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Chapter 1 Gibbs Point Process

1.1 Independent sets in triangle-free graphs

Given a graph G, the independence number of graph G, denoted by α(G), is the size of the largest
independent set, in which no two vertices are adjacent. Determining the independence number of a graph is
one of the most pervasive and fundamental problems in graph theory. There is a huge amount of studies about
bounding independence number from below and above in different problems. Besides, it is closely related to
the Ramsey problems and so on.

Let’s begin with a simple observation.

Observation 1.1

♠

Let d ∈ N and G be an n-vertex graph with ∆(G) ≤ d. Then

α(G) ≥ n

d+ 1
. (1.1)

Proof Arbitrarily pick v1, then pick v2 ∈ G \N(v1) with v2 6= v1, · · · , vi ∈ G \
⋃i−1
j=1N(vj), vi 6= vj ,

j = 1, 2, · · · , i− 1. Finally, we can generate an independent set I = {v1, v2, · · · }, as ∆(G) ≤ d, vi has at
most d neighbors, then the size of I is at least n

d+1 .

� Exercise 1.1 Prove that for any n-vertex graph with d(G) ≤ d, α(G) ≥ n
d+1 .

Remark The lower bound n
d+1 in both Observation 1.1 and Exercise 4.1 is an optimal result. We can consider

G as the vertex-disjoint union of cliques of size d+ 1.

Problem 1.1( Extremal problem ) Given a collection F of all n-vertex graphs with average degree d, what is
the minimum independence number of a graph G in F ? In this case, we can get minα(G)= n

d+1 , G ∈ φ.

Problem 1.2( Meta problem ) It is natural to ask what if we forbid graphs that look like extremal structures,
can we improve the bound? Since disjoint union of cliques have lots of triangles, whether the bound on α(G)

can be improved if we add a triangle-free condition?

Ajtai-Komlós-Szemenédi [3] proved that any triangle-free graph G on n vertices with average degree d
has an independent set of size at least 0.01 log d

d n. It improves the bound by a factor that is logarithmic in d.
Later on, Shearer [22] improved the constant to 1, showing that such a graph has an independent set of size at
least f(d) · n where f(d) = d log d−d+1

(d−1)2
= (1 + o(1)) log d

d , f(0) = 1, f(1) = 1
2 . Random graphs [21] show

that for infinitely many d and n with d = d(n) → ∞ as n → ∞ , there are n-vertex triangle-free graphs with
average degree d and independence number (2 − o(1))( log d

d )n. Consequently, the results cannot be improved
apart from the multiplicative constant.

� Exercise 1.2 Use shearer’s bound to derive R(3, k) ≤ (1 + o(1)) k2

log k .

There is a tight connection between the problem of determining α(G) and questions in Ramsey theory.
More precisely, determining the minimum possible α(G) for a triangle-free G is equivalent to determining the
Ramsey number R(3, k), which is the minimum n such that every graph on n vertices contains either a triangle
or an independent set of size k. A result of Kim [17] shows that R(3, k) = Θ( k2

log k ). Fiz Pontiveros, Griffiths,



1.1 Independent sets in triangle-free graphs

and Morris [19] proved that R(3, k) ≥ (1/4 + o(1)) k2

log k . Reducing the gap between these bounds is still a
major open problem in Ramsey theory.

Given a graph G, we define ᾱ(G) to be the average size of all independent sets. We prove a lower bound
on it in a triangle-free graph of maximum degree d.

Theorem 1.2

♥

Let G be a triangle-free graph on n vertices with maximum degree d. Then

ᾱ(G) ≥ (1 + o(1))
log2 d

4d
n. (1.2)

Idea The proof is based on Shearer’s method and amodification of Alon. The idea is to use the double-counting
method: we pick an independent set I in G in a uniformly random way, and bound E|I| from two points of
views: v ∈ I or not, and how N(v) ∩ I looks like.

For the first view,
E|I| =

∑
v∈V (G)

Pr(v ∈ I). (1.3)

For the second view,
E|I| ≥ 1

d

∑
v∈V (G)

∑
u∈N(v)

Pr(u ∈ I). (1.4)

We shall see these two bounds go in opposite directions, and the desired bound on ᾱ(G) follows.

Remark Spatial markov property drives the argument. In particular, whether v ∈ I or not depends only on its
"boundary condition".

Proof Let I be an independent set chosen uniformly at random in G. For every vertex v ∈ G, let H =

G− v−N(v). Fix a "boundary condition" by conditioning that I ∩V (H) = S, and defineX = N(v) \N(S),
x = |X|. Here x denotes the number of vertices in N(v) that are suitable to be added to I .

H

S

N(v)

X
...v ...

