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Abstract

Much of the material here are based on notes from David Galvin and Tim Gowers, and
Tao’s blog.
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1 Entropy axioms à la Shannon-Khinchin

A central topic of information theory is to efficiently encode complicated sets, say A, using
simpler sets, e.g. 0,1-strings. A classical example is sending messages through a (noisy) channel
using 0,1-strings. By efficiently, we mean the encoding, as an injection from the complicated
sets to simpler ones, is more ideal if it is close to bijection. We shall see that how some of the
ideas from information theory can be used in combinatorial problems.

Given a discrete random variable X, we will introduce an information theoretical notion of
the entropy of X. The entropy of X, denoted by H(X), is a non-negative real number, measuring
the amount of information/surprise/randomness the random variable X carries.
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Formally, let X be a random variable taking values from a finite set of alphabets A, write
px = Pr(X = x) for each x ∈ A. Then the entropy of X is defined as

H(X) =
∑
x∈A

px · log
1

px
, (1)

where the log is base 2 and we take the convention that 0 log 0 = 0.
It is helpful to start with a toy example. Suppose a random variable X is the outcome of a

coin flip. What is the entropy of X? If the coin is completely biased, say both of its sides are
heads, then the entropy H(X) = 1 log 1 + 0 log 0 = 0. This makes intuitive sense: there is no
information/surprise from X as we know it will be head. What if the coin is a fair coin with
50/50 chance of landing in head/tail? The entropy would be in this case 1

2 log 2 + 1
2 log 2 = 1.

We can also think of entropy as the number of bits of information we gain from the random
variable. We shall see that when X is the coin flip outcome, then H(X) ≤ 1 with equality if and
only if when the coin is a fair one. In general, if X is a random variable over a finite alphabet
A of size n, then H(X) ≤ log n with equality if and only if X is chosen uniformly over A.

Another way of thinking of entropy is to see it as the expected number of bits to specify the
random variable. Consider a random variable X uniformly chosen from A and suppose |A| = 2k.
Then the entropy of X is H(X) = k. As elements in A are equally likely to appear, we need k
bits to specify them. In the above toy example, we have |A| = 1 = 20 for the biased two-headed
coin and |A| = 21 for the fair coin.

This important property that entropy is maximised when the random variable is uniformly
chosen is the key reason why entropy is useful for combinatorial problems. Suppose we want
to estimate the cardinality of a set A, then, letting X be a uniformly random element in A,
H(X) = log |A|; thus bounding |A| is the same as bounding the entropy H(X).

We can also define joint entropy and conditional entropy as follows. Let X, Y be random
variables defined over A and B respectively. For each a ∈ A and b ∈ B, write pa = Pr(X = a)
and pab = Pr(X = a, Y = b), then the joint entropy of X and Y is

H(X,Y ) =
∑

a∈A, b∈B
pab · log

1

pab
;

and the conditional entropy of Y given X is

H(Y |X) = Ea∈A

(
H(Y |X = a)

)
=
∑
a∈A

pa · H(Y |X = a).

We can think of the conditional entropy H(Y |X) as the additional information we gain from Y
after knowing X.

We will consider only discrete variables taking values from finite sets. We write x = a ± b
for inequalities a− b ≤ x ≤ a+ b.

1.1 Shannon-Khinchin entropy axioms

Before being able to use entropy to combinatorial problems, we shall build up some basic theory.
Following Gowers’s practice, we would like to forget the concrete definition of entropy in (1),
and do things axiomatically. The advantage is that it saves us from lengthy computation and
many arguments are reduced to intuitive calculus.

Below are the Shannon-Khinchin axioms that entropy satisfies:

1. Invariance. H(X) depends only on the probability distribution of X. If Y = f(X) for
some function f , then H(X,Y ) = H(X). If f is bijective, then H(Y ) = H(X).
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2. Maximality. If X takes values over A, then H(X) is maximised when X has the uniform
distribution over A.

3. Extensibility. If X takes values in A and Y takes values in B ⊇ A, and if Pr(X = a) =
Pr(Y = a) for every a ∈ A, then H(Y ) = H(X).

4. Additivity. H(X,Y ) = H(X) + H(Y |X).

5. Continuity. H(X) depends continuously on Pr(X = a).

6. Normalisation. If X is a uniform random variable over two values, then H(X) = 1.

These are very intuitive axioms. Indeed, invariance says that variables carry the same amount
of information if they have the same (up to permutation) distribution. Maximality says that the
uniform distribution is the most random and the most unpredictable, hence the highest entropy.
What about additivity? Well, the information we get from the joint random variable (X,Y )
is the same as the information we get from X plus the additional ones we get from Y after
revealing X.

We remark that axiom 1–5 determines the entropy up to a constant factor; using axiom 6, we
shall see later that the function in (1) is the unique one satisfying all axioms. This is, however,
rather unimportant, as we would like to encourage everyone to use these intuitive axioms instead
of the dry definition in (1).

1.2 Basic properties of entropy

We shall derive in this section some basic (and intuitive!) properties of entropy using Shannon-
Khinchin axioms.

The first property is that if X and Y have nothing to do with each other, then knowing X
does not tell us anything about Y .

Lemma 1.1 (Independence). If X and Y are independent random variables, then

H(Y |X) = H(Y ) and H(X,Y ) = H(X) + H(Y ).

In general, if Xi are independent copies of X, then

H(X1, . . . , Xn) = nH(X).

Proof. For any x, the distribution of Y given X = x is the same as that of Y as they are
independent. Thus, by invariance H(Y |X = x) = H(Y ), and

H(Y |X) =
∑
x

Pr(X = x)H(Y |X = x) =
∑
x

Pr(X = x)H(Y ) = H(Y ).

Consequently, by additivity, H(X,Y ) = H(X) + H(Y |X) = H(X) + H(Y ). The second assertion
follows from induction on n.

The second one below appeared already in the introduction; recall the biased coin with both
sides being head. It says that there is no surprise if there is no uncertainty.

Lemma 1.2. If X is a random variable taking only one value, then H(X) = 0.

Proof. LetXi be independent copies ofX. AsX takes only one value, by invariance, H(X1, X2) =
H(X). On the other hand, as X1 and X2 are independent, by Lemma 1.1 and invariance,
H(X1, X2) = H(X1) + H(X2) = 2H(X). Then 2H(X) = H(X) and so H(X) = 0.
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The next one is also intuitive, saying that if a variable takes more values, it is more random,
hence higher entropy. In what follows, we denote a random variable X chosen uniformly over a
set A as X ∼ A.

Lemma 1.3 (Monotonicity 1). Let X ∼ A and Y ∼ B. If A ⊆ B, then H(X) ≤ H(Y ) with
equality if and only if A = B.

Proof. By extensibility, we can think of X as taking values in B (i.e. Pr(X = a) = 1/|A| for
each a ∈ A and Pr(X = b) = 0 for each b ∈ B \ A). Then H(X) ≤ H(Y ) by maximality. If
A = B, then invariance implies the equality H(X) = H(Y ).

To see the strict inequality, suppose |A| < |B|. If |A| = 1, then H(X) = 0 due to Lemma 1.2.
On the other hand, let B′ ⊆ B be a subset of size 2 and let Z ∼ B′, then H(Y ) ≥ H(Z). Thus,
by normalisation, H(Y ) ≥ H(Z) = 1 > 0 = H(X).

Suppose then |A| ≥ 2, and so H(X) ≥ 1. Let Xi, Yi be independent copies of X and Y
respectively. Choose n sufficiently large so that |A|n ≤ |B|n−1, then by Lemma 1.1,

nH(X) = H(X1, . . . , Xn) ≤ H(Y1, . . . , Yn−1) = (n− 1)H(Y ).

As H(X) ≥ 1, we get the strict inequality H(X) < H(Y ).

For a random variable with rational probabilities on atoms, it is helpful to link it to a uniform
distribution as follows.

