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Abstract

In this note, we will cover some methods on robust sublinear expander. Based on a notion
of expander introduced in the 90s by Komlós and Szemerédi, this concept has been recently
developed, bringing versatile building blocks that can be found in general graphs. It has
proven to be a powerful tool for embedding sparse graphs, playing an essential role in the
recent resolutions of several long-standing conjectures that were previously out of reach.
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1 Introduction

Expanders are typically well connected sparse graphs in which vertex subsets exhibit expansions.
Originally introduced for network design, expanders, apart from being a central notion in graph
theory, have also close interplay with other areas of mathematics and as well as theoretical com-
puter science. This is partially reflected by the fact that expanders have equivalent definitions
from different angles. Indeed, in terms of graph expansions, an expander is a graph whose vertex
subsets have large neighbourhood; while algebraically, there is a spectral gap when you look at
its adjacency matrix; and probabilistically, random walks on expanders are rapidly mixing.

Expanders studied so far usually have constant expansion. In this note, we will discuss yet
another variant of expander, first introduced by Komlós and Szemerédi in the 90s [3, 4]. This
notion of expander, albeit having weak (sublinear) expansion, has been a key part of recent
advancements on sparse embedding problems. In particular, building on this notion, several
versatile building blocks have been introduced recently [1, 2, 5, 6], and methods around these
structures developed settle many open problems on sparse embeddings that have been elusive
for decades.

We will go over:

• the motivation of the building blocks introduced;

• how we can find such substructures in general graphs;

• how we put these “lego pieces” together to embed sparse graphs.

Below is a list of material that will be covered in this note. Our emphasis will not be to give
an overview of the proof, but rather to talk about various useful properties of this expander, and
illustrate, through taking bits here and there from [1]–[6], the use of these properties in different
problems on embedding sparse graphs.

◦ Introduce sublinear expander and prove that in any general graph, there is a subexpander
with almost the same average degree. Then we will see its original application: the theorem
of Komlós-Szemerédi stating that average degree d forces KΩ(

√
d)-subdivision [3, 4].

♠ Introduce unit/web structure and illustrate how to handle expanders with medium dens-
ity. For this, we will consider Komlós’s conjecture (1981) which states that among all
graphs with given minimum degree, complete graphs minimise the number of Hamiltonian
subsets [2].

♥ Show a basic max-degree reduction. For this, we look at Mader’s conjecture (1999) that
C4-free graphs with average degree d contains KΩ(d)-subdivision [5].

♣ Present an approach for working in almost regular sparse expanders. For this, we shall
see that (3

2 + o(1))d average degree forces any d-vertex planar graph as a minor, and the
constant 3

2 is optimal [1]. Then introduce nakji structure and outline a strategy to reduced
problems to almost regular graphs.

♦ Introduce adjuster structure and briefly explain the basic idea behind the solutions of

? Erdős-Hajnal’s problem (1966) that in graphs with infinite chromatic number, the
harmonic sum of odd cycle lengths is infinite; and

? $1000 problems of Erdős on unavoidable cycle length in graphs with large (but con-
stant) average degree [6].
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2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. Given a set X and k ∈ N, let
(
X
k

)
the family of all k-sets in X.

For brevity, we write v for a singleton set {v} and xy for a set of pairs {x, y}. We write a = b±c
if b − c ≤ a ≤ b + c. If we claim that a result holds whenever we have 0 < a � b, c � d < 1,
it means that there exist positive functions f, g such that the result holds as long as a < f(b, c)
and b < g(d) and c < g(d). We will not compute these functions explicitly. In many cases, we
treat large numbers as if they are integers, by omitting floors and ceilings if it does not affect
the argument. We write log for the base-e logarithm.

A graph H is a minor of G, denoted by H ≺ G, if H can be obtained from G by vertex/edge
deletions and edge contractions. Here contracting an edge uv in G means identifying u and v to
a new vertex w and setting the neighbourhood of w to be the union of u, v’s neighbourhoods.
Equivalently, H ≺ G if there are pairwise vertex disjoint sets Vx ⊆ V (G), indexed by x ∈ V (H),
such that the subgraph induced G[Vx] is connected for each x ∈ V (H) and for any xy ∈ E(H),
there is a Vx, Vy-edge in G.

A special kind of minor is that of topological minor or subdivision. A subdivision of H is
obtained from replacing each edge of H by pairwise internally vertex disjoint paths. This notion
connects topology and graph theory. The well-known Kuratowski’s theorem (1930) states that
a graph is planar if and only if it does not contain K5 or K3,3 as subdivisions.

Given graphs H and G, in a copy of H-subdivision in G, we call the vertices that correspond
to V (H) the anchor vertices of the subdivision. For a given path P = x1 . . . xt, we write
Int(P ) = {x2, . . . , xt−1} to denote the set of its internal vertices. Given a graph H, a set of
vertices S ⊆ V (H) and a subgraph F ⊆ H, denote by H − S = H[V (H) \ S] the subgraph
induced on V (H) \ S and by H \F the spanning subgraph obtained from H by removing edges
in F .

Given a graph G, denote its average degree 2e(G)/|G| by d(G). For two sets X,Y ⊆ V (G),
the (graph) distance between them is the length of a shortest path from X to Y . For two
graphs G,H, we write G∪H to denote the graph with vertex set V (G)∪V (H) and the edge set
E(G) ∪E(H). A k-star denotes a copy of K1,k which is a star with k edges. Given a collection
of graphs F = {Fi : i ∈ I}, we write V (F) =

⋃
i∈I V (Fi) and |F| = |I|. For path P and a vertex

set U , we write P |U for the induced subgraph of P on vertex set V (P ) ∩ U .
For a set of vertices X ⊆ V (G) and i ∈ N, denote

N i(X) := {u ∈ V (G) : the distance between X and u is exactly i}

the i-th sphere/layer around X, and write N0(X) = X, N(X) := N1(X), and for i ∈ N∪{0}, let
Bi(X) =

⋃i
j=0N

j(X) be the ball of radius i around X. We write ∂(X) for the edge-boundary
of X, that is, the set of edges between X and V (G) \X in G. Given another set Z ⊆ V (G), we
write N(X,Z) = N(X) ∩ Z for the set of neighbours of X in Z.

3 Robust sublinear expander

To define the robust graph expansion, we need the following function. For ε1 > 0 and t > 0, let
ρ(x) be the function

ρ(x) = ρ(x, ε1, t) :=

{
0 if x < t/5,

ε1/ log2(15x/t) if x ≥ t/5,
(1)

where, when it is clear from context we will not write the dependency on ε1 and t of ρ(x). Note
that when x ≥ t/2, while ρ(x) is decreasing, ρ(x) · x is increasing.

Komlós and Szemerédi [3, 4] introduced a notion of expander G in which any set X of
reasonable size expands by a sublinear factor, that is, |NG(X)| ≥ ρ(|X|)|X|. We shall extend
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this notion to a robust one such that similar expansion occurs even after removing a relatively
small set of edges.

Definition 3.1. (ε1, t)-robust-expander: A graph G is an (ε1, t)-robust-expander if

• for any subset X ⊆ V (G) of size t/2 ≤ |X| ≤ |G|/2,

• and any subgraph F ⊆ G with e(F ) ≤ d(G) · ρ(|X|)|X|,

where ρ(·) is as in (1), then we have

|NG\F (X)| ≥ ρ(|X|)|X|.

Recall that when x ≥ t/2, while ρ(x) is decreasing as x increases, ρ(x) · x is increasing.
Therefore, though the expansion (relative to the size of the set X) becomes weaker as the size
of the set X increases, the size of each layer while expanding, i.e. Nk

G(X), is increasing in size.
One imperative feature of this (weak) sublinear expander is that any graph contains one

such expander subgraph which, furthermore, is almost as dense as the original graph, as shown
by Komlós and Szemerédi [3, 4].

Theorem 3.2 ([3]Theorem 2.2). There exists some ε1 > 0 such that the following holds for
every t > 0. Every graph G has an (ε1, t)-expander subgraph H with d(H) ≥ d(G)/2 and
δ(H) ≥ d(H)/2.

Remark 3.3. It is a good time now to point out some pros and cons.

• First of all, though almost retaining the average degree, the expander subgraph H could
be much smaller than G in order. For instance, if G is a union of many vertex disjoint
small cliques, then H could be just one of those cliques.

Such drawback often makes it difficult to utilise expanders iteratively within graphs. If the
expander subgraph H shrinks too much, then it might not inherit some useful properties
of G. For example, as we shall see later, it is often time useful to have a ‘bounded’
maximum degree condition, say ∆(G) = (log |G|)O(1), which could mean nothing to H if
|H| < log |G|.

• Taking ρ(x) ∼ 1
log2 x

is for a clean presentation. We are allowed to take this sublinear

expansion factor to be 1
log x·(log log x)O(1) . This is almost optimal, as beyond this point, it is

known that there are graphs without subgraph with expansion rate (log log x)Ω(1)

log x .

