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Today we will prove the upper bound theorem, which implies the fractional Helly theorem.
Then we move on to Kruskal-Katona theorem.

1 Fractionally Helly theorem

Let us recall the fractional Helly theorem.

Theorem 1.1 (Fractionally Helly theorem). Let α ∈ (0, 1) and F be a collection of convex sets

in Rd. If at least α
( |F|
d+1

)
many (d + 1)-tuples A ∈

( F
d+1

)
satisfy ∩A 6= ∅, then there exists a

subcollection F ′ ⊆ F such that ∩F ′ 6= ∅ and |F ′| ≥ β|F|, where β ≥ (1− (1− α)
1

d+1 ).

We shall present a proof of the upper bound theorem, Theorem 1.2, which implies the
fractional Helly theorem when applied to the nerve complex of a family of convex sets. The nerve
complex of a family of sets consists of faces corresponding to subfamilies with non-empty common
intersection. Taking r = βn− d in Theorem 1.2, we get the contrapositive of Theorem 1.1.

To state the upper bound theorem, we need some definitions. A simplicial complex K is a
set of simplices that satisfies the following conditions:

• Every face of a simplex from K is also in K.

• The non-empty intersection of any two simplices σ1, σ2 in K is a face of both σ1 and σ2.

We will write fj(K) for the number of j-dimensional faces in K.
A face σ in a simplicial complex K is free if σ is contained in a unique maximal face τ . Given

a free face σ with τ ⊇ σ the unique maximal face containing it, denote by [σ, τ ] the set of all
faces containing σ. An elementary (a, b)-collapse is the process of removing [σ, τ ] for some free
face σ with |σ| = a and |τ | = b. We say a simplicial complex is d-collapsible if all face of size at
least d can be removed after some sequence of elementary collapses, in which each elementary
collapse is of type (d, d′) for some d′ ≥ d, i.e. there exists a collapse process

K → K1 = K \ [σ1, τ1]→ K2 = K1 \ [σ2, τ2]→ . . .→ Kt,

such that fd−1(Kt) = 0.

Theorem 1.2 (Alon-Kalai 85). Let K be a d-collapsible simplicial complex on n vertices. If
dimK < d+ r, i.e. fd+r(K) = 0, then for each d ≤ j ≤ d+ r − 1,

fj(K) ≤
r∑

i=j+1−d

(
n− i
d

)(
i− 1

j − d

)
.

In particular,

fd(K) ≤
(

n

d+ 1

)
−
(
n− r
d+ 1

)
.
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Proof. Given a process of elementary collapses eliminating all faces of size at least d, for each
i ≥ 0, write hi for the number of elementary (d, d + i)-collapses in the process. Note that in
each such collapse, precisely

(
i

j+1−d
)
j-dimensional faces were deleted for d− 1 ≤ j ≤ d+ i− 1.

Recall that fd+r(K) = 0. For each 0 ≤ i ≤ r, write Hi =
∑r

i′=i hi′ . Then for d ≤ j ≤ d+r−1,
we have

fj(K) =
r∑

i=j+1−d
hi ·

(
i

j + 1− d

)
=

r∑
i=j+1−d

(Hi −Hi+1)

(
i

j + 1− d

)
=

r∑
i=j+1−d

Hi ·
(
i− 1

j − d

)
.

We are left to show that for each i ≥ 0,

Hi ≤
(
n− i
d

)
.

Recall that Hi is the number of elementary (d, d′)-collapses, d′ ≥ d, in the process. Let
[σk, τk], k ∈ [h], be the removed faces corresponding to those in Hi; so |τk| ≥ d + i. Note that
for each k ∈ [h], we have σk ⊆ τk and every k < k′, σk 6⊆ τk′ . Setting Ak = σk and Bk to be the
complement of τk (so |Ak| = d and |Bk| ≤ n − d − i), we can then apply the skewed set-pairs
inequality to {Ak}k∈[h] and {Bk}k∈[h] to get that

Hi = h ≤
(
n− d− i+ d

d

)
≤
(
n− d− i+ d

d

)
=

(
n− i
d

)
,

as desired.

