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Today we start with the classical Erdés-Ko-Rado theorem and give a beautiful double-
counting proof of it by Katona. Then we continue from last time to present two more applications
of set-pairs inequalities, one on counting the maximal intersecting families and the other one on
fractional Helly theorem.

1 Erdoés-Ko-Rado and Katona’s proof

Let us first state the classical Erds-Ko-Rado theorem. A family F C 2" of subsets of [n] is
intersecting if sets in JF are pairwise intersecting, i.e. for any F, F' € F, FNF' # @. The
question we are interested in here is how large can a k-uniform intersecting family be? We may
assume that the ground set is of size at least 2k, for otherwise every two k-sets would intersect.

Let us start by constructing a (large) uniform intersecting family. If we fix an element and
take all k-sets containing this element, then the resulting family is certainly intersecting; we call

such a family a star. Note that a star has size (Zj) Can we do better? Erdds-Ko-Rado says

Unoﬂ .

Theorem 1.1 (Erdés-Ko-Rado). Let n > 2k. If a system F of k-sets in [n] is intersecting, then
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Proof. Let C), be the set of all cyclic permutation of [n] and so |C,,| = (n —1)!. We shall double
count the pairs (o, F') of o € C), and F' € F such that F' forms an interval in o, i.e. elements of
F appear consecutively in o. Let P be the number of all such pairs, we shall see that

|F|-kl-(n—k)!'=P<(n—-1)k,

which would imply the desired upper bound on |F]|.

To see the first equality, we count the pairs from the point of view of F' € F. For each
F € F, as it has size k, it can occurs consecutively in k! ways and the rest of the elements can
be arranged in (n — k)! ways, implying the equality above.

For the upper bound on P, it suffices to show that any cyclic permutation o € C, contains
as an interval at most k sets from F. To see this, fix a set F' € F that appears as an interval in
o, say with elements x1, ...,z in clockwise order. For each i € [k], denote by E; the interval on
o ending at z;, and by S; the interval starting at x; (so S; = Ex = F'). As F is an intersecting
family and F' € F, all other sets contained as an interval in ¢ has to intersect F', and hence has
to be one of the sets in {S;, E;}ic[)- Note also that for each 1 <7 <k —1, E; N Sjy1 = J, and
so F can contain at most one from each pair {E;, Si+1}icjp—1]- Thus, o contains at most k sets
in F as intervals, finishing the proof. O

A more careful analysis of the proof yields the following.

Exercise 1.2. Prove that if n > 2k + 1, then stars are the unique extremal examples.



Exercise 1.3. Give a non-star extremal example of k-uniform intersecting family when n = 2k.

What about intersecting families that are not necessarily uniform? A non-uniform star is
still intersecting and has size 2"~1. This turns out to be again optimal.

Exercise 1.4. If F C 2[" is intersecting, then |F| < 2"~1.

Exercise 1.5. Give a non-star example of intersecting family of size 2771,

2 Counting maximal intersecting families

A recent application of the set-pair inequality is due to Balogh-Das-Delcourt-Liu-Sharifzadeh
on the number of maximal intersecting families.

n—1
As every subfamily of a star is also intersecting, there are at least 2(’6*1) many k-uniform
intersecting families. BDDLS determined the log-asymptotics of the number of uniform inter-
secting families.

Theorem 2.1. For all n > 2k + 1, the number of intersecting families on [n] is

o(1+o(D)(171)

We will not prove this statement here, but only remark that the bound on n here is optimal.
Indeed, when n = 2k, there are exponentially more uniform intersecting families.

n—1
Exercise 2.2. When n = 2k, there are at least 3(16*1) many k-uniform intersecting families.
On contrast, there are far fewetf'_-] maximal (under inclusion) intersecting families.

Theorem 2.3. The number of mazximal intersecting k-uniform families on [n] is at most
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We need some notations for its proof. Given a family of sets F, we denote by

OM
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I(F) = {Ge <[Z]) (VF e F, GﬂF#@}
the family of all sets intersecting every set in F. Note that F forms an intersecting family if and
only if F C Z(F), while F is maximal if and only if 7 = Z(F). Given a maximal intersecting
family, we call G C F a generating set if F = Z(G).

The idea of the proof is to show that every maximal intersecting family admits a small
generating set via set-pairs inequality, which then allows us to bound the number of maximal
intersecting families.

Proof of Theorem [2.5 Let Fy = {F1,Fa,...,Fs} C F be a minimal generating set of F. Ob-
serve that, by the minimality of Fy, we have F C Z (Fp \ {F;}) for each 1 < i < s. Hence for
each ¢ we can find some set G; € Z (Fo \ {F;})\F. Since G; € Z (Fo \ {Fi}), we have G;NF; # @
for all i # j. Moreover, since G; ¢ F = Z(Fy), we must further have G; N F; = @. Thus, we
can apply Bollobds set-pairs inequality to {F;} and {G;} and get that s < (215) Therefore,
|Fo| = s < (Zkk)

Map each maximal intersecting hypergraph F to a minimal generating set Fy C F. As
F =1ZI(Fp), this map is injective. We have shown above that |Fy| < (Qkk), and hence the number
of maximal intersecting hypergraphs is bounded by the number of sets of at most (Qkk) edges,
which is the sum above.

lwhen n > k.



3 Fractionally Helly theorem

The final application is a simple proof, due to Alon-Kalai, of the fractionally Helly theorem. We
will first lay out some backgrounds and prove it in the next lecture.

A collection A = {Ay,..., A} of convex sets in RY is pierced by a point, if they have non-
empty common intersection: NA := N;cpA; # J. Helly’s theorem is a fundamental theorem in
discrete geometry, deriving information of global intersection from information of local intersec-
tion.

Theorem 3.1 (Helly’s theorem 1913). Let F be a collection of convexr sets in R If every

(d+ 1)-tuples A € (dil) satisfy NA # @&, then NF # &.

There is a colourful version, which we state without proving it here.

Theorem 3.2 (Colourful Helly). Let Fi,..., Fqy1 be collections of convex sets in R, If every
rainbow (d + 1)-tuples A = {F1,...,Fa11}, F; € F; for each i € [d + 1], satisfy NA # &, then
there exists i € [d + 1] such that NF; # .

The fractional Helly theorem says that if in a family of convex sets in R%, a positive fraction
of (d + 1)-tuples are each pierced by a point, then a positive fraction of all sets have non-empty
common intersection.

Theorem 3.3 (Fractionally Helly theorem). Let o € (0,1) and F be a collection of convez sets

in R, If at least O‘(c‘lill) many (d + 1)-tuples A € (dfl) satisfy NA # &, then there exists a

subcollection F' C F such that N\F' # & and |F'| > B|F|, where § > (1 — (1 — a)ﬁ).

Note that the bound above on 3 is optimal. Take, for instance, d =2 and = (1—(1— a)%),
and let F consist of 3|F| many copies of R? and (1 — 3)|F| many lines in general position, i.e.
no three cross a common point. Then every triple involving at most one line is pierced by a
(1)-(¢-27)

()

point, which is of = a + o(1) fraction.
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