Lecture 10. Extremal set theory, part 2

Hong Liu

16th May 2021

Today we start with the classical Erdős-Ko-Rado theorem and give a beautiful doublecounting proof of it by Katona. Then we continue from last time to present two more applications of set-pairs inequalities, one on counting the maximal intersecting families and the other one on fractional Helly theorem.

1 Erdős-Ko-Rado and Katona's proof

Let us first state the classical Erdős-Ko-Rado theorem. A family $\mathcal{F} \subseteq 2^{[n]}$ of subsets of $[n]$ is intersecting if sets in \mathcal{F} are pairwise intersecting, i.e. for any $F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime} \neq \varnothing$. The question we are interested in here is how large can a k-uniform intersecting family be? We may assume that the ground set is of size at least $2 k$, for otherwise every two k-sets would intersect.

Let us start by constructing a (large) uniform intersecting family. If we fix an element and take all k-sets containing this element, then the resulting family is certainly intersecting; we call such a family a star. Note that a star has size $\binom{n-1}{k-1}$. Can we do better? Erdős-Ko-Rado says "no".

Theorem 1.1 (Erdős-Ko-Rado). Let $n \geq 2 k$. If a system \mathcal{F} of k-sets in $[n]$ is intersecting, then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1} .
$$

Proof. Let C_{n} be the set of all cyclic permutation of $[n]$ and so $\left|C_{n}\right|=(n-1)$!. We shall double count the pairs (σ, F) of $\sigma \in C_{n}$ and $F \in \mathcal{F}$ such that F forms an interval in σ, i.e. elements of F appear consecutively in σ. Let P be the number of all such pairs, we shall see that

$$
|\mathcal{F}| \cdot k!\cdot(n-k)!=P \leq(n-1)!\cdot k,
$$

which would imply the desired upper bound on $|\mathcal{F}|$.
To see the first equality, we count the pairs from the point of view of $F \in \mathcal{F}$. For each $F \in \mathcal{F}$, as it has size k, it can occurs consecutively in k ! ways and the rest of the elements can be arranged in $(n-k)$! ways, implying the equality above.

For the upper bound on P, it suffices to show that any cyclic permutation $\sigma \in C_{n}$ contains as an interval at most k sets from \mathcal{F}. To see this, fix a set $F \in \mathcal{F}$ that appears as an interval in σ, say with elements x_{1}, \ldots, x_{k} in clockwise order. For each $i \in[k]$, denote by E_{i} the interval on σ ending at x_{i}, and by S_{i} the interval starting at x_{i} (so $S_{1}=E_{k}=F$). As \mathcal{F} is an intersecting family and $F \in \mathcal{F}$, all other sets contained as an interval in σ has to intersect F, and hence has to be one of the sets in $\left\{S_{i}, E_{i}\right\}_{i \in[k]}$. Note also that for each $1 \leq i \leq k-1, E_{i} \cap S_{i+1}=\varnothing$, and so \mathcal{F} can contain at most one from each pair $\left\{E_{i}, S_{i+1}\right\}_{i \in[k-1]}$. Thus, σ contains at most k sets in \mathcal{F} as intervals, finishing the proof.

A more careful analysis of the proof yields the following.
Exercise 1.2. Prove that if $n \geq 2 k+1$, then stars are the unique extremal examples.

Exercise 1.3. Give a non-star extremal example of k-uniform intersecting family when $n=2 k$.
What about intersecting families that are not necessarily uniform? A non-uniform star is still intersecting and has size 2^{n-1}. This turns out to be again optimal.

Exercise 1.4. If $\mathcal{F} \subseteq 2^{[n]}$ is intersecting, then $|\mathcal{F}| \leq 2^{n-1}$.
Exercise 1.5. Give a non-star example of intersecting family of size 2^{n-1}.

2 Counting maximal intersecting families

A recent application of the set-pair inequality is due to Balogh-Das-Delcourt-Liu-Sharifzadeh on the number of maximal intersecting families.

As every subfamily of a star is also intersecting, there are at least $2^{\binom{n-1}{k-1}}$ many k-uniform intersecting families. BDDLS determined the log-asymptotics of the number of uniform intersecting families.

Theorem 2.1. For all $n \geq 2 k+1$, the number of intersecting families on $[n]$ is

$$
2^{(1+o(1))\binom{n-1}{k-1}}
$$

We will not prove this statement here, but only remark that the bound on n here is optimal. Indeed, when $n=2 k$, there are exponentially more uniform intersecting families.

Exercise 2.2. When $n=2 k$, there are at least $3^{\binom{n-1}{k-1}}$ many k-uniform intersecting families.
On contrast, there are far fewer ${ }^{1}$ maximal (under inclusion) intersecting families.
Theorem 2.3. The number of maximal intersecting k-uniform families on $[n]$ is at most

$$
\left.\sum_{i=0}^{\binom{2 k}{k}}\binom{n}{k}\right) \leq\binom{ n}{i}{ }^{\binom{2 k}{k}}
$$

We need some notations for its proof. Given a family of sets \mathcal{F}, we denote by

$$
\mathcal{I}(\mathcal{F})=\left\{G \in\binom{[n]}{k}: \forall F \in \mathcal{F}, G \cap F \neq \emptyset\right\}
$$

the family of all sets intersecting every set in \mathcal{F}. Note that \mathcal{F} forms an intersecting family if and only if $\mathcal{F} \subset \mathcal{I}(\mathcal{F})$, while \mathcal{F} is maximal if and only if $\mathcal{F}=\mathcal{I}(\mathcal{F})$. Given a maximal intersecting family, we call $\mathcal{G} \subset \mathcal{F}$ a generating set if $\mathcal{F}=\mathcal{I}(\mathcal{G})$.

