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Today we start with the classical Erdős-Ko-Rado theorem and give a beautiful double-
counting proof of it by Katona. Then we continue from last time to present two more applications
of set-pairs inequalities, one on counting the maximal intersecting families and the other one on
fractional Helly theorem.

1 Erdős-Ko-Rado and Katona’s proof

Let us first state the classical Erdős-Ko-Rado theorem. A family F ⊆ 2[n] of subsets of [n] is
intersecting if sets in F are pairwise intersecting, i.e. for any F, F ′ ∈ F , F ∩ F ′ 6= ∅. The
question we are interested in here is how large can a k-uniform intersecting family be? We may
assume that the ground set is of size at least 2k, for otherwise every two k-sets would intersect.

Let us start by constructing a (large) uniform intersecting family. If we fix an element and
take all k-sets containing this element, then the resulting family is certainly intersecting; we call
such a family a star. Note that a star has size

(
n−1
k−1
)
. Can we do better? Erdős-Ko-Rado says

“no”.

Theorem 1.1 (Erdős-Ko-Rado). Let n ≥ 2k. If a system F of k-sets in [n] is intersecting, then

|F| ≤
(
n− 1

k − 1

)
.

Proof. Let Cn be the set of all cyclic permutation of [n] and so |Cn| = (n− 1)!. We shall double
count the pairs (σ, F ) of σ ∈ Cn and F ∈ F such that F forms an interval in σ, i.e. elements of
F appear consecutively in σ. Let P be the number of all such pairs, we shall see that

|F| · k! · (n− k)! = P ≤ (n− 1)! · k,

which would imply the desired upper bound on |F|.
To see the first equality, we count the pairs from the point of view of F ∈ F . For each

F ∈ F , as it has size k, it can occurs consecutively in k! ways and the rest of the elements can
be arranged in (n− k)! ways, implying the equality above.

For the upper bound on P , it suffices to show that any cyclic permutation σ ∈ Cn contains
as an interval at most k sets from F . To see this, fix a set F ∈ F that appears as an interval in
σ, say with elements x1, . . . , xk in clockwise order. For each i ∈ [k], denote by Ei the interval on
σ ending at xi, and by Si the interval starting at xi (so S1 = Ek = F ). As F is an intersecting
family and F ∈ F , all other sets contained as an interval in σ has to intersect F , and hence has
to be one of the sets in {Si, Ei}i∈[k]. Note also that for each 1 ≤ i ≤ k − 1, Ei ∩ Si+1 = ∅, and
so F can contain at most one from each pair {Ei, Si+1}i∈[k−1]. Thus, σ contains at most k sets
in F as intervals, finishing the proof.

A more careful analysis of the proof yields the following.

Exercise 1.2. Prove that if n ≥ 2k + 1, then stars are the unique extremal examples.
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Exercise 1.3. Give a non-star extremal example of k-uniform intersecting family when n = 2k.

What about intersecting families that are not necessarily uniform? A non-uniform star is
still intersecting and has size 2n−1. This turns out to be again optimal.

Exercise 1.4. If F ⊆ 2[n] is intersecting, then |F| ≤ 2n−1.

Exercise 1.5. Give a non-star example of intersecting family of size 2n−1.

2 Counting maximal intersecting families

A recent application of the set-pair inequality is due to Balogh-Das-Delcourt-Liu-Sharifzadeh
on the number of maximal intersecting families.

As every subfamily of a star is also intersecting, there are at least 2(n−1
k−1) many k-uniform

intersecting families. BDDLS determined the log-asymptotics of the number of uniform inter-
secting families.

Theorem 2.1. For all n ≥ 2k + 1, the number of intersecting families on [n] is

2(1+o(1))(n−1
k−1).

We will not prove this statement here, but only remark that the bound on n here is optimal.
Indeed, when n = 2k, there are exponentially more uniform intersecting families.

Exercise 2.2. When n = 2k, there are at least 3(n−1
k−1) many k-uniform intersecting families.

On contrast, there are far fewer1 maximal (under inclusion) intersecting families.