2 Kruskal-Katona theorem

2.1 A motivating problem: triangle maximisation

Consider the following natural problem. Given an n-vertex graph with m edges, how many
triangles it must contain? In the limit language, given the edge density, what is the minimum
triangle density?1 This is the famous Erdős-Rademacher clique minimisation problem from the
1940s. This problem is notoriously difficult and its asymptotic solution was discovered only
fairly recently by Razborov (triangle case), Nikiforov (K3,K4) and Reiher (all cliques). The
exact triangle minimisation is solved very recently by Liu, Pikhurko and Staden.

The counterpart of triangle maximisation is equally natural, that is, if an n-vertex graph
G has m edges, what is the most number of triangles it can have? This problem turns out to
be much easier. The complete answer would follow straightforwardly from the Kruskal-Katona
theorem that we would see in a minute. Basically, given the number of edges, the best we can
do (to maximise the number of triangles) is to pack edges into a clique.

2.2 Minimising shadow

Definition 2.1. The shadow of a k-uniform hypergraph F ⊆
([n]
k

)
, denoted by ∂F ⊆

( [n]
k−1
)
, is

the (k − 1)-uniform hypergraph consisting of (k − 1)-sets that lie in edges of F . That is,

∂F =
{
F ∈

(
[n]

k − 1

)
: F ⊆ G for some G ∈ F

}
.

Kruskal-Katona theorem studies size of the shadow of a hypergraph.

Problem 2.2. Let n ≥ k and 0 ≤ m ≤
(
n
k

)
, what is the minimum shadow size of an n-vertex

k-uniform hypergraph with m edges?

1Recall that the triangle density in a graph G is k3(G)/
(
n
3

)
, where k3(G) is the number of triangles in G.
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Let us try to construct a k-uniform hypergraph H with small shadow. Consider the baby
case k = 3, so the shadow ∂H is a graph. Since the number of edges e(H) = m is given, it
seems economical to pack edges into cliques. Let n3 ∈ N be such that

(
n3

3

)
≤ m <

(
n3+1
3

)
. Add

a clique on a set V3 of n3 vertices to H. We have to add m −
(
n3

3

)
more edges. As there is no

room left in V3, we need to introduce a new vertex v and try to add triples containing v and
pairs from V3, and we want these pairs densely packed inside V3. So take V2 ⊆ V3 of size n2,
where

(
n2

2

)
≤ m −

(
n3

3

)
<
(
n2+1
2

)
, and add all triples {v} ∪ e, e ∈

(
V2

2

)
, to H. We are left with

adding the remaining m −
(
n3

3

)
−
(
n2

2

)
<
(
n2+1
2

)
−
(
n2

2

)
= n2 edges to H. For these edges, we

can take a vertex u ∈ V3 \ V2 and add triples containing {u, v} and a set V1 ⊆ V2 of vertices
of size n1 = m −

(
n3

3

)
−
(
n2

2

)
. In this construction, we see that |∂H| =

(
n3

2

)
+
(
n2

1

)
+ 1, where

m =
(
n3

3

)
+
(
n2

2

)
+ n1.

This construction of k-sets in the initial segment of N is called the colexicographic order
(colex) of finite subsets of N. The Kruskal-Katona theorem states that the above construction
is best possible, i.e. colex ordering minimises the shadow size.

Theorem 2.3 (Kruskal-Katona 1963). Let F be a k-uniform hypergraph with m =
(
nk
k

)
+(nk−1

k−1
)

+ · · ·+
(
ns

s

)
, then

|∂F| ≥
(

nk
k − 1

)
+

(
nk−1
k − 2

)
+ · · ·+

(
ns
s− 1

)
.

We leave as an exercise to show that for any natural number m, we can write it (uniquely!)
as a sum of binomial coefficients as above.