• Here, t is free to choose. For most of the problems that we shall see later, it will be linear
in the average degree d(G). The trade-off for choosing larger t is the following:

– small sets might not expand, as ρ(x) = 0 for x < t/5;

– large sets have (slightly) better expansion, as ρ(x, ε1, t) is increasing with t.

One nature example to choose t other than Θ(d(G)) is when G is Ks,t-free, say 2 ≤ s ≤ t.
We can take instead t ∼ d(G)

s
s−1 to get better expansion for large sets without losing

small sets expansion. Indeed, sets up to size d(G)
s

s−1 expand as ex(n,Ks,t) = O(n2−1/s)
(see e.g. Proposition 5.2 in [5]).

We shall prove the following slightly stronger version of Theorem 3.2.

Lemma 3.4. Let C > 30, ε1 ≤ 1/(10C), t > 0 and ρ(x) = ρ(x, ε1, t) as in (1). Then every
graph G has an (ε1, t)-robust-expander subgraph H with d(H) ≥ (1 − δ)d(G), where δ := Cε1

log 3 ,
and δ(H) ≥ d(H)/2.
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3.1 Small diameter

Beforing proving Lemma 3.4, we would like to show first a key property of expanders which is
the starting point of all constructions to come. That is, expanders have small (polylogarithmic)
diameter.

The following lemma shows that in an expander, we can connect two sets X1, X2 using a
short path while avoiding another set W as long as W is a bit smaller than X1, X2. The proof is
straightforward, basically expand X1, X2 until they meet and W is too small to block any layer
during expanding.

Lemma 3.5 ([4]Corollary 2.3). If G is an n-vertex (ε1, t)-robust-expander, then for any two
vertex sets X1, X2 each of size at least x ≥ t/2, and a vertex set W of size at most ρ(x)x/4,
there exists a path in G−W between X1 and X2 of length at most

2

ε1
log3

(
15n

t

)
.

Proof. By the expansion property of G and that ρ(x)x is increasing with x, we have, for each
i ∈ N, that

|NG(Bi−1
G−W (X1))| ≥ ρ(|Bi−1

G−W (X1)|)|Bi−1
G−W (X1)| ≥ ρ(x)x ≥ 4|W |.

Thus, |NG−W (Bi−1
G−W (X1))| ≥ |NG(Bi−1

G−W (X1))| − |W | ≥ 1
2 |NG(Bi−1

G−W (X1))|.
Next, as ρ(x) is decreasing with x when x ≥ t/2, we see that

|NG−W (Bi−1
G−W (X1))| ≥ 1

2
ρ(|Bi−1

G−W (X1)|)|Bi−1
G−W (X1)| ≥ 1

2
ρ(n)|Bi−1

G−W (X1)|.

That is, in G−W , X1 expands each time at least a factor of (1 + 1
2ρ(n)) until it gets larger than

n/2:

|Bi
G−W (X1)| ≥

(
1 +

1

2
ρ(n)

)i
x.

Solving (1 + 1
2ρ(n))r > n/2, we see that for r = 1

ε1
log3(15n

t ), Br
G−W (Xi), i ∈ [2], have size larger

than n/2 each, hence they intersect, yielding the desired short X1, X2-path avoiding W .

Note that we do not require W to be disjoint from X1, X2 above.

Remark 3.6. Lemma 3.5 is a key ingredient in applying sublinear expander. One drawback,
though, is that, apart from the connecting path being short (O(log3 n)), we have no control on
the length of the path. For instance, not to mention a specified length, the proof above cannot
even guarantee a path of length that is say 0 mod 3. We will come back to this in Section 8.

3.2 Proof of the robust expander lemma

In this subsection, we give the proof of Lemma 3.4. Recall that our goal is to find within G an
expander subgraph.

The idea is the following. If G is an expander already, then we are home, so there is a set
X that expands poorly in G. Then observe that, as N(X) is small, we can pass from G to a
smaller subgraph, either G[X ∪N(X)] or G −X, without losing much average degree. To use
this observation, define a graph functional (see φ(G) in (4)) that penalise passing to a smaller
subgraph. Then, a graph maximising this functional is necessarily an expander.

We now make the above idea rigorous. First set up some functions as follows. For C > 0
and x ≥ 1, define

γ(x) = C

∫ ∞
x

ρ(u)

u
du.
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Note that γ(x) is a decreasing function. We will make use of the following two inequalities:

γ(1) = γ(t/5) = C

∫ ∞
t/5

ε1

u log2(15u/t)
du =

Cε1

log 3
= δ < 1; (2)

and, for C ′ > 1 and x ≥ t/2, since ρ(x) is decreasing and ρ(x) ·x is increasing with x for x ≥ t/2,
we have

γ(x)−γ(C ′x) = C

∫ C′x

x

ρ(u)

u
du ≥ Cρ(C ′x)

∫ C′x

x

1

u
du = C logC ′ ·ρ(C ′x) ≥ C logC ′

C ′
ρ(x). (3)

Now, for a graph G, define
φ(G) = d(G)[1 + γ(|G|)]. (4)

We say that G is φ-maximal if
φ(G) = max

H⊆G
φ(H).

Claim 3.7. If G is φ-maximal, then d(G) = maxH⊆G d(H) and δ(G) ≥ d(G)/2.

Proof of claim. Since γ(x) is decreasing, for any H ⊆ G, by the φ-maximality of G, we have
that d(G)[1 + γ(|G|)] ≥ d(H)[1 + γ(|H|)] and consequently d(G) ≥ d(H).

Suppose there is a vertex v with d(v) < d(G)/2. Let H := G− v, then

d(H) =
d(G)|G| − 2d(v)

|G| − 1
> d(G),

a contradiction. �

Take H ⊆ G such that H is φ-maximal. We will show that H is the desired robust expander.
By Claim 3.7, δ(H) ≥ d(H)/2. Since H is φ-maximal and that γ(x) is decreasing, we have

d(H) ≥ d(G)(1 + γ(|G|))
1 + γ(|H|)

≥ d(G)

1 + γ(1)
≥ (1− γ(1))d(G)

(2)
= (1− δ)d(G).

We are left to show that H has the claimed expansions.
Note that, since H is φ-maximal, for any K ⊆ H,

d(K) ≤ 1 + γ(|H|)
1 + γ(|K|)

· d(H) ≤ d(H). (5)

Fix an arbitrary X ⊆ V (H) with t/2 ≤ |X| ≤ |H|/2,1 and an arbitrary subgraph F ⊆ H
with e(F ) ≤ d(H)ρ(|X|)|X|. Let Y = X ∪NH\F (X) and X = V (H) \X. Then,

d(H)(|X|+ |X|) = 2e(H) ≤ 2e(H[Y ]) + 2e(H[X]) + 2e(F )

(5)

≤ d(H[Y ])|Y |+ d(H)|X|+ 2d(H) · ρ(|X|) · |X|.

Consequently, we have

d(H)|X| ≤ d(H[Y ])|Y |+ 2d(H) · ρ(|Y |) · |Y |
(5)

≤
(

1 + γ(|H|)
1 + γ(|Y |)

+ 2ρ(|Y |)
)
d(H)|Y |,

and so
|X|
|Y |
≤ 1 + γ(|H|)

1 + γ(|Y |)
+ 2ρ(|Y |).

1Note that if |H| < t, then the lemma is vacuously true.
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Thus,

|NH\F (X)|
|Y |

= 1− |X|
|Y |
≥ γ(|Y |)− γ(|H|)

1 + γ(|Y |)
− 2ρ(|Y |)

(2)

≥ γ(|Y |)− γ(|H|)
2

− 2ρ(|Y |).

Now, if |Y | ≥ 3|H|/4, then |NH\F (X)| = |Y | − |X| ≥ |H|/4 ≥ |X|/2 ≥ ρ(|X|) · |X|, yielding
the desired robust vertex expansion. If |Y | ≤ 3|H|/4, then applying (3) with C ′ = 4/3, we have,
as γ(x) is decreasing and C ≥ 30, that

|NH\F (X)|
|Y |

≥ γ(|Y |)− γ(|H|)
2

− 2ρ(|Y |) ≥ γ(|Y |)− γ(4|Y |/3)

2
− 2ρ(|Y |)

≥ C log(4/3)

8/3
· ρ(|Y |)− 2ρ(|Y |) ≥ ρ(|Y |).

Finally, as ρ(x)x is increasing with x, we have |NH\F (X)| ≥ ρ(|Y |)|Y | ≥ ρ(|X|)|X|.
This finishes the proof of Lemma 3.4.

3.3 High connectivity

It should not come as surprise that expanders are highly connected. We show the following
version with t ∼ d(H).