Figure 1.1

Note that N(v) itself is an independent set due to the triangle-freeness of G and I is chosen uniformly at
random, so v or any subset of X is equally likely to be included in I . Hence

Pr(v ∈ I | I ∩ V (H) = S) =
1

1 + 2x
. (1.5)

Observe that
∑

u∈N(v) Pr(u ∈ I) = E|N(v) ∩ I|. We obtain a conditional expectation of |N(v) ∩ I| also
from above two conditions,

E(|N(v) ∩ I| | I ∩ V (H) = S) =
x/2 · 2x

1 + 2x
. (1.6)
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1.2 Sampling with hard-core model

So

2E|I| ≥
∑

v∈V (G)

Pr(v ∈ I) +
1

d

∑
v∈V (G)

∑
u∈N(v)

Pr(u ∈ I)

≥
∑

v∈V (G)

(Pr(v ∈ I) +
1

d
E(|N(v) ∩ I|))

≥
∑

v∈V (G)

min
0≤x≤d

max{ 1

1 + 2x
,

1

d
· x/2 · 2

x

1 + 2x
} (1.7)

≥(1 + o(1))
log2 d

2d
n.

where in the third line we used the law of total probability and eqs. (1.5) and (1.6), and in the last line the fact
that the function of x in eq. (1.7) achieves its minimum when its two terms equal.

1.2 Sampling with hard-core model

It is natural to ask what if we relax triangle-free in a different direction? Ajtai, Erdös, Komlós, and
Szemerédi [2] relax being triangle-free toK4-free or any fixed size cliques free. In 1981, they conjectured that
anyKt-free graph with maximum degree d has a lower bound on independence number.

Conjecture 1.3

♥

Let d ∈ N and G be an n-vertexKt-free graph with ∆(G) ≤ d. Then

α(G) ≥ Ω(
log d

d
n). (1.8)

When t ≥ 4, it’s stll an open problem. However, they [2] proved that there exists an absolute constant c1

such that for any t-clique-free graph G on n vertices with average degree d̄, α(G) ≥ c1
log((log d̄)/t))

d̄
n. Besides,

Shearer [23] improved the bound.

Theorem 1.4

♥

Let d ∈ N and G be an n-vertexKt-free graph with ∆(G) ≤ d. Then

α(G) ≥ Ω(
log d

d · log log d
n). (1.9)

Anothor direction is forbiding too many triangles instead of all triangles. On this direction, similar to the
previous section, we gain a log d -factor improvement for graphs with few triangles, which is locally sparse.

Theorem 1.5

♥

Let G be an n-vertex graph with ∆(G) = d. If G contains at most d2−εn triangles, then

α(G) ≥ Ω(
log d

d
n). (1.10)

The remainder of this section still focus on triangle-free graph. Let G be a triangle-free graph on n
vertices with maximum degree d. Davies, Jenssen, Perkins, and Roberts [9] proved that the expected size
of an independent set drawn uniformly at random from such a graph is at least (1 + o(1)) log d

d n, which is
asymptotically tight.
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1.2 Sampling with hard-core model

Theorem 1.6

♥

Let G be an n-vertex triangle-free graph with ∆(G) ≤ d. Then

ᾱ(G) ≥ (1 + o(1))
log d

d
n. (1.11)

The proof is based on the hard-core model from statistical physics which has received a lot of attention in
many fields. Next, we will introduce some notions about this model.

For a graph G = (V,E) and fugacity λ > 0, the hard-core model is defined on the family I(G) of all
independent sets of G where I ∈ I has weight w(I) = λ|I|.

Definition 1.7

♣

The Partition function of the hard-core model on G is denoted by

PG(λ) =
∑
I∈I

w(I) =
∑
I∈I

λ|I|. (1.12)

Definition 1.8

♣

The hard-core distribution is given by

Pr[I] =
λ|I|

PG(λ)
=

λ|I|∑
J∈I λ

|J | . (1.13)

Remark
If λ = 1, the partition function is the number of independent sets and the hard-core distribution is the
uniform distribution over all independent sets of G.
Among all probability distributions over all independent sets of graph G with given mean size, the
hard-core model distribution has the highest entropy.

Definition 1.9

♣

Let I be an independent set drawn from the hard-core model with fugacity λ, the expected size is denoted
by ᾱG(λ).

Proposition 1.10

♠ᾱG(λ) is the scaled log derivative of the partition function, which means ᾱG(λ) = λ(logPG(λ))′.

Proof

E|I| = ᾱG(λ) =
∑
I∈I
|I| · Pr[I]

=

∑
I∈I |I| · λ|I|

PG(λ)
=
λP ′G(λ)

PG(λ)
= λ(logPG(λ))′.

The proposition has many applications. For instance, if ᾱG(λ) has a lower bound, then we can get a lower
bound on PG(λ), and by setting λ = 1, we can count the number of independent sets.

Definition 1.11

♣
The occupancy fraction of G with fugacity λ is denoted by ᾱG(λ)

|G| .

To prove Theorem 1.6, the following result is helpful, which gives a lower bound on the occupancy fraction

5



1.2 Sampling with hard-core model

for triangle-free graphs.

Theorem 1.12

♥

Let G be a triangle-free graph on n vertices with maximum degree d. Then for any λ > 0,
1

n
ᾱG(λ) ≥ λ

1 + λ
· W (d log(1 + λ))

d log(1 + λ)
, (1.14)

where for z > 0,W (z) denotes the unique positive real number satisfyingW (z)eW (z) = z.

Proposition 1.13

♠For any graph G, the expected size ᾱG(λ) of an independent set is monotone increasing in λ.

Proof It suffices to show ᾱ′G(λ) ≥ 0. For convenience we use P for PG(λ). I is a random independent set
drawn from the hard-core model at fugacity λ.