2.3 Shifting

We will present a sketch of a proof of Kruskal-Katona using the shifting/compression argument,
which is an operation that transform our hypergraph towards a colex one without increasing the
shadow.

Definition 2.4. Given F ⊆
([n]
k

)
and 2 ≤ i ≤ n, for any F ∈ F , define the shift

Si(F ) =

{
F \ {i} ∪ {1} if i ∈ F and 1 6∈ F , and F \ {i} ∪ {1} 6∈ F ,
F otherwise.

We write Si(F) = {Si(F ) : F ∈ F} for the resulting hypergraph after performing all shifting.
We call F compressed if Si(F) = F for all 2 ≤ i ≤ n.

Here is an example. Let F = {134, 135, 234, 245}. Then S5(F) = {134, 135, 234, 124}. It is
easy to see that the initial segment of colex ordering is compressed.

The following facts are easy to verified, we leave them as exercises. The first one ensures
that during the shifting, the size of the hypergraph m remains the same.

Fact 2.5. Let F ⊆
([n]
k

)
and 2 ≤ i ≤ n. The map F → Si(F) is injective. In particular,

|F| = |Si(F)|.

The next one guarantees that we do not increase the size of shadow.

Fact 2.6. Let F ⊆
([n]
k

)
and 2 ≤ i ≤ n. Then, ∂(Si(F)) ⊆ Si(∂F). In particular,

|∂(Si(F))| ≤ |Si(∂F)| = |∂F|.

For F ⊆
([n]
k

)
, we will write F1 = {F ∈ F : 1 ∈ F} and Fc

1 = F \ F1 = {F ∈ F : 1 6∈ F},
and L1 = {F \ {1} : F ∈ F1} for the link of 1.

Fact 2.7. If F is compressed, then

(i) ∂Fc
1 ⊆ L1; and

(ii) ∂F = L1 ∪ {E ∪ {1} : E ∈ ∂L1} and so |∂F| = |L1|+ |∂L1|.
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2.4 Proof of Kruskal-Katona

We use double induction on the uniformity k and then on the size m.
The base case k = 1 is trivial as the shadow of any 1-uniform hypergraph is {∅}.
Assume then k ≥ 2 and induct now on m = |F|. If m = 1 =

(
k
k

)
, then F has a single edge

and the shadow is of size
(

k
k−1
)

as desired.
Assume then m ≥ 2. We may further assume that F is compressed, for otherwise, by

Facts 2.5 and 2.6, we can keep performing shifting operation to F without changing the size or
increasing the shadow.

Claim 2.8. |L1| ≥
(
nk−1
k−1

)
+
(nk−1−1

k−2
)

+ · · ·+
(
ns−1
s−1

)
.

Proof. Suppose not, then

|Fc
1 | = |F| − |F1| = |F| − |L1|

≥
((nk

k

)
+

(
nk−1
k − 1

)
+ · · ·+

(
ns
s

))
−
((nk − 1

k − 1

)
+

(
nk−1 − 1

k − 2

)
+ · · ·+

(
ns − 1

s− 1

))
=

(
nk − 1

k

)
+

(
nk−1 − 1

k − 1

)
+ · · ·+

(
ns − 1

s

)
.

Now, as F is compressed, |Fc
1 | < |F| and so applying induction hypothesis on Fc

1 and using
Fact 2.7(i), we get

|L1| ≥ |∂Fc
1 | >

(
nk − 1

k − 1

)
+

(
nk−1 − 1

k − 2

)
+ · · ·+

(
ns − 1

s− 1

)
,

a contradiction.

Finally, applying induction hypothesis on L1 and using Fact 2.7(ii), we get

|∂F| = |L1|+ |∂L1| = |∂L1|

≥
((nk − 1

k − 1

)
+ · · ·+

(
ns − 1

s− 1

))
+
((nk − 1

k − 2

)
+ · · ·+

(
ns − 1

s− 2

))
=

(
nk − 1

k

)
+ · · ·+

(
ns − 1

s

)
.

This completes the proof.
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