Proposition 3.8. Let 0 < ε1, ε2 < 1, d > 0 and ρ(x) = ρ(x, ε1, ε2d) as in (1). Let H be an
n-vertex (ε1, ε2d)-robust-expander with δ(H) ≥ d, then H is νd-connected, where ν := ε1

4 log2( 15n
2ε2

)
.

Proof. Suppose H has a vertex cut S of size less than νd, where ν = ε1
4 log2( 15

2ε2
)
. Let X be the

smallest component in H − S. Then x := |X| < |H|/2. On the other hand, for any vertex
v ∈ X, we have NH(v) ⊆ X ∪ S. Since δ(H) ≥ d, we have that

|X| ≥ δ(H)− |S| > d

2
≥ ε2d

2
.

Thus, by the expansion property of H, |NH(X)| ≥ ρ(x)x. Now, since NH(X) ⊆ S and ρ(x)x is
increasing, we have

|S| ≥ |NH(X)| ≥ ρ(x)x ≥ ρ
(
d

2

)
d

2
= 2νd > |S|,

a contradiction.

3.4 Applying expander lemma

We have laid out the basics of the sublinear expanders and are now ready to see some applic-
ations. Summarising what we have so far, the following version of expander lemma combining
Lemma 3.4 and Proposition 3.8 is convenient to apply.

Lemma 3.9 (Sublinear expander lemma, [1]Lemma 3.2). Let C > 30, ε1 ≤ 1/(10C), ε2 <
1/2, d > 0 and ρ(x) = ρ(x, ε1, ε2d) as in (1). Then every graph G with d(G) = d has a subgraph
H such that

(i) H is an (ε1, ε2d)-robust-expander;

(ii) d(H) ≥ (1− δ)d, where δ := Cε1
log 3 ;

(iii) δ(H) ≥ d(H)/2;
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(iv) H is νd-connected, where ν := ε1
16 log2( 15

2ε2
)
.

As the expander subgraph H is almost as dense as the original graph G, when a prob-
lem is about graphs with given average/min degree, by passing to an expander guaranteed in
Lemma 3.9, we may assume our graph G itself is an expander. However, as mentioned in Re-
mark 3.3, we have now no control over the density of the expander. So, in many applications,
we have to work in separate cases depending on its density and employ different techniques.
Writing n = |G| and d = d(G), often time, the following division is useful:

• Dense case: d = Ω(n).

• Medium expander; (log n)Ω(1) ≤ d = o(n);

• Sparse expander: d = (log n)O(1)

When graphs have positive edge density, Szemerédi’s regularity lemma offers much stronger
pseudorandomness than the sublinear expansion. We shall focus here the latter two cases of
embedding in medium and sparse expanders.

Roughly speaking, for the applications that we shall see later, the goal is to find various
paths and the strategies can be succinctly summarised as follows.

Medium expanders are still relatively dense. So as long as the sets that we connect are large
enough, a greedy embedding usually suffices. The main task here then is to find vertices that
has ‘large vertex boundary’ to serve as endpoints.

For sparse expanders, if additionally we have ‘bounded’ maximum degree, then we can find
many vertices that are pairwise far apart to anchor. Then we can grow each of them till large
enough (without running into each other) and then connect. The main issue here is that the set
of high degree vertices, say L, would keep us from taking enough points far apart, and small sets
in G−L might not expand as G−L might not be an expander anymore. This can be overcome
in many cases as we shall see later.

4 Extremal problems on Subdivisions

In this section, we will see the original application of sublinear expanders by Komlós and Sze-
merédi [3] on embedding clique subdivisions.

The extremal problem for graph subdivisions started at Mader’s work in the 1960s, who
proved that constant average degree suffices to force subdivision of any fixed size. That is, for
any H, we can define

dT(H) := inf{c : d(G) ≥ c⇒ G contains H as a subdivision}.2

After this, Mader and independently Erdős and Hajnal conjectured in the 70s that quadratic
bound suffices to force a clique subdivision, i.e. dT(Kt) = O(t2). If true, this would be possible.

Exercise 4.1. If Kd,d contains a K`-subdivision, then ` = O(
√
d).

Mader-Erdős-Hajnal’s conjecture remained open for a couple of decades. It was resolved in
early 90s, by Bollobás and Thomason, and indepensently by Komlós and Szemerédi.

Applying Lemma 3.9, we may assume G is an n-vertex (ε1, ε2d)-expander with δ(G) ≥ d.
Now, if G is dense, i.e. d = Ω(n), then Alon, Krivelevich, Sudakov proved, using dependent

random choice, that G contains a 1-subdivision of KΩ(
√
n) (i.e. the paths replacing all clique

edges are of length 2).
To illustrate the basic use of sublinear expanders via Lemma 3.5, we shall prove here a weaker

bound with extra polylog-factor for medium expanders as follows.

2Here T stands for topological minor.
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Theorem 4.2. Let 0 < ε1 < 1, then there exist d0 such that the following holds for any
d ≥ d0 and n ∈ N with d ≥ n0.0001. Let G be an n-vertex (ε1, d)-expander with δ(G) ≥ d, then
TK√d/ log4 d ⊆ G.

Proof. Let t =
√
d/ log4 d and m = 2

ε1
log3(15n

d ). To get a TKt, take arbitrary t vertices v1, . . . , vt

to anchor and in arbitrary order connect pairs vi, vj , ij ∈
(

[t]
2

)
with paths Pij of length at most

2m each such that all paths Pij , ij ∈
(

[t]
2

)
, are pairwise internally vertex disjoint. This can

indeed be done as, using that d ≥ n0.0001, the total number of vertices in all paths is at most(
t
2

)
· 2m ≤ t2m < ρ(d)d/4. Since δ(G) ≥ d, for any pair vi, vj , we can connect N(vi), N(vj),

using Lemma 3.5 with W being the internal vertices of previous paths, with a path of length
at most m. This path together with vi, vj forms the desired vi, vj-path Pij of length at most
m+ 2 ≤ 2m.

5 Komlós’s conjecture on Hamiltonian subsets

In this section, we give another example of working with medium expanders, proving a special
case of Komlós’s conjecture on Hamiltonian subsets.

A set of vertices A ⊆ V (G) is Hamiltonian if G[A] contains a Hamiltonian cycle, i.e. G
contains a cycle whose vertex set is A. Denote by c(G) the number of Hamiltonian subsets in
G. A natural question is to ask how c(G) relates to minimum degree, that is, minimising c(G)
given δ(G) ≥ d. Here, given minimum degree, as the number of vertices n of G is not fixed, it
is intuitive that to minimise c(G), one would like to minimise n. Note that the complete graph
Kd+1 is the unique smallest graph with δ(G) ≥ d.

Indeed, Komlós conjectured in 1981 that among all graphs with minimum degree at least d,
Kd+1 minimises the number of Hamiltonian subsets, i.e.

δ(G) ≥ d =⇒ c(G) ≥ c(Kd+1) = (1 + od(1))2d+1.

Tuza gave a bound of c(G) ≥ 2d/2, leaving an exponential gap.
Recently, Komlós’s conjecture was confirmed in [2] for large d in a strong sense. It shows a

strong stability that under the weaker condition that d(G) ≥ d, we already have about twice as
many Hamiltonian subsets as Kd+1, i.e.

c(G) ≥ (2− od(1))c(Kd+1),

unless G is isomorphic to Kd+1 or the graph obtained from gluing Kd+1 and Kd at a vertex.
We will present a key step dealing with almost regular medium expanders as follows. It

shows that almost regular medium expanders have exponentially more Hamiltonian subsets.

Theorem 5.1. Let 0 < ε1 < 1 and L ≥ 1, there exist d0,K0 such that the following holds for any
d ≥ d0,K ≥ K0 and n ∈ N with log100 n ≤ d ≤ n/K. Let H be an n-vertex (ε1, d/30)-expander
with d/10 ≤ δ(H) ≤ ∆(H) ≤ Ld. Then c(H) ≥ 250d.

5.1 Proof idea

We will locate a set Z ⊆ V (H) of size 200d (see Lemma 5.2) such that for every subset U ⊆ Z of
size |Z|/2, we can find a cycle CU whose intersection with Z is almost the whole of U . This then
implies that for a large fraction of U ∈

(
Z
|Z|/2

)
, the corresponding V (CU ) are distinct Hamiltonian

subsets.
To construct such a set Z, a key structure is a ‘web’ (See Definition 5.4 and Figure 1), which

offers a ‘core’ vertex with large ‘exterior’. Suppose there are 200d almost pairwise disjoint webs,
then set Z to be the set of core vertices of these webs. For each |Z|/2-set U in Z, to construct
CU , we will connect the webs corresponding to U via paths through their ‘exteriors’ in a cyclic
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manner. We hope to find vertex-disjoint (short) paths between the (large) exteriors of webs,
avoiding previously-built paths, which together with the paths inside the webs leading to their
core vertices form the desired cycle CU (see Figure 3).