Construction 1.4. Let X be a random variable taking values in A such that for each a ∈ A,
Pr(X = a) = ma

n for some ma ∈ N. Let U ∼ [n]. We can think of X being determined by U
as follows. Let Va, a ∈ A, be a partition of [n] with |Va| = ma. Let X ′ be the random variable
over A such that X ′ = a if U ∈ Va. Then X,X ′ are identically distributed, and by invariance
H(X) = H(X ′). Furthermore, as we define X ′ from U , by invariance, H(X ′, U) = H(U). Another
useful fact here is that condition on X ′ = a, Y is uniformly distributed over Va, i.e. the random
variable (U |X ′ = a) ∼ Va.

We can also think of U in terms of X. Let U ′ be the random variable over [n] such that if
X = a then U ′ is uniform over Va.

1 Then U,U ′ ∼ [n] are identically distributed.

Entropy assigns non-negative values to discrete random variables. This is obvious from the
definition in (1). Let us prove it using the axioms.

Lemma 1.5. Let X be a random variable taking values in a finite set A, then H(X) ≥ 0.

Proof. Suppose X takes values in A with rational probabilities. Let U ∼ [n] and X ′ be as
in Construction 1.4, so H(X ′) = H(X) and H(X ′, U) = H(U). By additivity, H(X ′, U) =
H(X ′) + H(U |X ′). Thus,

H(X) = H(X ′) = H(X ′, U)− H(U |X ′) = H(U)− H(U |X ′),

and it suffices to show H(U |X ′) ≤ H(U). Recall that for each a ∈ A, (U |X ′ = a) ∼ Va ⊆ [n] and
U ∼ [n]. Thus, Lemma 1.3 entails that H(U |X ′ = a) ≤ H(U), and so

H(U |X ′) =
∑
a∈A

Pr(X ′ = a)H(U |X ′ = a) ≤
∑
a∈A

Pr(X ′ = a)H(U) = H(U).

The general case follows from the above case and continuity axiom. Indeed, as the set of
rationals is dense in reals, we can approximate the atom probability Pr(X = a) arbitrarily closely
by multiples of 1/n for large enough n.

1Note that X does not determine U ′.
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The following property says that if Y is determined by X, then it carries no more information
than X.

Lemma 1.6 (Monotonicity 2). Given random variables X,Y , if Y = f(X) for some function
f , then H(Y ) ≤ H(X), with equality if f is bijective.

Proof. The equality case when f is bijective is simply invariance. For the inequality, as Y is
determined by X, by invariance, H(X,Y ) = H(X). On the other hand, by additivity and that
entropy is non-negative (Lemma 1.5),

H(X) = H(X,Y ) = H(Y ) + H(X|Y ) ≥ H(Y )

as desired.

When the outcome is not absolute certainty, then entropy is positive.

Lemma 1.7. Let X be a random variable taking at least two values with positive probability,
then H(X) > 0.

Proof. Let A be the set over which X is defined, and set c = maxa∈A Pr(X = a). By assumption,
c < 1. Thus, for any ε > 0, we can choose n large enough so that cn < ε. Letting X1, . . . , Xn

be independent copies of X, we see that (X1, . . . , Xn) takes any value in An with probability at
most cn < ε. So we can partition An into two sets A0, A1, each with probability 1

2 ± ε. Define
random variable Y such that Y = i if (X1, . . . , Xn) ∈ Ai, i ∈ {0, 1}.

Now, by normalisation and continuity, H(Y ) > 0. By Lemma 1.1, H(X1, . . . , Xn) = nH(X).
On the other hand, as Y is determined by (X1, . . . , Xn), by Lemma 1.6, H(X1, . . . , Xn) ≥ H(Y ).
So H(X) ≥ 1

nH(Y ) > 0 as desired.

The last one below follows immediately from additivity and induction.

Lemma 1.8 (Chain rule). Let X1, . . . , Xn be random variables. Then

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + · · ·+ H(Xn|X1, . . . , Xn−1) =
∑
i∈[n]

H(Xi|X1, . . . , Xi−1).

1.3 Subadditivity and Shearer’s lemma

We shall see in this section yet another key property of entropy, subadditivity and its general-
isation, Shearer’s lemma.

Let us start with an intuitive statement, stating that dropping conditioning can only increase
entropy. This makes sense as knowing Y would only decrease the amount of information we get
from X.

Lemma 1.9 (Dropping conditioning). Let X,Y, Z be random variables. Then

H(Y |X) ≤ H(Y ) and H(Z|Y,X) ≤ H(Z|Y ).

Proof. Let us first prove the special case when X is uniformly distributed. In this case, by
maximality, H(X|Y = b) ≤ H(X) for any b, and so H(X|Y ) ≤ H(X). Consequently, by additivity,

H(Y |X) = H(X,Y )− H(X) ≤ H(X,Y )− H(X|Y ) = H(Y ).

Next, by continuity, it suffices to consider the case when X takes values with rational prob-
abilities. Let U ′ ∼ [n] be as in Construction 1.4, so (U ′|X = a) ∼ Va. As for any a, (U ′|X = a)
is uniformly distributed, the special case above implies

H
(
Y
∣∣(U ′|X = a)

)
≤ H(Y ),
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and so H(Y |U ′, X) ≤ H(Y ). On the other hand, (U ′|X = a) ∼ Va implies that given X = a, U ′

and Y are conditionally independent. Then Lemma 1.1 entails

H(Y |U ′, X = a) = H(Y |X = a).

Hence H(Y |X) = H(Y |U ′, X) ≤ H(Y ) as desired.
The second statement follows from the first one.

We can now prove that entropy is subadditive. It states that the information we get jointly
from X1, . . . , Xn is no more than the combine of the information we get from each of the Xis.

Lemma 1.10 (Subadditivity). Let X1, . . . , Xn be random variables. Then

H(X1, . . . , Xn) ≤
∑
i∈[n]

H(Xi).

Proof. As conditioning less can only increase the entropy (Lemma 1.9), together with additivity,
H(X1, X2) = H(X1) + H(X2|X1) ≤ H(X1) + H(X2). The conclusion then follows from induction
on n.

A generalisation of subadditivity was given by Shearer.

Lemma 1.11 (Shearer’s lemma). Let F be a family of subsets of [n] (possibly with repeats) such
that each coordinate i ∈ [n] is contained in at least k members of F . Then for a random vector
(X1, . . . , Xn),

H(X1, . . . , Xn) ≤ 1

k

∑
F∈F

H(XF ),

where XF is the vector (Xi : i ∈ F ).

Subadditivity is the special case of Shearer’s lemma in which F consists of all singletons in
[n] and k = 1.

We shall give a proof of the following equivalent probabilistic version. It states that the
entropy of a random vector can be bounded in terms of the expected entropy of a random
projection; and the bound is more effective if the random projection covers every coordinate
with decent probability.

Lemma 1.12 (Shearer’s lemma, probabilistic version). Let F be a random subset of [n] such
that for each coordinate i ∈ [n], Pr(i ∈ F ) ≥ µ. Then for a random vector (X1, . . . , Xn),

H(X1, . . . , Xn) ≤ 1

µ
EFH(XF ),

where XF is the vector (Xi : i ∈ F ).

Proof. Order the random elements in F as i1 < · · · < ik. Then by chain rule (Lemma 1.8),

H(XF ) = H(Xi1) + H(Xi2 |Xi1) + · · ·+ H(Xik |Xi1 , . . . , Xik−1
).

Write H(Xi|X<i) for H(Xi|X1, . . . , Xi−1). Conditioning more (which only reduces entropy by
Lemma 1.9) and taking expectation, we get

EFH(XF ) ≥ EF
∑
i∈F

H(Xi|X<i)

=
∑
i∈[n]

Pr(i ∈ F ) · H(Xi|X<i)

≥ µ
∑
i∈[n]

H(Xi|X<i)

= µH(X1, . . . , Xn),

where the last equality follows from chain rule.
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1.4 Axioms determine entropy function uniquely

We wrap up the theory developing by proving that Shannon-Khinchin axioms determine the
entropy function uniquely.

Let us first see that the function above satisfies all axioms. Let us show maximality and
additivity; the others are trivial.

