonal. Thus, the diameter of X is
√

2, and any subset
of X with smaller diameter contains no pairs v ⊗ v, w ⊗ w where v, w are orthogonal.

Finally, we have seen in (1) that vF , vG are orthogonal if and only if |F ∩G| = p. Thus by
Theorem 3.1, any subset of X of diameter smaller than

√
2 has size at most

∑p−1
i=0

(
n
i

)
.

It follows right away that to cover the above set X using pieces of smaller diameter, we need
at least

(
n
n/2

)
/
∑p−1

i=0

(
n
i

)
= eΩ(n) many pieces.

4We view the n-by-n matrix v ⊗ v = v · vT here as a length-n2 vector in Rn2

.
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