Beacuse
ᾱG(λ) = E|I| = λP ′

P

and
P ′′ =

∑
I∈I
|I|(|I| − 1)λ|I|−2) =

E|I|2 − E|I|
λ2

P,

we have

ᾱ′G(λ) =

(
λP ′

P

)′
=
P ′

P
+
λP ′′

P
− λ(P ′)2

P 2

=
E|I|+ E|I|2 − E|I| − (E|I|)2

λ

=
Var(|I|)

λ
≥ 0.

In order to get a lower bound ᾱ(G) ≥ (1 + o(1)) log d
d n, we use ᾱ(G) = ᾱG(1) ≥ ᾱG(λ), for any

0 < λ < 1, and here we use λ = 1
log d .

Idea Similar to the proof of Theorem 1.2, the idea is to use the double-countingmethod: we pick an independent
set I in G in a uniformly random way, and bound E|I| from two points of views.

E|I| =
∑

v∈V (G)

Pr(v ∈ I). (1.15)

E|I| ≥ 1

d

∑
v∈V (G)

∑
u∈N(v)

Pr(u ∈ I). (1.16)

Proof of Theorem 1.12 Let I be an independent set drawn uniformly at random from the hard-core model at
fugacity λ. A vertex v ∈ V (G) is suitable if N(v) ∩ I = ∅. So v ∈ I only if v is suitable.

Pr(v ∈ I) = Pr({v ∈ I} ∩ {v is suitable})

= Pr(v ∈ I | v is suitable) · Pr(v is suitable).

Claim: For any vertex v in G, Pr(v ∈ I | v is suitable) = λ
1+λ .

Proof Pair up choices of I by conditioning I ∩ (G − v − N(v)) = S. There are two posibilities for I:

6



1.2 Sampling with hard-core model

I = S or I = S ∪ {v}, so

Pr(v ∈ I | v is suitable) =
λ|S|+1

λ|S| + λ|S|+1
=

λ

1 + λ
.

It remains to estimate Pr(v is suitable).
Define a random variable Xv to be the number of suitable neighbors of v. So v is suitable when none of

the Xv suitable neighbors in I . For any suitable vertex u ∈ N(v),

Pr(u /∈ I | u is suitable) =
1

1 + λ
.

Note that N(v) is a independent set due to the triangle-freeness, therefore,

Pr(v is suitable) = Pr(none of Xv suitable neighbors in I)

=
d∑

x=0

(
1

1 + λ

)x
· Pr(Xv = x)

=E(
1

1 + λ
)Xv .

Counting in eq. (1.15),

E|I| =
∑

v∈V (G)

Pr(v ∈ I) =
∑

v∈V (G)

Pr(v ∈ I | v is suitable) · Pr(v is suitable)

=
∑

v∈V (G)

λ

1 + λ
E(

1

1 + λ
)Xv .

Then the occupancy fraction
E|I|
n

=
λ

1 + λ
· 1

n

∑
v∈V (G)

E(
1

1 + λ
)Xv

=
λ

1 + λ
· E(

1

1 + λ
)X .

where the random variable X is the number of suitable neighbors of a uniform random v and X has two layer
of randomness − I, v. By Jensen’s inequality, E(ϕ(X)) ≥ ϕ(E(X)) with ϕ(X) = ( 1

1+λ)X , we get
E|I|
n
≥ λ

1 + λ
(

1

1 + λ
)EX (1.17)

Counting in eq. (1.16),

E|I| ≥ 1

d

∑
v∈V (G)

∑
u∈N(v)

Pr(u ∈ I | u is suitable) · Pr(u is suitable).

Thus
E|I|
n
≥1

d
· λ

1 + λ
· 1

n

∑
v∈V (G)

∑
u∈N(v)

Pr(u is suitable)

=
1

d
· λ

1 + λ
EX. (1.18)

Combining eq. (1.17)) and eq. (1.18), we have
1

n
ᾱG(λ) ≥ λ

1 + λ
max{( 1

1 + λ
)EX ,

EX
d
} (1.19)

≥ λ

1 + λ
· W (d log(1 + λ))

d log(1 + λ)
(1.20)

where in the last line we used the fact that the function in eq. (1.19) is optimized when its two terms are equal.

From Theorem 1.12, we have the following consequences:
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1.3 Conclusion

Since ᾱG(λ) is monotone increasing in λ,

ᾱ(G) = ᾱG(1) ≥ ᾱG(
1

log d
) = (1 + o(1))

log d

d
n.

Recall that ᾱG(λ) = λ[logPG(λ)]′, then
1

n
logPG(1) =

∫ 1

0

ᾱG(t)

t
dt

≥1

d

∫ 1

0

n

1 + t
· W (d log(1 + t))

log(1 + t)
dt (1.21)

=
1

d

∫ W (d log 2)

0
(1 + u)du (1.22)

=(
1

2
+ od(1))

log2 d

d
,

where we used Theorem 1.12 in eq. (1.21) and we let u := W (d log(1 + t)) in eq. (1.22).
Using this counting result, we have the following corollary

Corollary 1.14

♥

Let d ∈ N and G be a triangle-free graph on n vertices with ∆(G) ≤ d. Then the number of independent
sets in G

i(G) ≥ e( 1
2

+od(1)) log2 d
d

n.