Recall Jensen’s inequality. If f is concave below, the inequality goes the other way.

Lemma 1.13. Let X be a random variable and f be a convex function, then

f(EX) ≤ E(f(X)).

Maximality follows from Jensen’s inequality.

Proposition 1.14. Let X be a random variable defined over A and let H(X) =
∑

x∈A px · log 1
px

,
where px = Pr(X = x). Then H(X) satisfies maximality.

Proof. As f(x) = log x is concave, by Jensen’s inequality,

H(X) =
∑
x∈A

px · log
1

px
≤ log

(∑
x∈A

px ·
1

px

)
= log |A|,

with equality when all px are equal, i.e. when X is uniform over A.

Proposition 1.15. Let X be a random variable defined over A and let H(X) =
∑

a∈A pa · log 1
pa

,
where pa = Pr(X = a). Then H(X) satisfies additivity.

Proof. Let Y be a random variable defined over B. Write qb = Pr(Y = b), pab = Pr(X = a, Y =
b) and qb|a = Pr(Y = b|X = a). We want to show H(X,Y ) = H(X) + H(Y |X).

Firstly, as

pab = Pr(X = a, Y = b) = Pr(X = a) · Pr(Y = b|X = a) = paqb|a,

we can rewrite the joint entropy:

H(X,Y ) =
∑

a∈A, b∈B
pab log

1

pab

=
∑

a∈A, b∈B
pab

(
log

1

pa
+ log

1

qb|a

)
.

Note that
∑

b∈B pab = pa, so the first term in the sum is∑
a∈A, b∈B

pab log
1

pa
=
∑
a∈A

log
1

pa

(∑
b∈B

pab
)

=
∑
a∈A

pa log
1

pa
= H(X).

We are left to show the second term in the sum is H(Y |X). Indeed,∑
a∈A, b∈B

pab log
1

qb|a
=
∑
a∈A

pa
∑
b∈B

qb|a log
1

qb|a

=
∑
a∈A

paH(Y |X = a)

= H(Y |X),

as desired.
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We now show that the choice of entropy function in (1) is the unique one satisfying all the
axioms. First, we need the following.

Lemma 1.16. If X is a random variable uniformly distributed over A, then H(X) = log |A|.

Proof. Let |A| = n and consider the special case that n = 2k. Let Y be uniformly chosen
from [2], then H(Y ) = 1 by normalisation. Let Y1, . . . , Yk be indepdendent copies of Y , then
by Lemma 1.1, H(Y1, . . . , Yk) = kH(Y ) = k. As (Y1, . . . , Yk) is uniform over [2]k, by invariance,
H(X) = H(Y1, . . . , Yk) = k.

Now, for general n, let δ = H(X) − log n. Take independent copies X1, . . . , Xr of X, then
again by Lemma 1.1, H(X1, . . . , Xr) = rH(X). So if 2k ≤ nr ≤ 2k+1, we have from Lemma 1.3
and the special case above that k ≤ rH(X) ≤ k + 1, or k

r − log n ≤ δ ≤ k+1
r − log n. As

k
r − log n ≤ 0 and k+1

r − log n ≥ 0, we get that |δ| ≤ 1
r . It follows that δ = 0 as the choice of r

is arbitrary. Thus, H(X) = logn.

Lemma 1.17. Let X be a random variable defined over A. If H(X) satisfies all six Shannon-
Khinchin axioms for entropy, then H(X) =

∑
a∈A pa · log 1

pa
, where pa = Pr(X = a).

Proof. By continuity, we may assume that there is some n ∈ N such that pa = ma
n for some

ma ∈ N for each a ∈ A. Let U ∼ [n], X ′ be as in Construction 1.4, so H(X) = H(X ′),
H(X ′, U) = H(U) and (U |X ′ = a) ∼ Va.

As (U |X ′ = a) ∼ Va, where |Va| = pan, and U ∼ [n], by Lemma 1.16 and that X,X ′ are
identically distributed, we get that H(U) = log n and that

H(U |X ′) =
∑
a∈A

Pr(X ′ = a)H(U |X ′ = a) =
∑
a∈A

pa log(pan).

Then, by additivity,

H(X) = H(X ′) = H(X ′, U)− H(U |X ′)

= H(U)−
∑
a∈A

pa log(pan)

= log n−
∑
a∈A

pa(log pa + log n)

=
∑
a∈A

pa log
1

pa
,

as desired.

1.5 Conditional verions of basic properties

The basic properties we have shown so far for entropy can be easily extended to conditional
entropy. We will summarise in this section these properties. Below, X,Y, Z,Xis are discrete
random variables and E is some event, and f is a deterministic function. We write range(X|E)
for the set of values X takes with positive probability conditioning on E.

• Maximality. H(X|E) ≤ log |range(X|E)| with equality if and only if X|E ∼ range(X|E).
This corresponds to the intuition that under uniform measure, no choice is favourable and
so the outcome is the hardest to predict, hence carrying the most information.

• Chain rule. H(X1, . . . , Xn|Y ) =
∑

i∈[n]H(Xi|X1, . . . , Xi−1, Y ).

• Monotonicity. If X = f(Y ) , then H(X) ≤ H(Y ). More generally, if X = f(Y,Z), then
H(X|Z) ≤ H(Y |Z). If Y = f(Z), then H(X|Z) ≤ H(X|Y ). The last one means that if we
reveal less upfront (Y instead of Z), then we get more information later.
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• Dropping conditioning. H(Z|Y,X) ≤ H(Z|Y ).

• Subadditivity. H(X1, . . . , Xn|Y ) ≤
∑

i∈[n]H(Xi|Y ) with equality if Xis are conditionally
independent given Y .

• Shearer’s lemma. Given random F ⊆ [n] with Pr(i ∈ F ) ≥ µ for each i ∈ [n], then

H(X1, . . . , Xn|Y ) ≤ 1

µ
EFH(XF |Y ).

There is another useful inequality. We will state it without proof.

• Gibbs inequality. If X,Y take values in the same finite set A, writing pa = Pr(X = a) and
qa = Pr(Y = a), then

H(X) =
∑
a∈A

pa log
1

pa
≤
∑
a∈A

pa log
1

qa
,

with equality if and only if pa = qa for all a ∈ A.

This is the same as saying that the Kullback–Leibler divergence or relative entropy, denoted by
DKL(X‖Y ), is non-negative:

DKL(X‖Y ) =
∑
a∈A

pa log
pa
qa
≥ 0.

2 Applications of entropy

2.1 Volume of Hamming balls

The first application of entropy is to estimate the volume of Hamming balls. We need a piece
of notation.

Definition 2.1. The binary entropy function h : [0, 1]→ R is defined as

h(p) = p log
1

p
+ (1− p) log

1

1− p
.

Note that h(p) is the entropy of a Bernoulli random variable with probability p, i.e. h(p) =
H(X), where X ∼ Binom(1, p). It is easy to show that h(p) is increasing from 0 to 1 when
p ∈ [0, 12 ] and decreasing down to 0 when p ∈ [12 , 1].

We can write binomial coefficients using binary entropy function. Using Stirling’s formula
that n! ∼

√
2πn(ne )n as n→∞, a simple calculation shows that for any p ∈ (0, 1),(

n

pn

)
∼ 2h(p)n√

2πnp(1− p)
. (2)

The Hamming distance between two vectors is the number of coordinates on which they
differ. Given a binary vector v ∈ {0, 1}n, the Hamming ball of radius r around it is the set of
all vectors with Hamming distance at most r from v. By volume of a Hamming ball, we mean
its size. Note that the volume of a Hamming ball of radius r is precisely

∑
i≤r
(
n
i

)
.

We can estimate the volume of a Hamming ball using binary entropy function, which is fairly
tight considering the asymptotics in (2). The bound below can of course be derived again using
Stirling’s formula. The point is that using entropy, we can have a calculation-free proof. All we
need below is maximality and subadditivity.
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Theorem 2.2. Let 0 < p ≤ 1/2. Then for all n,∑
i≤pn

(
n

i

)
≤ 2h(p)n.

