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1 Turán theorem

Let us start with a fun puzzle. Suppose we can choose n irrational numbers x1, . . . , xn. How
can we maximise the number of pairs (xi, xj) such that xi + xj is rational? We shall see soon
why this puzzle is relevant.

One of the most classical problems in extremal graph theory, nowadays so-called Turán-type
problem, is:

Problem 1.1 (Turán-type). How dense a graph can be without containing another graph as a
subgraph?

More specifically, given a graph H, we say a graph G contains a copy of H, or H is a
subgraph of G, denoted by H ⊆ G, if there is an injective map ϕ : V (H)→ V (G) that preserves
adjacencies, i.e. for any uv ∈ E(H), we have ϕ(u)ϕ(v) ∈ E(G). We call such a map an embedding
of H in G. We say G is H-free if it does not contain H as a subgraph.

In Turán-type Problem 1.1, we study the extremal number of a graph H, defined as

ex(n,H) = max{e(G) : |G| = n and G is H-free},

i.e. the maximum size of an n-vertex H-free graph. We call an n-vertex graph G an extremal
graph for H, if G is H-free of maximum size, i.e. e(G) = ex(n,H). One of the earliest applications
of extremal graph theory, by Erdős, is to construct dense multiplicative Sidon set of integers
using a graph without 4-cycles.

The first result in extremal graph theory is the following theorem of Mantel, which answers
Problem 1.1 when forbidding triangles as subgraphs.

Theorem 1.2 (Mantel 1907). Let G be an n-vertex graph. If G is triangle-free, then

e(G) ≤ ex(n,K3) = bn2/4c.

Exercise 1.3. Solve the puzzle at the beginning of this section, i.e. find the maximum number
of pairs of irrationals (xi, xj) with xi + xj being rational.

Exercise 1.4. Prove that for any k-vertex tree T , ex(n, T ) ≤ kn.

Mantel’s result in fact shows that extremal graph for triangle is Kbn/2c,dn/2e. This answers
also the following natural question for triangles.

Problem 1.5 (Extremal structure/Stability). How do H-extremal graphs look like? What
about almost extremal graphs1, do they look like extremal ones?

Theorem 1.2 was later generalised by Turán to forbidding larger cliques. To state his result,
we need to define a special family of graphs. Let r ∈ N, the r-partite Turán graph on n vertices,
denoted by Tr(n), is the balanced complete r-partite n-vertex graph, i.e. each partite set is of
size either bn/rc or dn/re. Clearly, Tr(n) is Kr+1-free.

1We say G is almost extremal for H if G is H-free and close to maximum size, i.e. e(G) ≥ ex(n,H)− o(n2).
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Theorem 1.6 (Turán 1941). Let r ≥ 2 be an integer and G be an n-vertex graph. If G is
Kr+1-free, then

e(G) ≤ ex(n,Kr+1) = e(Tr(n)) =

(
1− 1

r

)
n2

2
−O(r).

Furthermore, the Turán graph Tr(n) is the unique extremal graph.

We see from Turán theorem that there is a unique extremal graph Tr(n). The following
theorem of Erdős and Simonovits shows that this problem is stable in the sense that every almost
extremal graph must be close in structure to the extremal Turán graph, answering Problem 1.5
for cliques.

Theorem 1.7 (Erdős-Simonovits stability 1966). Let ε > 0, there exists δ > 0 such that the
following holds. Let G be an n-vertex Kr+1-free graph. If

e(G) ≥ ex(n,Kr+1)− δn2,

then G can be changed to Tr(n) by altering at most εn2 adjacencies.

There are many proofs of Turán theorem, one of which is Zykov’s symmetrisation. We shall
present a proof of an asymptotic version using a variation of symmetrisation due to Motzkin
and Straus. In particular, Theorem 1.7 follows from Theorem 2.1 below.

1.1 Notation

For a vector v ∈ Rk, its `p-norm is ‖v‖p = (
∑

i∈[k] v
p
i )1/p. For a k-by-k real symmetric matrix

A, without further specification, we order its eigenvalues non-increasingly as λ1 ≥ . . . ≥ λk; its
Frobenius, or Hilbert–Schmidt, norm is

‖A‖F =

 ∑
i,j∈[k]

a2i,j

1/2

=
√

tr(A2) =
√
λ21 + . . .+ λ2k.

When a graph G is given, we write AG for its adjacency matrix.

2 Symmetrisation à la Motzkin-Straus

Motzkin and Straus gave a continuous version of Zykov’s symmetrisation, implying an asymtotic
version of Turán’s theorem. To state their version, we need a couple of notations. For an n-vertex
graph G and x ∈ Rn, define the quadratic form

fG(x) = xTAGx =
∑

i,j∈[n]: vivj∈E(G)

xixj .

Write Sn for the simplex

Sn =
{
x ∈ Rn : ∀i ∈ [n], xi ≥ 0 and

∑
i∈[n]

xi = 1
}
.

We can think of x ∈ Sn as a weight function on V (G). Then each x corresponds naturally to a
weighted subgraph Gx of G, and the quadratic form above records its size: fG(x) = 2e(Gx). In
particular, fG(( 1

n , . . . ,
1
n)T ) = 2

n2 e(G).

Theorem 2.1 (Motzkin-Straus). Let G be an n-vertex graph with clique number ω(G) = k, and
x ∈ Sn. Then there exists y ∈ Sn such that fG(y) ≥ fG(x) and supp(y) = Kk. In particular,

fG(x) ≤ k − 1

k
, ∀x ∈ Sn.
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The idea of the proof is ‘mass transportation’: if x has mass on two coordinates corresponding
to a pair of non-adjacent vertices, then we can move the mass from one coordinate to another
without decreasing fG(·). This eventually leads to a vector whose support induces a clique.

Proof of Theorem 2.1. Take y ∈ Sn with minimal support such that fG(y) ≥ fG(x). Suppose to
the contrary that {v1, v2} ⊆ supp(y) is an independent set, then for any z = (z1, z2, 0, . . . , 0)T ,
we have zTAz = 0. Consequently, for any α ∈ R, writting a = 2αAGy, we have

fG(y + αz) = fG(y) + aT · z.

Now, setting z2 = −z1 and choosing appropriate z1, we get aT · z = (a1 − a2)z1 ≥ 0.
Then choosing appropriate α, we obtain y′ = y + αz ∈ Sn such that fG(y′) ≥ fG(y) and
supp(y′) ⊆ supp(y) \ {vi} for some i ∈ [2], contradicting the choice of y.

Exercise 2.2. Prove the ‘In particular’ part of Theorem 2.1.

Füredi and Maleki recently extend the symmetrisation to multi-colour case.

Exercise 2.3. Let G be an n-vertex graph, G1, G2 ⊆ G be its subgraphs, and x ∈ Sn. Then
there exists y ∈ Sn such that fGi(y) ≥ fGi(x) for each i ∈ [2] and α(G[supp(y)]) ≤ 2.

2.1 A quick application

For a real symmetric matrix A, we can use its Frobenius norm to bound its largest eigenvalue.
By definition, we have λ21 ≤ tr(A2) = ‖A‖2F . This can be improved as follows. Note that
the bound below is tight for cliques. Indeed, the adjacency matrix of Kk has λ1 = k − 1 and
Frobenius norm

√
k2 − k.

Exercise 2.4. Let G be a graph with clique number k and A be its adjacency matrix. Then

λ1(A)2 ≤ k − 1

k
‖A‖2F .
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