1.3 Conclusion

This occupancy fraction method comes from statistical physics which studying of matter via probabilistic
and statistical method. Our motivation is trying to see whether the (global) macrocopic properties of matter can
be derived solely from their local microscopies interactions. Instead of keeping track of all particles, we gonna
treat them as random distributed with certain local constraints

For our problems, we use the following table to give a summary.

Global Local

Independent set α(G)
For any edge u ∼ v whether vertex v can be chosen into the
independent set depends on whether v is suitable or not

Sphere packing Packing density Centers of balls are not so close(the distance of centers of balls
is at least 2rd where rd is the radius in d-dimension )

8



Chapter 2 Sphere Packing

In this chapter, we will set up the distribution that can be viewed as continuous version of hard-core model.
Before setting on, we introduce the packing density firstly. Let P be a sphere packing of none overlapping
identical spheres in Rd, we have the following definitions.

Definition 2.1

♣

1. BR(0) denotes the radius-R ball in Rd centered at the origin;
2. rd denotes the radius such that Brd(0) has volume 1 (a unit ball);
3. θ(d)= supP lim

R→∞
vol(φ,BR(0))
vol(BR(0)) denotes the sphere packing density in Rd.

In history, there are numerous results on sphere packing density. Obviously, θ(1)=1. SinceR1 is a line and
the ball in R1 is a line segment. If we want to pack the BR(0) in R1, then we just need to put the line segment
one next another.

In 1910, Thue [24] proved the following theorem.

Theorem 2.2

♥
In R2, θ(2) = π√

12
= 0.9068 · · · .

Remark: The optimal arrangement is achieved by hexagonal packing. We can place the ball inside every
hexagon. Figure 2.1 (1) is an illustration of hexagonal packing.

      (1)  (2)

Figure 2.1: Illustration of hexagonal packing and orange packing

After more than one hundred years late, Hales [13] proved the the following theorem in 2005.

Theorem 2.3

♥
In R3, θ(3) = π√

18
= 0.7404 · · · .

Remark: The optimal arrangement is orange packing. Figure 2.1 (2) is an illustration of orange packing.

In 2017, Maryna S. Viazovska [26] showed an optimal arrangement in R8. After the sphere packing in



2.1 Definitions

R8 was sloved, within a week, Viazovska, along with Cohn and three other mathematicians [8], successfully
extended her method to cover R24 too. So it is natural to have the following problem.
Problem 2.1What’s the order of the main magnitude of θ(d) with d→∞?

2.1 Definitions

To define the partition function of Caronical Hard Sphere model and Grand Camonical Hard Sphere model
respectively, we employ the following definitions.

Definition 2.4

♣

Let S be a set and k ∈ N ,
1.
(
S
k

)
denotes the set of all k-sets in S;

2. Sk denotes all ordered k-tuples in S.

Definition 2.5

♣

Let S ⊆ Rd be a measureable set, Pk(S) ⊆
(
S
k

)
with Pk(S) = {(x1, x2, . . . , xk) : d(xi, xj) > 2rd}, i.e,

Pk(S) is the set of all size-k sphere packing in S.

Equipped with these two definitions, we focus on the definitions of partition function of Canonical Hard
Sphere model and Grand Canonical Hard Sphere model.

Definition 2.6

♣

The partition function of Canonical Hard Sphere model is denoted by

ẐS(k) =
1

k!

∫
Sk
ID(x1,...,xk) dx1, . . . , dxk

where D(x1, ..., xk) is the event that d(xi, xj) > 2rd.

Note that ẐS(k) is the volume of Pk(S) and for a uniform random k-tuple Xk,

Pr(Xk ∈ Pk(S)) =
ẐS(k)

|V |
=

k!

vol(S)k
· ẐS(k),

where |V | = vol(S)k

k! is the total volume.

Definition 2.7

♣

The partition function of Grand Canonical Hard Sphere model at S with fugacity λ is denoted by

ẐS(λ) =
∞∑
k=0

λkẐS(k).

Remark ZG(λ) = PG(λ) =
∞∑
k=0

ik(G)λkwhere ik(G) denotes the number of independent set in G of size k.

Definition 2.8
Let P be a sphere packing with same radius and non-overlapping in Rd, the sphere packing density is
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2.2 Known Results

♣

denoted by

θ(d) = sup
P

lim
R→∞

vol(φ,BR(0))

vol(BR(0))
.

2.2 Known Results

The following are two results about the upper bound of θ(d). In 1978, Kabatianskii and Levenshtein [15]
proved the following theorem.

Theorem 2.9

♥Let d ∈ N , θ(d) ≤ 2−0.599d.

In 2013, Venkatesh [25] showed the following results.

Theorem 2.10

♥

For a fixed d ∈ N , it holds that
1. For a sufficiently large d, θ(d) ≥ 65963 · 2−d;
2. Along a sparse sequence of dim{di}, θ(d) = Ω(d · log log di · 2−di).

Later on, in 2014, Cohn and Zhao [7] proved that

Theorem 2.11

♥

Let d ∈ N , there exists c > 0 such that in every Rd the following holds

θ(d) ≤ c · 2−0.599d.