However, such short paths can still block all webs, making it impossible to integrate their
core vertices into the cycle CU . To overcome this, we will choose our paths in a more careful
way, such that we avoid using too many vertices inside any particular web. Then the fact that
the webs chosen are almost disjoint enables us to incorporate most of the vertices in U into CU .

Lemma 5.2. Let H be as in Theorem 5.1. Then V (H) contains a set Z of size 200d such that,
for every subset U ⊆ Z of size 100d, there exists a cycle CU with V (CU ) ∩ Z ∈

(
U
≥98d

)
.

Let us first see how this lemma implies what we need.

Proof. Lemma 5.2 =⇒ Theorem 5.1. Apply Theorem 5.2 to obtain a set Z ⊆ V (H) of size 200d
such that, for every subset U ⊆ Z of size 100d, there exists a cycle CU with V (CU )∩Z ∈

(
U
≥98d

)
.

Fix an arbitrary cycle C in H such that V (C)∩Z has size 98d ≤ |V (C)∩Z| ≤ 100d. There

are at most
( |Z|−|V (C)∩Z|

100d−|V (C)∩Z|
)

ways to choose a 100d-set U ⊆ Z containing V (C) ∩ Z. In other

words, for a fixed cycle C in H,

|{U ⊆ Z : V (CU ) = V (C)}| ≤
(
|Z| − |V (C) ∩ Z|

100d− |V (C) ∩ Z|

)
≤
(

102d

2d

)
.

Therefore the number of Hamiltonian subsets in H is

c(H) ≥
( |Z|

100d

)(
102d
2d

) ≥ 250d,

as desired.

5.2 Webs

We now introduce the key structure ‘web’. The main result in this subsection is Lemma 5.5
which guarantees many webs with disjoint interiors.

Definition 5.3 ((h1, h2, h3)-unit). For h1, h2, h3 ∈ N, a graph F is an (h1, h2, h3)-unit if it
contains distinct vertices u (the core vertex of F ) and x1, . . . , xh1 , and F =

⋃
i∈[h1](Pi ∪ Sxi),

where

• {Pi : i ∈ [h1]} is a collection of pairwise internally vertex disjoint paths, each of length at
most h3, such that Pi is a u, xi-path.

• {Sxi : i ∈ [h1]} is a collection of vertex disjoint h2-stars such that Sxi has centre xi and⋃
i∈[h1](V (Sxi) \ {xi}) is disjoint from

⋃
i∈[h1] V (Pi).

Define the exterior Ext(F ) :=
⋃
i∈[h1](V (Sxi) \ {xi}) and interior Int(F ) := V (F ) \ Ext(F ). For

every vertex w ∈ Ext(F ), let P (F,w) be the unique path from the core vertex u to w in F .

Definition 5.4 ((h0, h1, h2, h3)-web). For h0, h1, h2, h3 ∈ N, a graph W is an (h0, h1, h2, h3)-
web if it contains distinct vertices v (the core vertex of W ) and u1, . . . , uh0 , and W =

⋃
i∈[h0](Qi∪

Fui), where

• {Qi : i ∈ [h0]} is a collection of pairwise internally vertex disjoint paths such that Qi is a
v, ui-path of length at most h3.

• {Fui : i ∈ [h0]} is a collection of vertex disjoint (h1, h2, h3)-units such that Fui has core
vertex ui and

⋃
i∈[h0](V (Fui) \ {ui}) is disjoint from

⋃
i∈[h0] V (Qi).

10



centre

interior

(h1, h2, h3)-unit

core vertex

...

...

≤ h3

h0 branches

h2-star

h1 branches

≤ h3

Figure 1: An (h0, h1, h2, h3)-web.

Define the exterior Ext(W ) :=
⋃
i∈[h0] Ext(Fui), interior Int(W ) := V (W ) \ Ext(W ) and centre

Ctr(W ) :=
⋃
i∈[h0] V (Qi). For every vertex w ∈ Ext(W ), let P (W,w) be the unique path from

the core vertex v to w in W .

Lemma 5.5. Let 0 < ε1 < 1 and L ≥ 1, there exist d0,K0 such that the following holds for any
d ≥ d0,K ≥ K0 and n ∈ N with log100 n ≤ d ≤ n/K. Let H be an n-vertex (ε1, d/30)-expander
with d/10 ≤ δ(H) ≤ ∆(H) ≤ Ld. Then H contains (m3,m3, d/100, 4m)-webs W1, . . . ,W200d

with pairwise disjoint interiors, where m = 2
ε2

log3(450n
d ).

The idea of contructing webs with disjoint webs is depicted in Figure 2. First we find disjoint
units. Set previously found units aside, say X ′, our task is to find one more unit in H −X ′. For
this, we find many disjoint stars, connect them in a bipartite fashion (between U and V ) and
then argue that one of the star is linked to many on the other side, yielding one more unit. The
construction of webs are similar, except that we now connect units instead of stars.

Using the ‘bounded’ maximum degree, we can iteratively pull out many disjoint starts as
follows.

Exercise 5.6. Let H be as in Lemma 5.5 and X ′ ⊆ V (H) be a set of size at most dm90. Then
H −X ′ contains m80 vertex disjoint d/25-stars.

As outlined above, the following lemma constructs many disjoint units.

Lemma 5.7. Let H be as in Lemma 5.5 and X ⊆ V (H) be a set of size at most dm30. Then
H −X contains vertex disjoint (m10, d/50,m+ 2)-units F1, . . . , Fm20, where m = 2

ε2
log3(450n

d ).

Proof. Indeed, if we have F1, . . . , F` for some 0 ≤ ` < m20, then the set X ′ :=
⋃
i∈[`] V (Fi)

has size at most m20(2 · d/25 · m10) ≤ dm30 vertices and |X ∪ X ′| ≤ 2dm30. Hence Ex-
ercise 5.6 implies that there are vertex disjoint d/25-stars Sv1 , . . . , Svm40 , Su1 , . . . , Sum60 , with
centres v1, . . . , vm40 , u1, . . . , um60 respectively.
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v1

vi

vm40

u1

uj

uk

u`

um60

U

V

X ′

Pvi,uj

Figure 2: The proof of Lemma 5.5: a unit with core vertex vi ∈ V which avoids X ′.

Let P1, . . . , Ps be pairwise internally disjoint paths of length at most m + 2 with s < m50

where Pi is a vci , udi-path for each i ∈ [s] and d1, . . . , ds are all distinct and each Pi does not
contain any of {v1, . . . , vm40 , u1, . . . , um60} as an internal vertex. Let

V ′ :=
⋃

i∈[m40]

(V (Svi) \ {vi}) and U ′ :=
⋃

i∈[m60]−{d1,...,ds}

(V (Sui) \ {vi}),

then we have |V ′| = dm40 and |U ′| ≥ (m60 −m50) · d/25 > dm40. Further set

P ′ :=
⋃
i∈[s]

(V (Pi) \ {vci}), and U = {v1, . . . , vm40 , u1, . . . , um60}.

Then, as d ≥ log100 n, we have |X ∪ X ′| + |P ′| + |U | ≤ 2dm30 + m50(m + 2) + m40 + m60 ≤
3dm30 ≤ ρ(dm40) · dm40/4. Hence, applying Lemma 3.5 with V ′, U ′, X ∪ X ′ ∪ P ′ ∪ U playing
the roles of X1, X2,W respectively, we can find a path of length at most m between a vertex in
V (Svds+1

) \ {vs+1} ⊆ V ′ and a vertex in V (Suds+1
) \ {uds+1} ⊆ U ′ avoiding vertices in X ∪X ′ ∪

P ′ ∪ U . This yields a vds+1 , uds+1-path Ps+1, which is internally disjoint from X ∪X ′ ∪ P ′ ∪ U
and ds+1 /∈ {d1, . . . , ds}. Hence, this is internally disjoint from P1, . . . , Ps and U .

Repeating this for s = 0, 1, . . . ,m50, we obtain P1, . . . , Pm50 . By pigeonhole principle, at
least m10 of vc1 , . . . , vcm50 coincide, so there exists a vertex vj and m10 internally disjoint paths
from vj to V (Su′1), . . . , V (Su′

m10
) for pairwise disjoint stars Su′1 , . . . , Su′m10

where each star has

d/25 leaves. These paths and stars together yields a (m10, d/50,m+ 2)-unit F`+1 disjoint from
X∪X ′. Repeating this for ` = 0, 1 . . . ,m20, yields that the graph H−X contains vertex disjoint
(m10, d/50,m+ 2)-units F1, . . . , Fm20 as desired.

Now, given many disjoint units, we can connect them in a similar way as in Lemma 5.7 to
obtain desired webs.

Exercise 5.8. Prove Lemma 5.5.