Proof. Let A be the set of all subsets of [n] of size at most pn, then we want to show that
|A| =

∑
i≤pn

(
n
i

)
≤ 2h(p)n. Let X ∼ A, then H(X) = log |A| (Lemma 1.16). It then suffices to

show H(X) ≤ h(p)n.
Now, think of X as the random vector (X1, . . . , Xn), where Xi is the indicator function

for {i ∈ X}. Then by subadditivity H(X) ≤
∑

i∈[n]H(Xi). Note that H(Xi) = h(αi), where

αi = Pr(i ∈ X). As X has size at most pn, αi ≤ p ≤ 1
2 for each i ∈ [n]. As h(x) is increasing

when x ≤ 1
2 , it follows that H(X) ≤

∑
i∈[n] h(αi) ≤ h(p)n as desired.

We can use the above estimate to get the following weak form of the Chernoff concentration
bound. We leave its proof as exercise.

Corollary 2.3. Let X be a binomial random variable X ∼ Binom(n, 12) with standard deviation

σ =
√
n
2 . Then for any c ≥ 0,

Pr
(∣∣X − n

2

∣∣ ≥ cσ) ≤ 2−
c2

2
+1.

2.2 Loomis-Whitney inequality

Loomis-Whitney inequality in geometry estimates the volume of a n-dimensional body by the
volumes of its (n− 1)-dimensional projections.

For a measurable body K in Rn, we write vol(B) for its volume. For each i ∈ [n], let
πi : Rn → Rn−1 be the projection to the hyperplane xi = 0, that is,

πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

Theorem 2.4 (Loomis-Whitney inequality). Let K be a measurable body in Rn. Then

vol(K) ≤
∏
i∈[n]

vol
(
πi(K)

) 1
n−1 .

This inequality is tight: equality holds when K is an axis-aligned box.

Proof. By standard scaling and limiting argument, we may assume that K is a union of axis-
aligned unit cubes. LetX be a uniform random cube inK, then H(X) = log vol(K) (Lemma 1.16).
As each cube is uniquely determined by its center, we can identify it with the center. So
H(X) = H(X1, . . . , Xn), where Xi is the i-th coordinate of X’s center. It thus suffices to show
that

H(X1, . . . , Xn) ≤ 1

n− 1

∑
i∈[n]

log vol
(
πi(K)

)
.

Let π ∼ {π1, . . . , πn} be a uniform random (n − 1)-dimensional projection, and let C be
the random subset of [n] recording the set of coordinates π projects to. That is, for any vector
(Z1, . . . , Zn) ∈ Rn, π(Z) = ZC := (Zi : i ∈ C). As π is uniformly chosen, Pr(i ∈ C) = µ = n−1

n .
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Then by Shearer’s lemma (Lemma 1.12),

H(X1, . . . , Xn) ≤ n

n− 1
ECH(XC)

=
n

n− 1
EπH(π(X))

=
n

n− 1
· 1

n

∑
i∈[n]

H(πi(X))

≤ 1

n− 1

∑
i∈[n]

log vol
(
πi(K)

)
,

where the last inequality follows from maximality and that πi(X) takes values in πi(K).

2.3 Triangle maximisation

A typical application of Kruskal-Katona theorem is the triangle maximisation problem: if a
graph has m edges, how many triangles it can have? Here we show how to use Shearer’s lemma
to get the same bound (again without much calculation!). Intuitively, given the number of edges,
the number of triangles is maximised when edges are clustered together. Say m =

(
k
2

)
, then we

can pack edges into a clique on k vertices, in which case we have
(
k
3

)
∼ (2m)3/2

6 triangles. We
will prove this asymptotically tight bound.

Theorem 2.5. An m-edge graph has at most (2m)3/2

6 triangles.

Proof. Let T be the set of labeled triangles in G and let t = |T |. Take X = (X1, X2, X3) ∼ T ,
where Xis are vertices of X, then H(X) = log t. As there are 3! = 6 ways to label a triangle, it
suffices to show that H(X) ≤ 3

2 log(2m).

Let F ∼
(
[3]
2

)
, then Pr(i ∈ F ) = µ = 2

3 . Thus, by Shearer’s lemma (Lemma 1.12),

H(X) ≤ 3

2
EFH(XF ) ≤ 3

2
log(2m),

where the last inequality follows from maximality and the fact that XF takes values on the set
of all labeled edges.

2.4 Triangle-intersecting family

A family of graphs on vertex set [n] is triangle-intersecting if every two graphs in the family has
a triangle in common. Ellis, Filmus and Friedgut showed that a triangle-intersecting family has

size at most 2(n2)−3. This bound is tight. As in Erdős-Ko-Rado, we can take the family of all

graphs containing a fixed triangle, which has size 2(n2)−3. Here we prove a weaker bound.

Theorem 2.6. A triangle-intersecting family F on [n] has size at most 2(n2)−2.

Proof. Let X ∼ F , then we need to show H(X) = log |F| ≤
(
n
2

)
− 2. Think of X as a random

vector (Xe : e ∈
(
[n]
2

)
), where Xe is the indicator function of {e ∈ X}.

Consider now a uniform random set R ⊆ [n] and let G be the random graph consisting of
two cliques, one on R and the other on [n] \ R. Then EG(e(G)) = 1

2

(
n
2

)
, and for each e ∈

(
[n]
2

)
,

Pr(e ∈ G) = µ = 1
2 . Shearer’s lemma then implies

H(X) ≤ 2 EGH(XG).

The clever idea here is that the family F restricted to G is an intersecting family: any pair of
graphs in F share a triangle, which must intersect G. Thus, XG takes values in an intersecting
family on edge set of G, which has size at most 2e(G)−1. So maximality implies H(XG) ≤ e(G)−1,
and we get that H(X) ≤ 2EG(e(G)− 1) =

(
n
2

)
− 2 as desired.
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2.5 Brégman’s theorem

The next application of entropy is a proof of Brégman’s theorem due to Radhakrishnan on the
maximum permanent of a 0,1-matrix with given row sums.

The permanent of an n× n matrix A is the sum

perm(A) =
∑
σ∈Sn

∏
i∈[n]

Aiσ(i),

where Sn is the symmetric group on [n]. The permanent is like the determinant but without the
signs. This makes all the difference: while there is efficiently algorithm to compute determinant,
it is computationally difficult to determine permanent.

An equivalent way of looking at permanent of a 0, 1-matrix A is to see it as the number of
perfect matchings in a bipartite graph G with partite sets U and V , each of size n. Indeed, we
can view A as a bipartite adjacency matrix of G: rows and columns represent vertices in U and
V respectively. Then each permutation σ ∈ Sn that contributes 1 to perm(A) corresponds to a
perfect matching in G. Note that this correspondence is bijective.

Brégman’s theorem offers an upper bound on the permanent of 0, 1-matrix.

Theorem 2.7 (Brégman’s theorem). Let A be an n × n 0, 1-matrix with row sums d1, . . . , dn.
Then

perm(A) ≤
∏
i∈[n]

(di!)
1
di .

When viewing as perfect matchings in bipartite graphs, the row sums are the degrees of
vertices in one partite set. Brégman’s theorem states that given the degree sequence (d1, . . . , dn)

on one side of the bipartite graph, then the number of perfect matchings is at most
∏
i∈[n](di!)

1
di .

Note that this upper bound is tight: assume d|n and consider the n-vertex graph that is a union
of n

d disjoint copies of Kd,d.
We will present Radhakrishnan’s proof for the graph version.

Proof. View A as the bipartite adjacency matrix of a bipartite graph G with partite sets U and
V , and so the degree sequence of U is (d1, . . . , dn) and perm(A) = |M |, where M is the set of
perfect matchings in G. As usual, take σ ∼M , then we need to show

H(σ) = log |M | ≤
∑
i∈[n]

log(di!)

di
.

Fix an ordering τ : v1, . . . , vn of U , think of σ as the random vector (σ(v1), . . . , σ(vn)), where
σ(vi) ∈ V is the other endpoint of the edge in σ containing vi. Then by chain rule,

H(σ) = H(σ(v1)) + H(σ(v2)|σ(v1)) + · · ·+ H(σ(vn)|σ(v1), . . . , σ(vn−1)).