� Exercise 2.1 : Prove that θ(d) ≥ 2−d.
Idea Consider a maximal packing in Rd.

In this section, we will prove a lower bound with a slightly small constant c′ ≤ 65963 which holds for every
d. Before the proof, we recall some definitions of Hard-Sphere model over bounded measureable set S ⊆ Rd.

The first one is the partition function of Hard-Sphere model.

Definition 2.12

♣

Let S ⊆ Rd be a measureable set, the partition function of Hard-Sphere model with fugacity λ is denoted
by

ZS(λ) =

∞∑
k=0

λkẐS(k)

where
ẐS(k) =

1

k!

∫
Sk

1D(x1,...,xk) dx1...dxk

is the volume of size-k packing and D(x1, ..., xk) is the event that, for any i, j ∈ [k] and i 6= j,
d(xi, xj) > 2rd.

By the definition of partition function of Hard-Sphere model, we have following observations.
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Observation 2.13

♠

1. Let S be a measureable set in Rd, then ẐS(0) = 1;
2. If we sample a packing X according to Hard-Sphere model distribution over some region S, then

Pr(|X| = k) = λk·ẐS(k)
ZS(λ) .

Next, we give the definition of expected packing density withX ∼ Hard Sphere model distribution over S.

Definition 2.14

♣

Let S ⊆ Rd be a measurable set with fugacity λ, then the expected packing density was denoted as
αS(λ) =

ES,λ(X)
vol(S) .

In this notation, there are two results about expected packing density. The first one was proved by Jenssen,
Joos and Perkins [14] in 2019.

Theorem 2.15

♥

Let d ∈ N , S is a bounded measurable set in Rd and λ ≥ 3−
d
2 , then

θ(d) ≥ αS(λ) ≥ (1 + o(1) · log(
2√
3

) · d · 2−d).

Recently, Gil-Fernandéz, Kim, Liu and Pikhurko improves the bound by a factor of 2.4.

Theorem 2.16

♥

For any ε > 0, there exist δ > 0 and d0 such that for any d > d0 and λ ≥ ( 1√
2
− δ)d, it holds that

αS(λ) ≥ (log
√

2− ε) · d · 2−d.

Before the proof of Theorem 2.16, we need following basic properties.

Lemma 2.17

♥

The excepted density αS(λ) is the scaled log derivative of the partition functions which is

αS(λ) =
λ

vol(S)
· (logZS(λ))′.

Proof :

αS(λ) =
E|X|
vol(S)

=
1

vol(S)
·
∞∑
k=1

k · Pr(|X| = k)

=
1

vol(S)
·
∞∑
k=1

k · λ
k · ẐS(k)

ZS(λ)

=
λ

vol(S)
·
∞∑
k=1

k · λ
k−1 · ẐS(k)

ZS(λ)

=
λ

vol(S)
·
Z
′
S(k)

ZS(k)

=
λ

vol(S)
· (logZS(λ))′.
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Lemma 2.18

♥The excepted density αS(λ) is monotone increasing with λ .

Proof : By Lemma 2.17, we have αS(λ) = λ
vol(S) · (logZS(λ))′, then λ · vol(S) · α′S(λ) = Var(|X|) > 0.

Another key definition we need to define is some notation for points that are suitable to be added, which is
so called the free volume.

Definition 2.19

♣

The expected free volume of the hard sphere model on S is denoted by

FVS =
1

vol((S))

∫
S

Pr(d(x0, X) > 2rd)dx0

where X is the random packing sample in the hard sphere model.

Note that FVS is the expected fraction of the volume at which a new sphere can be added to X . Now let
see some basic properties about the free volume.

Lemma 2.20

♥

Let S be a bounded measurable set in Rd with positive volume, then

αS(λ) = λ · FVS .

Proof :

αS(λ) =
E|X|
vol(S)

=
E|X|
vol(S)

∞∑
k=0

(k + 1) Pr(|X| = k + 1)

=
1

vol(S)

∞∑
k=0

(k + 1)
λk+1ẐS(k + 1)

ZS(λ)

=
1

vol(S)ZS(λ)

∞∑
k=0

(k + 1)

∫
Sk+1

λk+1

k!
1D(x0,x1,...,xk)dx1...dxkdx0

=
λ

vol(S)ZS(λ)

∫
S

[1 +

∞∑
k=1

∫
Sk

λk

k!
1D(x0,x1,...,xk)dx1...dxk]dx0

=λ · FVS .

where in the last equality, we used
1

ZS(λ)

∫
S

[1 +

∞∑
k=1

∫
Sk

λk

k!
1D(x0,x1,...,xk)dx1...dxk]dx0 =

∫
S

Pr(d(x0, X) > 2rd)dx0.

Recall that for independent set problems, we have two layers of randomness, one is that we sample I
according to hard-core model, another one is that we sample uniform random vertex v. Now we can do the
same two layers of randomness experiment. We sampleX according to hard sphere model over S with fugacity
λ, then we sample a uniform point v over S.

Definition 2.21

♣

Let
T := {x ∈ B2rd(v) ∩ S : d(x, y) > 2rd,∀y ∈ X ∩Bc

2rd
}.