5.3 Proof of Lemma 5.2

We now carry on the proof of Lemma 5.2 outlined in Section 5.1.
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uip−1

uip

Wip

uip+1

Wip+1

Cen(Wip+1)

ui99d

ui99d−1

Pp

P
P99d−1

CU

Z \ U

Figure 3: Constructing a cycle CU . Here p ∈ [99d] is the smallest index such that Wip is a good
web (so the web Wip−1 enclosed in a dashed box is bad, i.e. its interior is over-used by the paths
Pj). Paths Pj can intersect the interior of a web but not its centre.

Let m := 2
ε1

log3(450n
d ). Recall that ρ(x) is decreasing when d/30 ≤ x ≤ n and by choosing

n/d ≥ K ≥ K0 large enough, we have

ρ(x) ≥ ρ(n) >
1

m
; and also n ≥ Ldm100 and d ≥ m30. (6)

By Lemma 5.5, we can find in H a collection W1, . . . ,W200d of (m3,m3, d
100 , 4m)-webs whose

interiors Int(W1), . . . , Int(W200d) are pairwise disjoint. Let Z := {u1, . . . , u200d} where ui is
the core vertex of Wi for all i ∈ [200d]. Fix an arbitrary 100d-set U in Z. Without loss of
generality, assume that U = {u1, . . . , u100d}. First, we show that there exists an index set
I = {i1, . . . , i99d} ⊆ [100d] and a collection Q = {P` : ` ∈ [99d − 1]} of paths satisfying the
following. For each ` ∈ [99d− 1],

A1 P` is a ui` , ui`+1
-path of length at most 18m;

A2 Int(P`) is disjoint from
⋃
k∈[200d]\{i`,i`+1} Ctr(Wk) ∪ Z;

A3 Int(P`) and Int(Pk) are disjoint for all k ∈ [99d− 1] \ {`};

A4 |Int(Wi`+1
) ∩
⋃
k∈[`] V (Pk)| < 2m2.

To find such an (I,Q), we will build a path between pairs in U avoiding vertices used in
previously-built paths and the centres of all other webs. During the process, we will skip a web
if its interior is ‘over-used’.

Assume we have built P1, . . . , Ps and determined i1, . . . , is+1 with s < 99d−1 satisfying A1–
A4. Since index set {1} with the empty collection of paths satisfies A1–A4, such a collection
{P1, . . . , Ps} exists. Let P ′ :=

⋃
k∈[s] Int(Pk). For i ∈ [200d], we say a web Wi is bad if |Int(Wi)∩

P ′| ≥ 2m2, and good otherwise. Note that A4 implies that Wis+1 is good. By A1,

|P ′| ≤ 18m · s ≤ 1800dm. (7)
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As good webs by definition are mostly intact, we can use Lemma 3.5 as follows.

Exercise 5.9. Let Wj1 and Wj2 be two good webs. Then there exists a path P of length at
most 18m in H from uj1 to uj2 such that Int(P ) is disjoint from P ′∪Z∪

⋃
k∈[200d]\{j1,j2} Ctr(Wk).

Since the interiors of W1, . . . ,W200d are pairwise disjoint, (7) implies that the number of
webs whose interiors contain at least m2 vertices of P ′ is at most

1800dm

m2
<
d

2
. (8)

Since s < 99d− 1, we can choose is+2 ∈ U \ {i1, . . . , is+1} such that

|Int(Wis+2) ∩ P ′| ≤ m2. (9)

Recall that Wis+1 is good. Thus by Exercise 5.9, there is a uis+1 , uis+2-path Ps+1 of length at
most 18m. Then it is easy to see that {i1, . . . , is+2} together with P1, . . . , Ps+1 satisfy A1–A3
since Int(Ps+1) is disjoint from P ′ ∪

⋃
k∈[200d]\{i`,i`+1} Ctr(Wk) ∪ Z. Moreover,∣∣∣∣∣∣Int(Wis+2) ∩

⋃
k∈[s+1]

V (Pk)

∣∣∣∣∣∣ =
∣∣Int(Wis+2) ∩ P ′

∣∣+ |Int(Wis+2) ∩ Ps+1|
(9)

≤ m2 + 18m < 2m2,

so A4 also holds. Therefore, we can repeat this process until s = 99d−1, upon which we obtain
the desired (I,Q) satisfying A1–A4.

Observe that, as before, (8) implies that less than d/2 indices k ∈ [100d] \ I are such
that Wk is bad. Let p ∈ [99d] be the minimum index such that Wip is a good web (see
Figure 3). Note that Wi99d

is good by A4. Then p ≤ d/2 and so |{ip, ip+1, . . . , i99d}| >
98d. By A1–A3, the concatenation of Pp, Pp+1, . . . , P99d−1 is a uip , ui99d

-path avoiding Z \ U .
By Exercise 5.9, there exists a uip , ui99d

-path P of length at most 18m such that Int(P ) is
disjoint from

⋃
k∈[99d−1] Int(Pk) ∪ Z ∪

⋃
k∈[200d]\{ip,i99d} Ctr(Wk). Thus, the concatenation of

Pp, Pp+1, . . . , P99d−1, P form a cycle CU , as in Figure 3. Finally, by A1, A2 and Exercise 5.9,

V (CU ) ∩ Z = {uip , uip+1 , . . . , ui99d
} ∈

(
U

≥ 98d

)
,

completing the proof of Lemma 5.2.

6 Mader’s conjecture on subdivisions in C4-free graphs

We have seen that ‘bounded’ maximum degree is often useful, for instance when we tried to
build webs in Lemma 5.5, we need it for extracting disjoint stars in Exercise 5.6. However, as
mentioned in Remark 3.3, when passing from G to an expander subgraph H, we do not know
anything about the order of H, so neither do we have any bound its maximum degree. In this
section, we will show an example in which reduction to expanders with ‘bounded’ maximum de-
gree follows straightforwardly from a basic property of expanders. That is, (see Proposition 6.3),
an expander still expands (though with slightly weaker expansion) if a very small set of vertices
is removed from it.

The example we shall look at is a continuation of the problems discussed in Section 4. Recall
that Komlós and Szemerédi proved that every graph with average degree d contains a TKΩ(

√
d),

which is best possible as shown by Kd,d in Exercise 4.1. Note that in this example, the complete
bipartite graph Kd,d is locally dense in the sense that it contains all sorts of small bipartite
graph. It is natural to suspect that the square root bound can be improved if we step away from
Kd,d. Indeed, this was conjectured by Mader as follows: if G is C4-free and d(G) ≥ d, then it
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contains a TKΩ(d). Note that, if true, linear in d is obviously the optimal order of magnitude,
as the graph G could be simply d-regular.

Mader’s conjectured was confirmed in a strong sense in [5] as follows. Let 2 ≤ s ≤ t, and
G be a Ks,t-free graph with average degree d. Then G contains a TK

Ω

(
d

1
2

s
s−1

). We leave it as

an exercise to show that, conditioning on ex(n,Ks,t) = Θ(n2−1/s), the exponent 1
2

s
s−1 is best

possible.
Let us consider the baby case s = t = 2, i.e. when G is K2,2 = C4-free. We will show the

starting step which reduces the problem to expanders with ‘bounded’ maximum degree.
The idea is that, if there linearly in d many vertices with high degree, then we can greedily

embed a desired clique subdivision, see Lemma 6.1. If there is only sublinearly many high degree
vertices, then removing this small set of vertices leaves us still an expander with a slightly weaker
expansion, see Proposition 6.3.

Lemma 6.1. Let 0 < ε1, ε2, c < 1, then there exists c′ > 0 such that the following holds. Let
G be an n-vertex C4-free (ε1, ε2d)-expander with δ(G) ≥ d. If there are at least cd vertices with
degree at least d log10 n, then TKc′d ⊆ G.

In the above, if we have Ω(d) vertices of degree at least d2 log10 n, then it is an easy exercise,
using Lemma 3.5, to embed TKΩ(d). We can use the C4-freeness to reduce the degree requirement.

Exercise 6.2. Prove Lemma 6.1.

Proposition 6.3. Let 0 < ε1, ε2 < 1, then there exists c > 0 such that the following holds. Let
G be an (ε1, ε2d)-expander with δ(G) ≥ d, and A ⊆ V (G) be a set of size at most cd. Then
G−A is an (ε1/2, ε2d)-expander with minimum degree at least d/2.

This basic but useful property follows from the definition of expander. We leave it as an
exercise.

7 Reed and Wood’s question on planar minors

In Sections 4 and 5, we have seen two examples for medium expanders. In particular, we have
seen that the web structure, due to its large exterior, is particularly useful when carrying out
connections robustly using Lemma 3.5. However, recalling the proof of Lemma 5.7, the way we
construct webs requires that the expander is not too sparse (average degree at least polylogn).
We can no longer guarantee webs when expander is sparse, at least not with the same approach.