Fix vk, then after revealing σ(v1), . . . , σ(vk−1), σ(vk) has to take values in the set of neighbours
of vk that are not equal to any of σ(v1), . . . , σ(vk−1). Let dτ,k−1(vk) be the number of such
neighbours, then maximality infers that H(σ(vk)|σ(v1), . . . , σ(vk−1)) ≤ Eσ log(dτ,k−1(vk)) and so

H(σ) ≤ Eσ
∑
k∈[n]

log(dτ,k−1(vk)).

The problem now is that we know nothing about how many neighbours of vk have been
used before σ(vk). Radhakrishnan’s idea is to take a random ordering τ , then we can know how
dτ,k−1(vk) behaves in expectation.

Now, fix a choice for σ in M and let τ : v1, . . . , vn be a uniform random ordering of U . Fix a
vertex v ∈ U and consider its contribution to the sum

∑
k∈[n] log(dτ,k−1(vk)). As τ is a uniform
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random ordering, the number of used neighbours of v before σ(v) is equally likely to be any of
0, . . . , d(v)− 1. That is, if v = vk, then dτ,k−1(vk) ∼ [d(vk)]. Thus,

Eτ
∑
k∈[n]

log(dτ,k−1(vk)) =
∑
v∈U

1

d(v)

∑
i∈[d(v)]

log i =
∑
i∈[n]

log(di!)

di
.

Thus, averaging over both τ and σ, we have

EτEσ
∑
k∈[n]

log(dτ,k−1(vk)) =
∑
i∈[n]

log(di!)

di
,

implying that there is a choice of τ such that

H(σ) ≤ Eσ
∑
k∈[n]

log(dτ,k−1(vk)) ≤
∑
i∈[n]

log(di!)

di

as desired.

2.6 Sidorenko’s conjecture

The famous Sidorenko’s conjecture relates the subgraph density to edge density. To state the
conjecture, we need some definitions. I thank Joonkyung Lee for teaching me the material in
this section.

A homomorphism from a graph H to a graph G is a map f : V (H)→ V (G) that preserves
adjacency, i.e. if uv ∈ E(H), then f(u)f(v) ∈ E(G). Denote by Hom(H,G) the set of all homo-
morphisms from H to G and let hom(H,G) = |Hom(H,G)|. The homomorphism density of H
in G, or simply H-density, is the fraction of maps from V (H) to V (G) that are homomorphisms,
that is,

t(H,G) =
hom(H,G)

|V (G)||V (H)| .

We call t(K2, G) the edge-density of G.

Conjecture 2.8 (Sidorenko’s conjecture). Let H be a bipartite graph. Then for all graphs G,

t(H,G) ≥ t(K2, G)e(H). (3)

Note that the right-hand-side t(K2, G)e(H) is the H-density we expect to see in Erdős-Rényi
binomial random graphs. Thus, Sidorenko’s conjecture states roughly that given edge-density,
random graphs minimise H-density, for any bipartite graph H.

Sidorenko’s conjecture is still wide open. We will illustrate how to use entropy to prove two
cases of this conjecture.

Let us write (3) in a more convenient form. Suppose the host graph G has n vertices. Write

p = t(K2, G) and v(H) = |V (H)|. Then p = t(K2, G) = 2e(G)
n2 and (3) becomes

hom(H,G) ≥ nv(H)pe(H).

2.6.1 Star of size 2

We start with a toy example of K1,2, star of size 2 (or equivalently path of length 2). Let G be
an n-vertex graph and p = t(K2, G) as above. Then Sidorenko’s conjecture for K1,2 states that

hom(K1,2, G) ≥ n3p2. (4)

This case follows from a single application of Jensen’s inequality. We give a proof using
entropy, which is longer. The point is that this entropy argument, though longer, is easier
to generalise to handle both when H is a tree or when H is a complete bipartite graph. We
encourage the readers to give it a try for the cases (i) K1,b, a star of size b, (ii) H = P4, a path
on 4 vertices, (iii) H = K2,2 = C4, a 4-cycle.
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Proof of (4). Sample a random homomorphism (X,Y, Z) from Hom(K1,2, G) as follows.

• First sample an edge XY uniformly at random. Equivalently, sample a vertex X propor-
tional to its degree and then choose a random neighour Y of X uniformly.

• Then choose a random neighour Z of X uniformly.

The point is that Y and Z are independent conditioning on X, i.e.

H(Y, Z|X) = H(Y |X) + H(Z|X),

and that both XY and XZ are a random uniform edge. Thus, by maximality,

H(X,Y ) = H(X,Z) = log
(

hom(K2, G)
)

= log(n2p).

Then, using maximality, additivity and the conditional independence of Y,Z given X, the en-
tropy of this random homomorphism (X,Y, Z) satisfies

log(hom(K1,2, G)) ≥ H(X,Y, Z) = H(Y,Z|X) + H(X)

= H(Y |X) + H(Z|X) + H(X)

= H(X,Y )− H(X) + H(X,Z)− H(X) + H(X)

= H(X,Y ) + H(X,Z)− H(X)

≥ 2 log(n2p)− log2 n

= log(n3p2),

as desired.

The key idea here is that Y and Z are made independent conditioning on X and having the
same marginal distribution.

2.6.2 Bipartite H with a dominating vertex

In this section, we present an important case of Sidorenko’s conjecture due to Conlon, Fox and
Sudakov. They proved that Sidorenko’s conjecture holds for bipartite H on partite sets A,B if
there is a vertex in A adjacent to all vertices in B.

Theorem 2.9. Let H be a bipartite graph on partite sets A,B with a vertex in A adjacent to
all vertices in B. Let G be an n-vertex graph and let p = t(K2, G). Then

hom(H,G) ≥ nv(H)pe(H).

The original proof uses dependent random choice and tensor power trick. We will present
an entropy proof. The following bound on the entropy of a random star will be useful. It can
be proved using arguments in the proof of K1,2; we leave it as an exercise.

Exercise 2.10. Generate a random star of size b in an n-vertex graph G as follows. First sample
a vertex Y proportional to its degree as the center of the star. Then sample X1, . . . , Xb ∈ N(Y )
uniformly at random as leaves. Then

H(Y,X1, . . . , Xb) ≥ log(nb+1pb),

where p = t(K2, G).

Proof of Theorem 2.9. Let z ∈ A be the vertex with NH(z) = B, write B = [b] and let I =
{NH(a) : a ∈ A \ {z}} be the collection of sets of neighbours of vertices in A \ {z}. Sample a
random homomorphism from Hom(H,G) as follows.
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• First, to embed z, sample a vertex Z proportional to its degree.

• Then, for B, sample vertices X1, . . . , Xb ∈ NG(Z) uniformly at random.

• Finally, to embed A \ {z}, for each I ∈ I, writing XI = (Xi : i ∈ I), sample a vertex
YI ∈ NG(XI) in such a way that (YI , XI) is distributed as the random star in Exercise 2.10.
Equivalently, YI is a conditionally independent copy of Z conditioning on XI .

By maximality, the entropy of this random homomorphism is at most log(hom(H,G)). It
suffices to show that

H
(
Z, (Xi : i ∈ [b]), (YI : I ∈ I)

)
≥ log

(
nv(H)pe(H)

)
.

Rewrite the entropy using chain rule:

H
(
Z, (Xi : i ∈ [b]), (YI : I ∈ I)

)
= H

(
Z, (Xi : i ∈ [b])

)
+ H

(
(YI : I ∈ I)

∣∣∣Z, (Xi : i ∈ [b])
)
.

As (Z, (Xi : i ∈ [b])) is distributed as in Exercise 2.10, we have for the first term on the right
above that

H
(
Z, (Xi : i ∈ [b])

)
≥ log(nb+1pb).