Theorem 2.3. The number of maximal intersecting k-uniform families on [n] is at most

(2kk )∑
i=0

((n
k

)
i

)
≤
(
n

k

)(2kk )
.

We need some notations for its proof. Given a family of sets F , we denote by

I(F) =

{
G ∈

(
[n]

k

)
: ∀F ∈ F , G ∩ F 6= ∅

}
the family of all sets intersecting every set in F . Note that F forms an intersecting family if and
only if F ⊂ I(F), while F is maximal if and only if F = I(F). Given a maximal intersecting
family, we call G ⊂ F a generating set if F = I(G).

The idea of the proof is to show that every maximal intersecting family admits a small
generating set via set-pairs inequality, which then allows us to bound the number of maximal
intersecting families.

Proof of Theorem 2.3. Let F0 = {F1, F2, . . . , Fs} ⊆ F be a minimal generating set of F . Ob-
serve that, by the minimality of F0, we have F ( I (F0 \ {Fi}) for each 1 ≤ i ≤ s. Hence for
each i we can find some set Gi ∈ I (F0 \ {Fi})\F . Since Gi ∈ I (F0 \ {Fi}), we have Gi∩Fj 6= ∅
for all i 6= j. Moreover, since Gi /∈ F = I(F0), we must further have Gi ∩ Fi = ∅. Thus, we
can apply Bollobás set-pairs inequality to {Fi} and {Gi} and get that s ≤

(
2k
k

)
. Therefore,

|F0| = s ≤
(
2k
k

)
.

Map each maximal intersecting hypergraph F to a minimal generating set F0 ⊂ F . As
F = I(F0), this map is injective. We have shown above that |F0| ≤

(
2k
k

)
, and hence the number

of maximal intersecting hypergraphs is bounded by the number of sets of at most
(
2k
k

)
edges,

which is the sum above.
1when n � k.
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3 Fractionally Helly theorem

The final application is a simple proof, due to Alon-Kalai, of the fractionally Helly theorem. We
will first lay out some backgrounds and prove it in the next lecture.

A collection A = {A1, . . . , Ak} of convex sets in Rd is pierced by a point, if they have non-
empty common intersection: ∩A := ∩i∈[k]Ai 6= ∅. Helly’s theorem is a fundamental theorem in
discrete geometry, deriving information of global intersection from information of local intersec-
tion.

Theorem 3.1 (Helly’s theorem 1913). Let F be a collection of convex sets in Rd. If every
(d+ 1)-tuples A ∈

( F
d+1

)
satisfy ∩A 6= ∅, then ∩F 6= ∅.

There is a colourful version, which we state without proving it here.

Theorem 3.2 (Colourful Helly). Let F1, . . . ,Fd+1 be collections of convex sets in Rd. If every
rainbow (d + 1)-tuples A = {F1, . . . , Fd+1}, Fi ∈ Fi for each i ∈ [d + 1], satisfy ∩A 6= ∅, then
there exists i ∈ [d+ 1] such that ∩Fi 6= ∅.

The fractional Helly theorem says that if in a family of convex sets in Rd, a positive fraction
of (d+ 1)-tuples are each pierced by a point, then a positive fraction of all sets have non-empty
common intersection.

Theorem 3.3 (Fractionally Helly theorem). Let α ∈ (0, 1) and F be a collection of convex sets

in Rd. If at least α
( |F|
d+1

)
many (d + 1)-tuples A ∈

( F
d+1

)
satisfy ∩A 6= ∅, then there exists a

subcollection F ′ ⊆ F such that ∩F ′ 6= ∅ and |F ′| ≥ β|F|, where β ≥ (1− (1− α)
1
d+1 ).

Note that the bound above on β is optimal. Take, for instance, d = 2 and β = (1− (1−α)
1
3 ),

and let F consist of β|F| many copies of R2 and (1− β)|F| many lines in general position, i.e.
no three cross a common point. Then every triple involving at most one line is pierced by a

point, which is of
(|F|3 )−((1−β)|F|3 )

(|F|3 )
= α+ o(1) fraction.
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