The purpose of this section is twofold.

1. We study sparse expanders and present a different approach that works even when the
expander has constant average degree. Essentially, provided again ‘bounded’ maximum
degree, we want to find vertices that are pairwise far apart so that there is room to grow
them to have large boundaries, which are easy to connect, see Section 7.2.

In doing so, we will introduce in Section 7.1 yet another important expansion lemma,
Lemma 7.4, showing that sets expand almost exponentially in an expander.

2. The above new approach still requires ‘bounded’ maximum degree condition. In the ex-
ample we consider here, Proposition 6.3 is not strong enough to do the max-degree reduc-
tion. Instead, we will rely on a new structure nakji. This will be introduced in Section 7.3
along with an explaination of why it is useful. Then in Section 7.4, we sketch a proof for
a more involved reduction method.

The problem we want to look at here is about forcing sparse graphs, rather than the cliques,
as minors. Intuitively, given the order of H, it is easier to find an H-minor, when H is sparse.
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Indeed, the seminal result of Kostochka, and independently Thomason from the 80s, states that
the average degree needed to force Kt -minor is O(t

√
log t). On the other hand, Reed and

Wood showed that for any t-vertex graph H, the average degree needed to force H-minor is
O(t
√

log d(H)). Along with this result, Reed and Wood raised several interesting questions
about forcing sparse minors. Among others, they asked for the minimum constant c > 0 such
that average degree ct forces every t-vertex planar graph as minor. This was recently answered
in [1] asymptotically as follows.

Theorem 7.1. Let G be a graph. If d(G) ≥ (3/2+ot(1))t, then it contains every t-vertex planar
graph as a minor. Furthermore, the constant 3/2 is best possible.

In fact, somewhat surprisingly, (3/2+o(1))t is the tight bound even for graphs with bounded
genus. A key step in the proof is a general result embedding subdivisions of sparse bipartite
graphs. The example we will consider here is the following baby case dealing with sparse
expanders with additional ‘bounded’ maximum degree.

Lemma 7.2. Let 0 � 1/d � ε1, ε2 � ε, 1/∆ < 1 and let H be a graph with at most d
vertices and ∆(H) ≤ ∆. Suppose F is an n-vertex (ε1, ε2d)-robust-expander with δ(F ) ≥ ε2d.
If ∆(F ) ≤ log30000 n, then F contains an H-subdivision.

To prove Lemma 7.2, we need a useful expansion lemma, Lemma 7.4, which shows that small
sets grow almost exponentially in a sublinear expander.

7.1 Exponential growth

In an (ε1, t)-robust-expander graph, for a set X with size at least t/2, the ball Bi(X) grows with
the radius i. We need a robust version, quantifying how resilient this growth is to deletion of a
thin set around X. The particular type of thin set we use is the following.

Definition 7.3. For a set X ⊆ W of vertices, the paths P1, . . . , Pq are consecutive shortest
paths from X within W if the following holds. For each i ∈ [q], Pi|W is a shortest path from X
to some vertex vi ∈W \X in the graph restricted to W −

⋃
j∈[i−1] V (Pj).

Basically, if P1, . . . , Pq are consecutive shortest paths from X, then collectively they should
not take up too many vertices per layer around X, as otherwise shorter paths could be found.
As such, we can expand X past these paths. This is made precise as follows.

Lemma 7.4. Let 0 < 1/d� ε1, ε2 � 1. Suppose G is an n-vertex (ε1, ε2d)-robust-expander and
X,Y are sets of vertices with |X| = x ≥ ε2d and |Y | ≤ 1

4 · ρ(x) · x. Let P1, . . . , Pq be consecutive
shortest paths in G − Y from X within Br

G−Y (X), where 1 ≤ r ≤ log n and q < x/ log8 x, and
let P =

⋃
i∈[q] V (Pi). Then for each i ∈ [r], we have

|Bi
G−P−Y (X)| ≥ exp(i1/4).

Proof. For each i ≥ 0, let Zi = Bi
G−P−Y (X). As P1, . . . , Pq are consecutive shortest paths from

X, for each i ≥ 0, each path Pj , j ∈ [q], can intersect with the set NG−Y (Zi) on at most i + 2
vertices. Indeed, otherwise we can replace the initial segment of Pj with a path in Zi∪NG−Y (Zi)
of length i+ 1 to get a shorter path in G− Y −

⋃
k∈[j−1] V (Pk), contradicting the choice of Pj .

Thus, |NG−Y (Zi) ∩ P | ≤ (i+ 2)q. Consequently, the expansion of G implies for each i ≥ 0 that

|Zi+1| = |Zi|+ |NG(Zi) \ (Y ∪ P )| ≥ |Zi|+ ρ(|Zi|)|Zi| − |Y | − |NG−Y (Zi) ∩ P |

≥ |Zi|+
3

4
ρ(|Zi|)|Zi| − (i+ 2)q.

Let

f(z) = exp(z1/4) and g(z) := x+
1

2
ρ(x)xz.
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We first use induction on i to show that for each 0 ≤ i ≤ log4 x, |Zi| ≥ g(i). Indeed, |Z0| =

|X| = x = g(0). Then, as ρ(z)z is increasing when z ≥ x and 1
4ρ(x)x ≥ (i+2)x

log8 x
> (i+ 2)q due to

i ≤ log4 x, we see that

|Zi+1| ≥ |Zi|+
3

4
ρ(|Zi|)|Zi| − (i+ 2)q ≥ |Zi|+

1

2
ρ(x)x = |Zi|+ g(i+ 1)− g(i) ≥ g(i+ 1).

We may then assume i > log4 x, as f(i) ≤ g(i) ≤ |Zi| when i ≤ log4 x. Now, as i > log4 x,
f(i)

i7/4 ≥
f(log4 x)

(log4 x)7/4 = x
log7 x

and so

(i+ 2)q < i · 2x

log8 x
≤ i · f(i)

i7/4
=
f(i)

i3/4
.

Also note that f(i+ 1)− f(i) ≤ f(i)

i3/4 and ρ(|Zi|)|Zi| ≥ ρ(f(i))f(i) ≥ ε1f(i)

i1/2 . Thus, we have

|Zi+1| ≥ |Zi|+
3

4
ρ(|Zi|)|Zi| − (i+ 2)q ≥ |Zi|+

3ε1f(i)

4i1/2
− f(i)

i3/4

≥ |Zi|+
f(i)

i3/4
≥ |Zi|+ f(i+ 1)− f(i) ≥ f(i+ 1),

as desired.

7.2 ‘Bounded’ degree sparse expander

In this subsection, we prove Lemma 7.2.
We start with the following simple proposition which finds many vertices pairwise far apart.

Proposition 7.5. Suppose that F is an n-vertex graph with ∆(F ) ≤ log30000 n, and n sufficiently
large. Then there is a set of at least n1/5 vertices pairwise having distance at least logn

20000 log logn .

Exercise 7.6. Prove Proposition 7.5.

Proof of Lemma 7.2. Let

r := (log log n)5 and r′ =
√

log n.

As d ≤ δ(F )/ε2 ≤ ∆(F )/ε2 ≤ log30001 n, Proposition 7.5 implies that we can find vertices
v1, . . . , vh, where h = |H| ≤ d, such that the distance between any two of them is at least
2r + 2r′. Let x1, . . . , xh be the vertices of H and e1 = xa1xb1 , . . . , eh′ = xah′xbh′ be the edges of
H where h′ = e(H) ≤ ∆d/2.

Suppose that we have Q1, . . . , Q` for some 0 ≤ ` < h′ such that:

B1 for each i ∈ [`], Qi is a vai , vbi-path with length at most 2 log4 n;

B2 for distinct i, j ∈ [`], the paths Qi and Qj are internally vertex disjoint;

B3 for each i ∈ [h], for the edges {ek1 , . . . , eks} = {ekj : kj ∈ [`], xi ∈ ekj} with k1 < · · · < ks,
the paths Qk1 , . . . , Qks form consecutive shortest paths from vi in Br(vi); and

B4 for any i ∈ [h] and j ∈ [`] with xi /∈ ej , Br(vi) and V (Qj) are disjoint.

Let
W1 =

⋃
i∈[`]

Int(Qi), W2 :=
⋃

i∈[h]: xi /∈e`+1

Br(vi) and W = W1 ∪W2.