For the second term, notice that conditioning on (Xi : i ∈ [b]), Z and YI , I ∈ I, are mutually
independent. Also, for each I ∈ I, conditioning on XI , YI and X[b]\I are independent. Thus,
by conditional independence and additivity, we have

H
(

(YI : I ∈ I)
∣∣∣Z, (Xi : i ∈ [b])

)
= H

(
(YI : I ∈ I)

∣∣∣(Xi : i ∈ [b])
)

=
∑
I∈I

H
(
YI

∣∣∣(Xi : i ∈ [b])
)

=
∑
I∈I

H(YI |XI)

=
∑
I∈I

(
H(YI , XI)− H(XI)

)
.

Again by Exercise 2.10, H(YI , XI) ≥ log(n|I|+1p|I|). By subadditivity and maximality, H(XI) ≤
|I| log n. Thus, noting that |I| = |A \ {z}| = v(H)− b− 1 and that∑

I∈I
|I| = e(H)− dH(z) = e(H)− b,

we get that

H
(

(YI : I ∈ I)
∣∣∣Z, (Xi : i ∈ [b])

)
≥
∑
I∈I

(
log(n|I|+1p|I|)− |I| log n

)
=
∑
I∈I

log(np|I|)

= log
(
n|I|p

∑
I∈I |I|

)
= log

(
nv(H)−b−1pe(H)−b).

Finally,

H
(
Z, (Xi : i ∈ [b]), (YI : I ∈ I)

)
≥ log(nb+1pb) + log

(
nv(H)−b−1pe(H)−b) = log(nv(H)pe(H)),

as desired.
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2.7 H-colourings

In Sidorenko’s conjecture, we are interested in lower bounding the number of homomorphisms
from a fixed graph H to a large graph G. In this section, we will consider the problem of upper
bounding the number of homomorphisms from a large graph to a fixed graph instead.

We will study the natural extremal question: given a fixed graph H, which graph, among
all those having n vertices and m edges, maximises hom(G,H)? Galvin and Tetali proved the
following lovely result for bipartite regular graphs G.

Theorem 2.11. Let H be a graph with loops allowed but no multiple edges. Then for any
n-vertex d-regular bipartite graph G,

hom(G,H) ≤ hom(Kd,d, H)
n
2d .

This theorem says that for bipartite regular graphs G, hom(G,H) is maximised when G is
a union of Kd,d. This is a rather general statement; let us see two special cases of it.

Consider the case when H = Kq is a clique, then every homomorphism in hom(G,H) is a
proper q-colouring of G. Thus, a homomorphism to a fixed graph H can be seen as a gener-
alisation of proper colouring. As such, in the literature homomorphisms to a fixed H are also
refered as H-colourings. Theorem 2.11 then implies the following.

Corollary 2.12. For any n-vertex d-regular bipartite graph G,

cq(G) ≤ cq(Kd,d)
n
2d ,

where cq(·) is the number of proper q-colourings.

When H is the graph on two adjacent vertices u, v with a loop at v, then a homomorphism
in hom(G,H) can be identified with an independent set in G via the preimage of the unlooped
vertex u. In this case, Theorem 2.11 implies the following result of Kahn. We will prove
Theorem 2.13 below. The same argument works for Theorem 2.11 as well.

Theorem 2.13. For any n-vertex d-regular bipartite graph G,

i(G) ≤ i(Kd,d)
n
2d ,

where i(·) is the number of independent sets.

Proof. Let V (G) = O ∪ E be a bipartition of G. As G is regular, |O| = |E| = n
2 . Write I(G)

for the set of all independent sets in G. Let X ∼ I(G) be a uniform random independent set
drawn from G and let Y ∼ I(Kd,d). By maximality, it suffices to show that

log i(G) = H(X) ≤ n

2d
H(Y ) = log i(Kd,d)

n
2d .

Writing Xv for the indicator function of {v ∈ X}, we can view X has a random vector
(XO, XE), where XO = (Xv : v ∈ O) and XE = (Xv : v ∈ E). Then by chain rule,

H(X) = H(XE) + H(XO|XE).

We bound the first term H(XE) using Shearer’s lemma. For this, we need to take a random
set F of coordinates in E . Let Z ∼ O and let F = N(Z), then Pr(v ∈ F ) = µ = d

n/2 for each
v ∈ E . Thus, Shearer’s lemma infers

H(XE) ≤
n/2

d
EFH(XF ) =

n/2

d
EZH(XN(Z)) =

1

d

∑
v∈O

H(XN(v)).
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The second term can be bounded using subadditivity and dropping conditioning:2

H(XO|XE) ≤
∑
v∈O

H(Xv|XE)

≤
∑
v∈O

H(Xv|XN(v)).

Thus, we have

H(X) ≤ 1

d

∑
v∈O

(
H(XN(v)) + d · H(Xv|XN(v))

)
.

It then suffices to show that for any v ∈ O,

H(XN(v)) + d · H(Xv|XN(v)) ≤ H(Y ).

The above inequality follows from maximality. To see this, note that X induces a random
independent set W in Kd,d as follows. Write A,B for the two partite sets of Kd,d. Let W be
drawn from I(KA,B) in such a way that

• its marginal distribution on B is the same as XN(v), i.e. WB and XN(v) are identically
distributed; and

• each vertex u ∈ A has the same conditional marginal distribution as Xv|XN(v), i.e. Wu|WB

and Xv|XN(v) are identically distributed.

By the choice of W , invariance and maximality, we get

H(XN(v)) + d · H(Xv|XN(v)) = H(W ) ≤ H(Y ),

as desired.

2.8 Counting matroids

A matroid is a structure that abstracts and generalises the notion of linear independence in
vector spaces. Formally, a matroid is a pair (E,B), where E is a finite set and B ⊆ 2E is a
nonempty collection of subsets of E, satisfying the following axiom:

• Base exchange. For any B,B′ ∈ B and any e ∈ B \ B′, there exists f ∈ B′ \ B such that
B \ {e} ∪ {f} ∈ B.

We call E the ground set, elements in B the bases, and subsets of bases are independent sets.
One can define a matroid as a family of independent sets that are downward closed. A subset
of the ground set E is called dependent set if it is not independent. Base exchange implies that
all bases in a matroid have the same cardinality, which we call the rank of the matroid.

Denote by mn,r the number of matroids of rank r on the ground set [n] and by mn the
number of all matroids on [n]. Clearly, mn ≤ 22

n
, or log logmn ≤ n. Knuth gave a construction

showing that mn ≥ 2
1
2( n
n/2), or

log logmn ≥ n−
3

2
log n−O(1).

We will prove the following upper bound due to Bansal, Pendavingh and van der Pol, which has
the same first two leading terms as in Knuth’s lower bound.

2Note that the second inequality below is in fact an equality. Indeed, as X is chosen uniformly, conditioning on
XN(v), Xv has nothing to do with other vertices E \N(v). This is the spatial Markov property that for choosing
independent sets, the state of v is only determined by the boundary condition on N(v). This key property drives
not only the entropy argument here but also an argument using hard-core model in statistical physics that we
shall see later.
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Theorem 2.14. The number of matroids on [n] is at most

log logmn ≤ n−
3

2
log n+ log log n+O(1)

The strategy is to use entropy method (Shearer’s lemma) to bound the number of matroids
of higher ranks by the number of matroids of rank 2. Let us then first bound mn,2. To warm
up, note that mn,0 = 1 for any n, as the only matroid of rank 0 is B = {∅}; and mn,1 = 2n − 1,

as any nonempty B ⊆
(
[n]
1

)
satisfies base exchange. For mn,2, we only need the following crude

upper bound:
mn,2 ≤ nn. (5)

To see this bound, we need the following lemma, stating that in a rank-2 matroid, for pairs
of elements in the ground set, being dependent is an equivalence relation.

Lemma 2.15. Let (E,B) be a rank-2 matroid, then there is a partition E0, E1, . . . , Ek of E such
that

B =
{
{e, e′} : e ∈ Ei, e′ ∈ Ej , ij ∈

(
[k]

2

)}
.

Proof. Let E0 be the set of all singletons that are dependent sets, that is,

E0 = {e ∈ E : e 6∈ B for any B} = E \
(
∪B∈B B

)
.