The idea of the proof is to show that every maximal intersecting family admits a small generating set via set-pairs inequality, which then allows us to bound the number of maximal intersecting families.

Proof of Theorem 2.3. Let $\mathcal{F}_{0}=\left\{F_{1}, F_{2}, \ldots, F_{s}\right\} \subseteq \mathcal{F}$ be a minimal generating set of \mathcal{F}. Observe that, by the minimality of \mathcal{F}_{0}, we have $\mathcal{F} \subsetneq \mathcal{I}\left(\mathcal{F}_{0} \backslash\left\{F_{i}\right\}\right)$ for each $1 \leq i \leq s$. Hence for each i we can find some set $G_{i} \in \mathcal{I}\left(\mathcal{F}_{0} \backslash\left\{F_{i}\right\}\right) \backslash \mathcal{F}$. Since $G_{i} \in \mathcal{I}\left(\mathcal{F}_{0} \backslash\left\{F_{i}\right\}\right)$, we have $G_{i} \cap F_{j} \neq \varnothing$ for all $i \neq j$. Moreover, since $G_{i} \notin \mathcal{F}=\mathcal{I}\left(\mathcal{F}_{0}\right)$, we must further have $G_{i} \cap F_{i}=\varnothing$. Thus, we can apply Bollobás set-pairs inequality to $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$ and get that $s \leq\binom{ 2 k}{k}$. Therefore, $\left|\mathcal{F}_{0}\right|=s \leq\binom{ 2 k}{k}$.

Map each maximal intersecting hypergraph \mathcal{F} to a minimal generating set $\mathcal{F}_{0} \subset \mathcal{F}$. As $\mathcal{F}=\mathcal{I}\left(\mathcal{F}_{0}\right)$, this map is injective. We have shown above that $\left|\mathcal{F}_{0}\right| \leq\binom{ 2 k}{k}$, and hence the number of maximal intersecting hypergraphs is bounded by the number of sets of at most $\binom{2 k}{k}$ edges, which is the sum above.

[^0]
3 Fractionally Helly theorem

The final application is a simple proof, due to Alon-Kalai, of the fractionally Helly theorem. We will first lay out some backgrounds and prove it in the next lecture.

A collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of convex sets in \mathbb{R}^{d} is pierced by a point, if they have nonempty common intersection: $\cap \mathcal{A}:=\cap_{i \in[k]} A_{i} \neq \varnothing$. Helly's theorem is a fundamental theorem in discrete geometry, deriving information of global intersection from information of local intersection.

Theorem 3.1 (Helly's theorem 1913). Let \mathcal{F} be a collection of convex sets in \mathbb{R}^{d}. If every ($d+1$)-tuples $\mathcal{A} \in\binom{\mathcal{F}}{d+1}$ satisfy $\cap \mathcal{A} \neq \varnothing$, then $\cap \mathcal{F} \neq \varnothing$.

There is a colourful version, which we state without proving it here.
Theorem 3.2 (Colourful Helly). Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{d+1}$ be collections of convex sets in \mathbb{R}^{d}. If every rainbow $(d+1)$-tuples $\mathcal{A}=\left\{F_{1}, \ldots, F_{d+1}\right\}, F_{i} \in \mathcal{F}_{i}$ for each $i \in[d+1]$, satisfy $\cap \mathcal{A} \neq \varnothing$, then there exists $i \in[d+1]$ such that $\cap \mathcal{F}_{i} \neq \varnothing$.

The fractional Helly theorem says that if in a family of convex sets in \mathbb{R}^{d}, a positive fraction of $(d+1)$-tuples are each pierced by a point, then a positive fraction of all sets have non-empty common intersection.

Theorem 3.3 (Fractionally Helly theorem). Let $\alpha \in(0,1)$ and \mathcal{F} be a collection of convex sets in \mathbb{R}^{d}. If at least $\alpha\binom{|\mathcal{F}|}{d+1}$ many $(d+1)$-tuples $\mathcal{A} \in\binom{\mathcal{F}}{d+1}$ satisfy $\cap \mathcal{A} \neq \varnothing$, then there exists a subcollection $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ such that $\cap \mathcal{F}^{\prime} \neq \varnothing$ and $\left|\mathcal{F}^{\prime}\right| \geq \beta|\mathcal{F}|$, where $\beta \geq\left(1-(1-\alpha)^{\frac{1}{d+1}}\right)$.

Note that the bound above on β is optimal. Take, for instance, $d=2$ and $\beta=\left(1-(1-\alpha)^{\frac{1}{3}}\right)$, and let \mathcal{F} consist of $\beta|\mathcal{F}|$ many copies of \mathbb{R}^{2} and $(1-\beta)|\mathcal{F}|$ many lines in general position, i.e. no three cross a common point. Then every triple involving at most one line is pierced by a point, which is of $\frac{\binom{|\mathcal{F}|}{3}-\left(\begin{array}{c}(1-\beta)| | \mathcal{F} \mid\end{array}\right)}{\binom{|\mathcal{F J}|}{3}}=\alpha+o(1)$ fraction.

[^0]: ${ }^{1}$ when $n \gg k$.