13



2.3 Proof of Theorem 2.7

We call T the set of externally uncovered points, see Figure 2.2.

d

f

Figure 2.2

2.3 Proof of Theorem 2.7

Idea We will bound αS(λ) in two ways.
The first way is to use FVS .
The second way is to run separate Poisson point process on T .

Now, we do the first way of counting by the following lemma.

Lemma 2.22

♥

(i) αS(λ) = λ · E[ 1
ZT (λ) ];

(ii) αS(λ) = λ · EX,v(e−λ·vol(T )).

Proof :
(i) By Lemma 2.20, we have

αS(λ) =λ · FVS

=λ · 1

vol(S)

∫
S

Pr(d(v,X) > 2rd) · dv

=λ · E[1{T∩X=∅}]

=λ · E[
1

ZT (λ)
].

14



2.3 Proof of Theorem 2.7

(ii) Recall that

ZS(λ) =
∑
k≥0

λkẐS(k)

=
∑
k≥0

λk

k!

∫
Sk

1D(x1,...,xk)dx1 . . . dxk

≤
∑
k≥0

λk

k!
vol(S)k

=eλ·vol(S).

By (i), αS(λ) = λ · E[ 1
ZT (λ) ]≥λ · EX,v(e−λ·vol(T )).

Lemma 2.22 (ii) is the first bound we obtain. Next, we do the second way of counting.

Lemma 2.23

♥αS(λ) ≥ 2−d · E[αT (λ) · vol(T )].

Proof : As vol(S ∩B2rd(v)) ≤ 2d for any v ∈ S, we have

αS(λ) =
1

vol(S)
· E|X|

≥2−d · E|X ∩B2rd(v)|

=2−d · E[αT (λ) · vol(T )],

where the last equality holds by Spatial Markov property.

Let t = vol(T ). By the two lemmas above, we have

αS(λ) ≥ max{λ · EX,v(e−λt), 2−d · E(αT (λ) · t)}. (2.1)

Note that the first bound λ · EX,v(e−λt) is a decrease function of t, while the second bound 2−d · E(αT (λ) · t)
is an increase function of t. Hence the first bound is large when t is small, and the second bound is large when
t is big.

To bound 2−d · E(αT (λ) · t), we use the following lemma.

Lemma 2.24

♥

For every β > 0, there exists k0 such that for any integer k ≥ k0 and any λ, t, d > 0, if a measurable set
T ⊆ Rd is of volume t and k ≤ λt, then we have

αT (λ) · t ≥ (1− β)Pk · k,

where Pi = Pr(uniform independent i points in T are at pairwise distance at least 2rd).

To bound λ · EX,v(e−λt), we first give some definitions and lemmas.

Definition 2.25

♣

For a measurable set A ⊆ Rd, its symmetric rearrangement is

A∗ = Bvol(A)1/d·rd(0).

For a measurable set T ⊆ Rd, define

f(T ) =

∫
T
vol(B2rd(u) ∩ T )du.

15



2.3 Proof of Theorem 2.7

Lemma 2.26

♥

For any bounded measurable set T ⊆ Rd,

f(T ) ≤ f(T ∗).

This lemma can be proved by Riesz’s rearrangement inequality.

Lemma 2.27

♥

Let T be a measurable set in Rd of volume t ∈ [2d/2, 2d] and u be a uniform random point in T . Then

Eu[vol(B2rd(u) ∩ T )] ≤ 2 · 2d(1− t−2/d)d/2.

Proof : Note that
Eu[vol(B2rd(u) ∩ T )] =

f(T )

vol(T )
.

By Lemma 2.26, we may assume that T is the ball of radius ρ = t1/d · rd around the center 0, that is T = Bρ(0).
Then

Eu[vol(B2rd(u) ∩ T )] =
1

t

∫
T

(

∫
T
1{d(u,v)≤2rd}dv)du

=
2

t

∫
T

∫
T
1{d(u,v)≤2rd}1{||v||≤||u||}dvdu

=2 · max
u∈Bρ(0)

∫
T
1{d(u,v)≤2rd}1{||v||≤||u||}dv.

When u is on the boundary of T , the volume of the intersection is maximum and we bound it by the red ball in

Figure 2.3

Figure 2.3. To be more precise, we may assume that ρ ≥
√

2rd, otherwise t ≤ 2d/2. Then the radius of the red
ball is 2 ·

√
1− t−2/d · rd. Hence

Eu[vol(B2rd(u) ∩ T )] ≤max{2d/2, 2 · max√
2≤x≤t1/d

(2
√

1− x−2)d}

=2 · (2
√

1− t−2/d)d

=2 · 2d(1− t−2/d)d/2.

Proof of Theorem 2.16. : Given ε > 0, choose β � δ > 0. Let d→∞. Since αS(λ) is non-decreasing in λ,
it is enough to consider λ = (1/

√
2− δ)d. Let S be a large ball in Rd. We need to show that

αS(λ) ≥ (log
√

2− ε) · d · 2−d. (2.2)

Then we do the two-step experiment, where we sample X according to hard sphere model over S with

16



2.3 Proof of Theorem 2.7

fugacity λ, then we sample a uniform random point v over S. This generates an externally uncovered part
T = T (X, v), which depends on X and v.