It suffices to show that being dependent is an equivalence relation for pairs and let Eis being the
equivalent classes, i.e. for any e, f, g ∈ E \ E0, if ef, eg 6∈ B, then fg 6∈ B. Suppose ef, eg 6∈ B,
but fg ∈ B. As e 6∈ E0, there exists some h 6∈ {e, f, g} such that eh ∈ B. Then base exchange
fails for B = eh, B′ = fg and h ∈ B \B′.

Lemma 2.15 provides an injective map from the set of rank-2 matroids to partitions of E.
Thus, mn,2 is at most the number of partitions of [n], proving (5).

Here is the reduction step to rank-2 matroids.

Lemma 2.16. Let 0 ≤ t ≤ r ≤ n, then

1(
n
r

) log(mn,r + 1) ≤ 1(
n−t
r−t
) log(mn−t,r−t + 1).

In particular, taking t = r − 2, we have

1(
n
r

) log(mn,r + 1) ≤ 1(
n−r+2

2

) log(mn−r+2,2 + 1).

Before proving Lemma 2.16, let us see how it implies Theorem 2.14.

Proof of Theorem 2.14. By Lemma 2.16 and (5), we get that

log(mn,r + 1) ≤ log(mn−r+2,2 + 1)(
n−r+2

2

) (
n

r

)
≤ (n+ 1) log(n+ 1)(

n−r+2
2

) (
n

r

)
=

2 log(n+ 1)

n+ 2

(
n+ 2

r

)
.

As mn =
∑n

r=0mn,r ≤ (n+ 1) maxrmn,r, we see that

logmn ≤ log(n+ 1) + max
r

logmn,r

≤ log(n+ 1) +
2 log(n+ 1)

n+ 2

(
n+ 2

b(n+ 2)/2c

)
= O

(
2nn−3/2 log n

)
.

Thus, log logmn ≤ n− 3
2 log n+ log log n+O(1) as desired.
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For the proof of Lemma 2.16, we need to introduce contractions on matroids. First a piece
of notation: for a set E, define

ME,r =
{
B ⊆

(
E

r

)
: B satisfies base exchange.

}
Note that if |E| = n, then |ME,r| = mn,r + 1, as ME,r contains the empty set apart from all
the rank-r matroids.

Let M = (E,B) be a matroid. If T ⊆ E is contained in some basis of M , then contracting
T yields another matroid M/T = (E \ T,B/T ), where

B/T = {B \ T : B ∈ B, T ⊆ B}.

If T is not contained in any basis of M = (E,B), then B/T = ∅. Thus, for any B ∈ ME,r and
any T ⊆ E,

B/T ∈ME\T,r−|T |.

Proof of Lemma 2.16. Let E = [n] and draw X ∼ ME,r. Thus, by maximality, H(X) =
log(mn,r + 1). We can view X as the random vector (XR : R ∈

(
E
r

)
), where XR is the in-

dicator function for R ∈ X.
To apply Shearer’s lemma, the projections we shall do come from contractions of X. For

each T ⊆ E of size t, the contraction X/T takes values in ME\T,r−t and so by maximality,

H(X/T ) ≤ log(mn−t,r−t + 1).

Note that X/T is the projection of X to the set of coordinates F (T ) := {R ∈
(
E
r

)
: T ⊆ R}, i.e.

X/T = XF (T ).

Now, let T ∼
(
E
t

)
be a uniform random t-set and F (T ) be the induced set of random

coordinates. Then for each R ∈
(
E
r

)
,

Pr(R ∈ F (T )) = Pr(T ⊆ R) = µ =

(
r
t

)(
n
t

) =

(
n−t
r−t
)(

n
r

) .
Thus, Shearer’s lemma implies that

log(mn,r + 1) = H(X) = H
(
XR : R ∈

(
E

r

))
≤

(
n
r

)(
n−t
r−t
)EF (T )H(XF (T ))

=

(
n
r

)(
n−t
r−t
)ETH(X/T )

≤
(
n
r

)(
n−t
r−t
) log(mn−t,r−t + 1),

as desired.

2.9 Sunflower

A P -sunflower is a family of P sets with identical pairwise intersection, that is, {S1, . . . , SP }
such that for any ij ∈

(
[P ]
2

)
, Si∩Sj = A for some core set A. We call the sets in a sunflower petals.

Note that A is allowed to be empty, i.e. P pairwise disjoint sets also form a P -sunflower. Erdős
and Rado made the following well-known conjecture on how large a family of k-sets (k-uniform
hypergraphs, or simply k-graphs) can be without containing a sunflower.
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Conjecture 2.17 (Sunflower conjecture). Let P ≥ 3. There exists C = C(P ) such that any
k-uniform hypergraph F without a P -sunflower has at most Ck edges.

Erdős and Rado proved an upper bound of (P − 1)k · k!. A recent breakthrough of Alweiss,

Lovett, Wu and Zhang gave an upper bound of
(

log k · (P log log k)O(1)
)k

. Rao later provided
a simpler proof using Shannon’s noiseless coding theorem and obtained a slightly better upper
bound of (O(1) · P log(Pk))k. More recently, Frankston, Kahn, Narayanan, and Park builds on
these developments to resolve a conjecture of Talagrand on expectation threshold in probabilistic
combinatorics. Tao gave a proof of Rao’s bound using entropy. The advantage of the entropy
argument is that entropy smooths things out and one can prove the statement in one go without
having to distinguish typical/atypical cases as in Rao or Frankston, Kahn, Narayanan, and
Park’s proofs.

If we take P = O(1), then the above bound is O(log k)k. It remains open even for 3-sunflower,
whether we can get down to O(1)k.

We will present the following slightly weaker bound using Tao’s entropy proof.

Theorem 2.18. Any k-uniform hypergraph with more than (P log(Pk))O(k) edges contains a
P -sunflower.

Throughout the rest of this section, given a set X, we write Xδ = Binom(X, δ) for the random
binomial subset in which each element in X is included with probability δ independent of others.
Recall that given a set A, we write W ∼ A for a random variable W uniformly sampled from
A. We will abuse the notation slightly and also write W ∼ Z to mean two random variables W
and Z having the same distribution.

We will later pass from binomial random model to the easier-to-work uniform random model.
For this, we need the following definition. An empirical sequence X1, X2, . . . , for a random
variable X is a sequence taking the values from the same set as X with empirical samples
converging in distribution to X, that is, let n be drawn uniformly from [N ], then

Pr(Xn = x) = Pr(X = x) + oN (1).

2.9.1 Reduction to spread hypergraphs

We first show that, via induction, we may consider only hypergraphs with certain pseudoran-
domness property. Below is the formal definition. In other words, spread condition impose
upper bounds on codegree of sets in the hypergraph.

Definition 2.19 (R-spread). Let R > 1. A k-uniform hypergraph H is R-spread if for any
S 6= ∅,

d(S) =
∣∣{T ∈ H : T ⊇ S}

∣∣ ≤ e(H)

R|S|
.

Let H be a k-graph with no P -sunflower. Say we want to show an upper bound e(H) ≤ Rk.
If e(H) > Rk and H is not R-spread, then by definition, there exists some nonempty S lying in

more than e(H)

R|S|
> Rk−|S| edges, say {Ti}i∈I , of H. Then the link of S, that is, the (k−|S|)-graph

H/S with edge set {Ti \S}i∈I , has more than Rk−|S| edges and we can induct on the uniformity
k to get a sunflower in H/S, which corresponds to a sunflower in H with core containing S.

Thus, to prove Theorem 2.18, it suffices to show the following.

Theorem 2.20. There exists C > 0 such that every k-uniform R-spread hypergraph H with
R = (P log(Pk))C and e(H) > Rk contains a P -sunflower.

We shall find in such spread hypergraph a P -sunflower with empty core, that is, P pairwise
disjoint sets. We will phrase things in a probabilistic way.
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Definition 2.21 (R-spread, probabilistic version). Let R > 1. A random set T is R-spread, , if

Pr(S ⊆ T ) ≤ R−|S|, for any set S.