Note that v1, . . . , vh are pairwise a distance at least 2r + 2r′ apart, so by B4 we have

|Br
F−W (vk`+1

)| = |Br
F−W1

(vk`+1
)| = |Br−1

F−W1
(B1

F−W1
(vk`+1

))|
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for each k ∈ {a, b}. Note that |B1
F−W1

(vk`+1
)| ≥ ε2d −∆ ≥ ε2d/2 by B3 and B4. By B3, we

can apply Lemma 7.4 with B1
F−W1

(vk`+1
),W1,∅,∆ playing the roles of X,P, Y, q, and then for

each k ∈ {a, b} we have

|Br
F−W (vk`+1

)| = |Br
F−W1

(vk`+1
)| ≥ exp((r − 1)1/4) ≥ d log8 n,

where the last inequality follows from d ≤ log30001 n. This implies that

|W1| ≤ h′ · 2 log4 n ≤ ∆d log4 n <
1

4
ρ(|Br

F−W (vk`+1
)|) · |Br

F−W (vk`+1
)|.

Hence, by applying Lemma 7.4, now with Br
F−W (vk`+1

),∅,W1 playing the roles of X,P, Y for
each k ∈ {a, b}, we similarly have

|Br+r′

F−W (vk`+1
)| = |Br+r′

F−W1
(vk`+1

)| ≥ exp((r′)1/4) ≥ exp( 9
√

log n).

As ∆(F ) ≤ log30000 n and d ≤ log30001 n, we then have

|W | ≤ |W1|+ |W2| ≤ ∆d log4 n+ d · 2(log30000 n)r <
1

4
ρ
(

exp( 9
√

log n)
)

exp( 9
√

log n).

Therefore, by Lemma 3.5, there is a path in F−W of length at most log4 n between Br+r′

F−W (va`+1
)

and Br+r′

F−W (vb`+1
). So we can let Q`+1 be a shortest path between va`+1

and vb`+1
in F−W , which

has length at most log4 n+ 2r + 2r′ ≤ 2 log4 n. Hence, Q1, . . . , Q`+1 satisfy B1–B4. Repeating
this for ` = 0, 1, . . . , h′ − 1, then the union of all paths

⋃
i∈[h′]Qi is an H-subdivision.

7.3 Nakji

As we see in the baby case Lemma 7.2, it is relatively simple to handle expanders with an
additional ‘bounded’ maximum degree condition. As mentioned in our discussion in Section 3.4,
the bulk of the work, when dealing with sparse expanders, is often time dealing with the set
of high degree vertices, say L. Indeed, without a bound on maximum degree, our approach in
Section 7.2 breaks down as the starting point Proposition 7.5 is simply not true anymore.

Nonetheless, we will outline in Section 7.4 a way to get around this difficulty. In this
subsection, we introduce a key structure involved: nakji, which in sparse expanders is a good
substitute for webs.

Definition 7.7 ((t, s, r, τ)-nakji). Given t, s, r, τ ∈ N, a graph N is a (t, s, r, τ)-nakji in G if it
contains vertex disjoint sets M , Di, i ∈ [t], each having size at most s, and paths Pi, i ∈ [t] such
that for each i ∈ [t]

• Pi is an M,Di-path with length at most 10r, and all paths Pi, i ∈ [t], are pairwise internally
disjoint;

• Di has diameter at most r, and all Di, i ∈ [t], are a distance at least τ in G from each
other and from M , and they are disjoint from internal vertices of

⋃
i∈[t] Pi.

We call M the head of the nakji and each Di, i ∈ [t], a leg. See Figure 4.

To obtain subdivision from nakjis is straightforward. If there are d = |H| nakjis that are
pairwise far apart, then we can link nakjis together to get an H-subdivision by first expanding
each leg without bumping into any other part to an enormous size, so that each connection made
leaves irrelevant structures untouched.

We shall discuss in the next subsection a way to handle high degree vertices L and carry out
our previous approach. At a high level, the idea has the following three new ingredients:
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head
M

|D4| ≤ s

leg

D3D2

r

D1

distance ≥ τ

P1

≤ 10r

P4

P3
P2

Figure 4: A (4, s, r, τ)-nakji.

C1 use nakji to reduce the task from finding vertices with large boundary in G − L to the
much easier one of finding sets with large boundary;

C2 iterative use of expanders that allows us to construct nakjis;

C3 an averaging argument that finds (plenty of) small sets that expand past the set L of high
degree vertices.

7.4 Proof sketch for generic sparse expanders

The statement we shall see is the following lemma which deals with generic sparse expanders.

Lemma 7.8. Let 0 < 1/d � δ � ε1, ε2 � ε, 1/∆ < 1 and H be a bipartite graph on at
most (1− ε)d vertices and ∆(H) ≤ ∆. Suppose G is an n-vertex (ε1, ε2d)-robust-expander with
d(G) ≥ (1− δ)d and δ(G) ≥ d(G)/2. If d < log300 n, then G contains an H-subdivision.

To motivate the definition of nakji, let us first look at the easier problem of finding H-minors,
where |H| = d and e(H) = O(d). For minors, we just need to find d large (connected) balls (and
contract them afterwards) and find O(d) internally disjoint paths between them.

Notice first that, writing L for the set of high degree vertices, we may assume that |L| < d,
as if there are at least d = |H| high degree vertices (degree at least d log50 n say), we can easily
build even an H-subdivision anchored at these high degree vertices, as in Lemma 6.1. Write
again m = O(log3 n) for the diameter of the expander G. Since G is now sparse, from above we
see then that |L| < d ≤ m100 is quite small.

We then argue that G− L still has average degree Ω(d). To see this, if there are too many
edge going between L and its complement, then we do an asymmetric bipartite Turán problem
to embed H as a subgraph. Having G − L still dense allows us to find subexpanders within
G− L with average degree linear in d.

Suppose now within G, we can find d vertices, v1, . . . , vd, pairwise a distance
√

log n apart,
such that for each vi, the ball Bi of radius say (log log n)20 around it has size at least m200. So
each Bi is large enough to enjoy exponential growth (Lemma 7.4) avoiding all paths previously
built. Now to get, say, a vi, vj-path, we first expand Bi, Bj to larger balls with radius say
(log n)1/10. These larger balls are so gigantic that we can connect them avoiding all the smaller
balls

⋃
i∈[d]Bi. It is left to find such vi and Bi. We can find them one by one, by collectively

growing a set U of pairwise far apart vertices past L and using an averaging argument to locate
the next vi that expands well in G− L.

Coming back to embedding H-subdivisions, we shall follow the general strategy as that
of finding minors. However, an immediate obstacle we encounter is the following. To get a
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subdivision instead of a minor, we need to be able to lead up to ∆(H) = O(1) many paths
arriving at Bi disjointly to vi. In other words, each anchor vertex vi has to expand even after
removing O(1) disjoint paths starting from itself. Here comes the problem: in the minor case,
we just need to expand U ignoring a smaller set L; whereas now U is asked to expand past a
larger set of Θ(|U |) vertices that are used in the previous connections. Our sublinear expansion
property is simply too weak for this.

This is where the nakji structure comes into play. It is designed precisely to circumvent this
problem by doing everything in reverse order. Basically, instead of looking for anchor vertices
that expand robustly, we rather anchor on nakjis and link them via their legs first and then
extend the paths from the legs in each nakji’s head using connectivity. This illustrates C1.

The remaining task is then to find many nakjis in G−L. This is done essentially by expanding
and linking small subexpanders within G−L. For this, we need to find many small expanders in
G−L. Recall that G−L is still dense and hence by the expander lemma, Lemma 3.9, it contains
at least one subexpander F . Now if F is large in order, then if additionally F has medium density,
we can embed H-subdivision in F using web structure. So if F is large subexpander, it must be
sparse. But then large F ⊆ G−L naturally inherits the ‘bounded’ max-degree of G−L and so
we can invoke Lemma 7.2 on F to go home. Therefore, all subexpanders in G− L is small and
consequently we can greedily pull out many small expanders as claimed. This illustrate C2.

Finally we arrive at the last problem that we could encounter. We only have |L| < d, while
each of the subexpanders, though having size Ω(d), could be smaller than L. This keeps us from
expanding and linking each subexpander in G − L. An averagin argument again comes to the
rescue. Here, a subtlety worth pointing out is that , given that L is not large, for the averaging,
one would naturally like to take a huge set of subexpanders, whose union is so large and thus
grows easily past L. This, however, would not work as the expanding function ρ(·) is sublinear,
if there are too many subexpanders to begin with, say e.g. log n expanders each of size x, then
after averaging, the expansion rate of subexpander in G − L that we can guarantee would be
ρ(x log n), which could be much smaller than our target rate ρ(x). To overcome this difficulty,
instead, we shall average over a set of subexpanders of appropriate size that is just big enough
to ignore L and on the other hand just small enough that ρ(·) does not decay too much. This
illustrates C3.

8 Erdős and Hajnal’s problem on cycles

In this section, we will address the drawback of Lemma 3.5 in Remark 3.6. In previous problems,
we were happy finding short connecting paths. When attacking extremal problems on cycles, it
would be useful to be able to connect sets with paths of specified length.