Let k = (log
√

2−ε/2) ·d. Nowwe cut the points in S into two parts. For the part where the corresponding
volume of T is small, we can use the first bound in eq. (2.1). For the other part, we can use the second bound
in eq. (2.1).

For X ⊆ S, let
L = L(X) = {u ∈ S : t(X,u) ≤ k/λ},

where t(X,u) is the volume of T (X,u). Using the first bound in eq. (2.1), we get

αS(λ) ≥ λ · EXEve
−λt(X,v).

Then

vol(S) · αS(λ) ≥ λEX [

∫
v∈S

e−λt(X,v)dv]

≥ λEX [

∫
v∈L

e−λt(X,v)dv]

≥ eεd/3 · 2−d · EX [vol(L)].

This means we may assume EX [vol(L)] ≤ vol(S) · e−εd/4, otherwise eq. (2.2) holds. By Markov’s inequality,
we have

PrX(vol(L) ≥ vol(S) · e−εd/6) ≤ e−εd/12.

That is, for a typical outcome X , t is relatively large.
That is, for a typical outcome X , t is relatively large,except for a very small of points in S. Now let’s fix

one such outcomeX where the inequality section 2.3 holds.Take anyX with vol(L) ≤ vol(S)e−εd/6. And for
every v ∈ S \ L,by defination we have

t = t(X, v) ≥ k/λ ≥ (
√

2 + δ/3)d,

we also have t ≤ 2d,as T ⊆ B2rd(·). This means k ≤ λt,by Lemma 2.24.So for every v ∈ S \ L,we have

αT (λ)t ≥ (1− β)Pkk.

Claim Pk is very close to 1 i.e. for every δ > 0,Pk ≥ 1− δ.
Idea Greedily pick k points .Each point takes up negligible(in particular exponentially small in d) portion of
T (by Lemma 2.27).
Proof Let’s consider the function g(t) = (f(τ))−d,where τ := t1/d and f(τ) = τ

2
√

1−τ−2
.We can observe that

f(
√

2) = 1,and f is strictly increasing on [
√

2, 2],since

f ′(x) =
x2 − 2

2
√

1− 1/x2(x2 − 1)
> 0.

Then recall that for v /∈ L,t ≥ (
√

2 + δ/3)d,that means

f(t1/d) ≥ f(
√

2 + δ/3) > 1

i.e. g(t) is exponentially small in d.
The Lemma 2.27 says that 2g(t) upper bounds expected fraction of measure of T intersect ball of radius

2rd center at a uniform point of T . Let x1, · · · , xk ∈ T independent uniform points.Call xi bad if
(E1) : vol(B2rd(xi) ∪ T ) ≥ t/d3

or
(E2) : within distance 2rd from x1, · · · , xi−1.

17



2.4 Example

Figure 2.4

Therefore, in order to solve the above problem, it is sufficient to show Pr(exite at least one bad xi) = o(1);
this is equivalent of showing that for each i, Pr(xi is the bad vertex ) = o(1/k).

This is simple because this probability Pr(xi is the bad vertex ) ≤ Pr(E
c
1) + Pr(E

c
2|Ec1). By Markov

inequality, Pr(Ec1) = e−Ω(d)(we have shown that in Lemma 2.27). Meanwhile, Pr(Ec2|Ec1) ≤ i−1
d3

, so we can
get the conclusion above.

By Lemma 2.24, for every point v ∈ S \ L,we have αT (λ)t ≥ (1 − β)Pkk. According to the Claim, we
have αT (λ)t ≥ (1− β)Pkk ≥ (1− 2β)k.

Now useing the second bound in eq. (2.1), we get

2dαS(λ) ≥ EX,v(αT (λ)t)

=
1

vol(S)
EX [

∫
v∈S

αT (λ)tdv]

≥ 1

vol(S)
EX [

∫
v∈S\L

αT (λ)tdv]

≥ (1− e−εd/12)(1− e−εd/6)(1− 2β)k (2.3)

= (1− o(1))(ln(
√

2)− ε/2)d

where in eq. (2.3), We only takeX such that vol(L) ≤ vol(S)e−εd/6(this is by the inequality section 2.3).
Finally, we can find out that αS(λ) ≥ (ln(

√
2)− ε)2−dd.

2.4 Example

The last example is about counting the number of the independent sets in G.

Definition 2.28

♣The number of independent sets in G is denoted by i(G).

In 2000,Kahn [16] implied the above question, and in 2010, Yufei Zhao [27] solved it. We get the following
theorem.
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2.4 Example

Theorem 2.29. [Kahn-Zhao]

♥

For every n− vertex d− regular G,

i(G) ≤ i(Kd,d)
n/2d. (2.4)

And then,Davies,Jessen,Perkins and Roberts [9] made an extention in 2017.

Theorem 2.30. [Davies-Jessen-Perkins-Roberts]

♥

For every d− regular G and every λ > 0,

ᾱG(λ) ≤ ᾱKd,d(λ) =
λ(1 + λ)d−1

2(1 + λ)d − 1
(2.5)

� Exercise 2.2 Show that theorem Davies-Jessen-Perkins-Roberts implies theorem Kahn-Zhao.