A hypergraph is R-spread if the random edge drawn uniformly from its edge set is R-spread.

The following is the key lemma.

Lemma 2.22. Let R > 1 and 0 < δ < 1. Let A be a random R-spread subset of X, and
V ∼ Binom(X, δ) be a random subset of X, independent of A. Then there exists another
random subset A′ of X such that

• A′ has the same distribution as A;

• A′ \ V ⊆ A;

• E|A′ \ V | ≤ 4+log 1
δ

logR · E|A|.

The interesting thing here is that as V and A are independent, we only have E|A \ V | =
(1 − δ)E|A|, but by taking some A′ ∼ A, we can replace the 1 − o(1) factor to o(1) factor,
provided that R� 1/δ.

Let us first sketch how Lemma 2.22 implies Theorem 2.20.

Proof sketch of Theorem 2.20. Take an R-spread hypergraph H as in Theorem 2.20 and let
X = V (H) and A ∼ E(H), then A is a random R-spread subset of X and |A| = k. Set

δ ≈ 1
P log(Pk) and R = (P log(Pk))C for large C > 0 so that

4+log 1
δ

logR ≤ 1
2 . Iterating Lemma 2.22

m ≈ log(Pk) rounds, we get that if V ∼ Binom(X, 1
P ), then for some A′ ∼ A,

Pr
(
|A′ \ V | ≥ 1

)
≤ E|A′ \ V | < 1

P
. (6)

Now randomly partition X into V1∪ . . .∪VP by placing every element of X into a uniformly
chosen Vi, i ∈ [P ], independent of others. Then for each i ∈ [P ], Vi ∼ Binom(X, 1

P ). Thus,
by (6) and union bound, with positive probability, we can find P pairwise disjoint edges, one in
each Vi, yielding a desired P -sunflower.

2.9.2 Incorporate spreadness in entropy

To prove Lemma 2.22, we need a bit more on the theory of entropy.

Conditional entropy of a random subset. Let X,Y be random variables. Recall that by
maximality, if X takes values in a set SY that depends on Y , then H(X|Y ) ≤ E log |SY |. Using
this, we get the following upper bound on the conditional entropy of a random subset:

H(B|A) ≤ E|A|, for any random subset B of a random set A. (7)

Mutual information. The mutual information of two random variables X,Y is

I(X;Y ) = H(X)− H(X|Y ) = H(Y )− H(Y |X)

= H(X) + H(Y )− H(X,Y )

= H(X,Y )− H(X|Y )− H(Y |X).

As suggested by its name, I(X;Y ) measures the information shared by X and Y , which is always
non-negative by subadditivity. If Y is determined by X, i.e. Y = f(X), then I(X;Y ) = H(Y );
while if X,Y are independent, then I(X;Y ) = 0.
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Let us first see how much mutual information a random set has with its random subset.
Consider a random set A drawn uniformly from [n] and a random subset B ⊆ A. Then the
mutual information B has with A is E|B|:

I(A;B) = H(A)− H(A|B)

= Eb

(
H(A)− H(A||B| = b)

)
= Eb

(
n− (n− b)

)
= E|B|.

The following lemma states that, compared to the usual case above, a spread set has lots of
mutual information (additional logR factor) with its large random subsets. Combinatorially, if
B is large, then there are fewer choices to extend it to a spread A, meaning that the marginal
information H(A|B) is small and so I(A;B) = H(A)− H(A|B) is large.

Lemma 2.23. Let A be a random R-spread set with R > 1. If A is uniformly chosen, then for
any random subset B ⊆ A, we have

I(A;B) = H(A)− H(A|B) ≥ logR · E|B|.

By the above lemma, to show, for certain random subset B of a spread A, that E|B| is small
compared to E|A|, we can try to upper bound the mutual information I(A;B).

As we remark before, spread is a pseudorandom property, and genuin random sets possess
this property. In particular, random sets with density δ is (1/δ)-spread.

Lemma 2.24. Let 0 < δ < 1 and W be uniformly chosen from
(
X
δ|X|
)
. Then the following holds.

• For any random set B ⊆W ,

I(W,B) = H(W )− H(W |B) ≥ log
1

δ
· E|B|.

• (Aborption) For any random set B ⊆ X,

H(W ∪B) ≤ H(W ) + 1 +

(
1 + log

1

δ

)
E|B|. (8)

Relative product. A key idea in the proof is to utilise relative product (X,X ′), in which X ′ is
a conditionally independent copy of X subject to certain constraint f(X) = f(X ′) for a given
function f . Using relative product, we can rewrite the entropy of X as follows:

H(X) = H(X, f(X))

= H(X|f(X)) + H(f(X))

= H(X|X ′) + H(f(X)), (9)

where the first and second equalities follow from invariance and additivity respectively, and
the last equality is due to the conditional independence of X and X ′ (as in the only relevant
information X ′ can provide for X is f(X ′) = f(X)).

2.9.3 Conditionally independent copy

Proof of Lemma 2.22. If A is empty, then we can take A′ = A. So we can condition on the event
that A is non-empty, and assume that E|A| ≥ 1. View X = [|X|] and take large N1, N2 � |X|.
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We first pass from the binomial model V ∼ Binom(X, δ) to the uniform model W ∼
([N2]
δN2

)
. For

this, take an empirical sequence A1, A2, . . . for A with Ai ⊆ [|X|]. Let n ∼ [N1], so

E|An| ≥ E|A| − o(1) ≥ 1− o(1). (10)

Then take W ∼
([N2]
δN2

)
independent of n. Note that W ∩ [|X|] converges in distribution to V .

Thus, it suffices to find n′ ∼ [N1] such that, as N1, N2 →∞,

E|An′ \W | ≤
4 + log 1

δ

logR
· E|An|+ o(1).

To get this, we (cleverly) take a conditionally independent copy (n′,W ′) of (n,W ) subject
to having the same union

An ∪W = An′ ∪W ′ =⇒ An′ \W ⊆ An ∩An′ .

Then it suffices to show

E|An ∩An′ | ≤
4 + log 1

δ

logR
· E|An|+ o(1).

By Lemma 2.23 with (A,B)2.23 = (An, An ∩An′), it amounts to proving

I(An;An ∩An′) = H(n)− H(n|An ∩An′) ≤
(

4 + log
1

δ

)
E|An|+ o(1). (11)

Let us start with upper bounding H(n) via bounding H(n,W ). We do so with the help of
the conditionally independent copy (n′,W ′) via (9) with ((n,W ), (n′,W ′), An ∪W ) playing the
role of (X,X ′, f(X)):

H(n,W ) = H(n,W |n′,W ′) + H(An ∪W )

≤ H(n,W |n′,W ′) + H(W ) +
(

2 + log
1

δ

)
E|An|+ o(1),

where the last inequality follows from (8) and (10). By the independence of n and W , H(n,W ) =
H(n) + H(W ). Thus we get

H(n) ≤ H(n,W |n′,W ′) +
(

2 + log
1

δ

)
E|An|+ o(1). (12)

We are left to bound H(n,W |n′,W ′) and relate it to the subset An ∩ An′ . We bound
H(n,W |n′,W ′) by first choosing An ∩An′ , then n, then An \W , which determines W :

H(n,W |n′,W ′) ≤ H(An ∩An′ |n′,W ′) + H(n|An ∩An′ , n′,W ′) + H(W |n,An ∩An′ , n′,W ′).

We can bound the 1st and 3rd terms using (7) and dropping conditioning:

H(An ∩An′ |n′,W ′) ≤ H(An ∩An′ |n′) ≤ E|An|,

and

H(W |n,An ∩An′ , n′,W ′) ≤ H(W |n, n′,W ′)
= H(An \W |n, n′,W ′)
≤ H(An \W |n)

≤ E|An|,

where the equality holds as, given An and the union An∪W (from n′,W ′), W determines An\W
and vice versa. Now replacing the 2nd term with the larger one H(n|An ∩An′), we arrive at

H(n,W |n′,W ′) ≤ H(n|An ∩An′) + 2E|An|.

Plus this back in (12), we get the desired bound (11).
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