There is a long line of research on what cycles could appear in general graphs. Define the
cycle space C(G) of a graph G to be the set of distinct cycle lengths in G. One could ask many
natural questions about C(G) given its chromatic number χ(G) or its average degree d(G). For
example, d(G) ≥ 2 implies that C(G) 6= ∅ and Dirac’s theorem states that if δ(G) ≥ |G|/2, then
|G| ∈ C(G). What about finer structure of C(G)?

A positive increasing sequence of integers σ1, σ2, . . . is unavoidable with high average degree
(respectively, with high chromatic number) if there exists some d such that every graph G with
average degree at least d (respectively, chromatic number at least d) has some i ∈ N with
σi ∈ C(G). Note that there are graphs, e.g. Kd,d, with no odd cycles yet arbitrarily high average
degree. Thus, the two overarching questions are as follows.

• Which sequences of even numbers are unavoidable with large average degree?

• Which sequences of odd numbers are unavoidable with large chromatic number?

On the first type, Erdős raised several questions and offered $1000 for solutions. Among others,
he asked whether the powers of 2, i.e. σi = 2i, is avoidable or not with average degree. In fact,
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nothing is known even for the much slower growing sequence such as σi = i2 or σi = pi+1, where
pi is the ith prime. For the second type, the major open problem was the odd cycle problem of
Erdős and Hajnal from 1966, which askes whether

∑
`∈Co(G)

1
` →∞ as χ(G)→∞.

These problems had been elusive, with not even an explicit unavoidable sequence with zero
density known. Very recently, we [6] are able to resolve all of these questions using methods
building on sublinear expanders. A key ingredient is the ‘adjuster’ structure that enables us to
vary the length of connection path in expanders.

In the rest of this section, we will introduce this adjuster structure and show, conditioning
on some more expansion lemmas, the basic step of how to find one single such structure in
sublinear expanders.

8.1 adjusters

The basic idea is that by taking almost antipodal points v1, v2 on a cycle C, we can view C
as a ‘twin path’ between v1, v2, see Figure 5(a), which gives us adjustment by 2. To get larger
adjustments, we will chain many ‘twin paths’ up, see Figure 5(c). For this purpose, we shall
define an adjuster to be a cycle C together with two graphs F1, F2 attached to the almost
antipodal points v1, v2, see Figure 5(b). The point is that large F1, F2 help with the chaining
process.

C

P2

P1

v1 v2
x y

(a) x, y-paths with lengths differing by 2.

F1 F2C

P2

P1

v1 v2

(b) An adjuster

x y

(c) x, y-paths with varying lengths depending on the path taken through the cycles.

Figure 5: Creating x, y-paths of different lengths using cycles.

Here is the formal definition of an adjuster.

Definition 8.1. A (D,m, k)-adjuster A = (v1, F1, v2, F2, A) in a graph G consists of vertices
v1, v2 ∈ V (G), graphs F1, F2 ⊆ G and a vertex set A ⊆ V (G) such that the following hold for
some ` ≤ mk.

• A, V (F1) and V (F2) are pairwise disjoint.

• For each i ∈ [2], Fi is a (D,m)-expansion around vi.

• |A| ≤ 10mk.

• For each i ∈ {0, 1, . . . , k}, there is a v1, v2-path in G[A ∪ {v1, v2}] with length `+ 2i.

When k = 1, we call (D,m, 1)-adjuster a simple adjuster.

A crucial step in [6] is to construct robustly many adjusters in an expander. We will illustrate
here the first step of finding a single simple adjuster, see Lemma 8.6. For this, we first collect
some more expansion lemmas. We will omit the proofs of these expansion lemmas.
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8.2 Robust expansion lemma

In this subsection, we present a useful robust expansion lemma strengthening Lemma 7.4.
Basically, we shall see below that we can expand a set A in an expander past

• any set X that is much smaller than A, and

• any set Y that is far enough from A in H that A can expand to become much larger than
Y before they run into each other, and

• any set Z that is ‘thin’ around A, that is, it has little intersection with each sphere around
A.

The following definition makes it precise what we mean by a ‘thin’ set.

Definition 8.2. A set V has λ-limited contact with a set S in a graph G if, for each i ∈ N,

|NG(Bi−1
G−S(V )) ∩ S| ≤ λi.

Lemma 8.3. Let 0 < ε1, ε2 < 1 and λ ∈ N. There is some d0 = d0(ε1, ε2, λ) for which
the following holds for any n ≥ d ≥ d0. Suppose H is an n-vertex (ε1, ε2d)-expander with
δ(H) ≥ d. Let m = 32 log3 n/ε1 and `0 = (log log n)5. Let A ⊆ V (H) with |A| ≥ ε2d and let
X,Y, Z ⊆ V (H) \A be such that the following hold.

• |X| ≤ |A|ε(|A|)/4.

• B`0
H−X−Z(A) ∩ Y = ∅ and |Y | ≤ m300λ.

• A has λ-limited contact with Z in H.

Then,
|B`0

H−X−Y−Z(A)| > m400λ.

8.3 Vertex expansions

In order to connect structures together in an expander, we attach a graph say F to the connecting
vertex say v say. Provided that F is large, we can then use Lemma 3.5 or Lemma 8.3 to connect
V (F ) to other structures. Furthermore, F should be ‘close’ to v so that paths to V (F ) can be
extended within F to v. Formally, we define

Definition 8.4. Given a vertex v in a graph F , F is a (D,m)-expansion of v if |F | = D and
v ∈ V (F ) is a distance at most m in F from any other vertex.

The following lemma finds disjoint vertex expansions. It can be proved using Lemma 8.3.

Lemma 8.5. For each k ∈ N and any 0 < ε1, ε2 < 1, there exists d0 such that the following
holds for each d ≥ d0. Suppose that G is an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d.
Let m = 32

ε1
log3 n. Let C be a shortest cycle in G, and x1, . . . , xk be distinct vertices in G. For

each i, j ∈ [k], let 1 ≤ Di,j ≤ logk n. Then, there are graphs Fi,j ⊆ G, i, j ∈ [k], such that the
following hold.

• For each i, j ∈ [k], Fi,j is a (Di,j , 5m)-expansion around xi in G which contains no vertices
in V (C) \ {xi}.

• For each i, j ∈ [k], V (Fi,j) \ {xi} are pairwise disjoint.
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8.4 Constructing a single simple adjuster

Lemma 8.6. For any 0 < ε1, ε2 < 1 and k ∈ N, there exists d0 such that the following is true
for each d ≥ d0. Suppose that G is an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d. Let
C be a shortest cycle in G and x1, x2 be distinct vertices in V (G) \ V (C). Let m = 200

ε1
log3 n

and D ≤ logk n. Then, G contains a (D,m, 1)-adjuster (v1, F1, v2, F2, A) with v1 = x1, v2 = x2

and V (C) ⊆ A.

Proof. Noting that C must have even length, let `0 be such that 2`0 is the length of C. Since
δ(G) ≥ d, we must have `0 ≤ log n/ log d ≤ m. Pick vertices x3, x4 ∈ V (C) which are distance
`0 − 1 apart on C and let the paths separating them be R1 (the shorter one, say) and R2.

Let D1,1 = D2,1 = D, D1,2 = D3,1 = m3D, D2,2 = D4,1 = m2D. Apply Lemma 8.5 to
x1, x2, x3, x4 and C with (m, k)8.5 = (m/5, k+ 10) to get graphs Fi,j , i, j ∈ [2] and F3,1, F4,1, for
which the following hold.

• Each Fi,j is a (Di,j ,m)-expansion around xi in G which contains no vertices in V (C)\{xi}.

• For i ∈ [4], j ∈ [2], V (Fi,j) \ {xi} are pairwise disjoint.

Then, by Corollary 3.5, we can connect V (F1,2) and V (F3,1), while avoiding V (C)∪V (F1,1)∪
V (F2,1)∪V (F2,2)∪V (F4,1), say using the path P ′ with length at most m. Next, connect V (F2,2)
and V (F4,1) while avoiding V (C)∪ V (P )∪ V (F1,1)∪ V (F2,1), say using the path Q′ with length
at most m. As each Fi,j is a (Di,j ,m)-expansion around xi, we can extend P ′ and Q′ in them
to get a x1, x3-path, say P , and a x2, x4-path, say Q, each of length at most 3m.

Set now v1 = x1, v2 = x2, F1 = F1,1, F2 = F2,1 and A = V (P ∪ Q ∪ R1 ∪ R2) \ {v1, v2}.
Then, |A| ≤ 2(3m + 1) + 2`0 ≤ 10m and note that A is disjoint from V (F1) ∪ V (F2). Letting
` = `(P ∪R1 ∪Q), note that P ∪R1 ∪Q and P ∪R2 ∪Q are v1, v2-paths in G[A∪ {v1, v2}] with
length ` and `+ 2 respectively. Thus, (v1, F1, v2, F2, A) is a desired (D,m, 1)-adjuster.
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