To proof theorem Davies-Jessen-Perkins-Roberts:
Idea We will draw this random independent set I according to the hard core model with fugacity λ on this
graph G. Independently, we draw vertex v uniformly over all vertices in G. Let random value X = X(I, v)

counting the number of occupied neighbour |I ∩N(v)|. We write for k ∈ {0, 1, · · · , d}, Pk = Pr(X = k).
Again we get a bound of occupency fraction ᾱG(λ) in two ways. For the first view, if v is in the independent

set I or not. Only when v is suitable, i.e. X = 0, v is in X . For the second view, by looking at X , how N(v)

interset I .
Our goal is that maximize ᾱG(λ) via a linear program(involving P0, P1, · · · , Pd).

Proof For the first view, we have

ᾱG(λ) =
E|I|
|G|

=
1

|G|
∑

u∈V (G)

Pr(u ∈ I) = Pr(v ∈ I)

= Pr({v ∈ I} ∩ {X = 0})

= Pr(v ∈ I|X = 0)Pr(X = 0).

Recall
Pr(v ∈ I|X = 0) = Pr(v ∈ I|v is suitable) =

λ

1 + λ
.

Then we can get

ᾱG(λ) =
λ

1 + λ
P0.

For the second view,

ᾱG(λ) =
1

|G|
∑

u∈V (G)

1

d
|N(v) ∩ I| = E

d

=
1

d
(P1 + 2P2 + · · ·+ dPd).

Then we have

ᾱG(λ) =
λ

1 + λ
P0

=
1

d
(P1 + 2P2 + · · ·+ dPd).

Next, we want too get maximum P0, such that
C1 P0 + P1 + · · ·+ Pd = 1.
C2 λ

1+λP0 = 1
d(P1 + 2P2 + · · ·+ dPd).
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2.4 Example

C3 for every 2 ≤ k ≤ d, (d− k + 1)λPk−1 ≥ kPk.
Proof of C3 On the one hand, for an outcome (ofX = k) J from the independent set I with |J ∩N(v)| = k,
we have k ways from G to get J ′ with |J ′ ∩N(v)| = k − 1.

On the other hand, by the defination of hard-core model, we have

λPr(J ′) = Pr(J).

And, J ′ cam be obtained from at most d− k+ 1 many other choices of J with |J ∩N(v)| = k. That finish the
proof.

Recall, we have ᾱG(λ) = λ
1+λP0, suffices to show that

P0 ≤
(1 + λ)d

2(1 + λ)d + 1
.

Claim If a choice of (P0, · · · , Pd) with maximum P0, then all equality hold in C3.
Proof of Claim Suppose not, say for some k, (d − k + 1)λPk−1 > kPk, then we can increase P0 by small
ε > 0, move some mass (function of ε) from Pk−1 to Pk and fix other Pi. We can check that these C1,C2,C3
still hold, snd thne we get P0 is not maximum. Contradiction!

Now that the equality in C3 holds, we have a system linear equations with (d + 1) unknows and (d + 1)

equalities constraints. Then it’s full rank, so there exits an unique solution. One can check Kd,d satisfies all
C1-C3.

To solve it, we iterate C3 (d− k + 1)λPk−1 = kPk for 2 ≤ k ≤ d. We can show that

Pk =
(d− 1)!

k!(d− k)!
λP1. (2.6)

Then plug eq. (2.6) into C2 we can show that
P1

dλ
=

P0

(1 + λ)d
. (2.7)

Plug eq. (2.6) and eq. (2.6) into C1 then we can get the result we want.
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Chapter 3 The Polynomial method

Usually, the idea of polynomial methods is to use the information of roots of polynomial to solve some
combination problems.

Disc-Kakeya problem is an example of using the low degree polynomial can not have too many roots to
show that certain combination structure can not be too small.

Definition 3.1

♣

We say a polynomial is a 0− polynomial if the coefficient of all its monomials are 0.
We say that a polynomial f vanishes on a setA, or we also say f is identically 0 onA, if f(a) = 0,
for every a ∈ A.

The two definition are different. The difference is, f is polynomial on Fnp , i.e. n− variatepolynomial in
Fp[x1, · · · , xn], f could identically 0 everywhere (on Fnp ) but not 0− polynomial, e.g. f(x) = xp − x when
n = 1.

Fact 3.2

♥

For every non-zero polynomial f on Fnp with degree d, and every a, z ∈ Fnp with z 6= 0, let L =

{a + tz : t ∈ Fp} be the corresponding line. Then the restriction of f on L, denote by fL(t), is a
univariate polynomial (of t) with degree at most d and leading coefficient fd(z), where fd(z) is the
homogeneous degree d part of f .

Proof For each monomials
∏n
i=1 x

ri
i of f has value

∏n
i=1(ai + tzi)

ri at a + tz. To get td term, we need to
choose tzi term in each bracket. So the leading coefficient is td

∏n
i=1 z

ri
i , where

∏n
i=1 z

ri
i = fd(z) as require.

Lemma 3.3

♥
If f is a non-zero polynomial on Fnp with degree d < p, then f cannot vanish on the Fnp .

Proof We use induction on n.
For the basic case n = 1, if f vanish on Fnp , then it has at least p roots which implies that the degree of f

is at least p. Contradiction!
For general n, we suppose that f vanishes on Fnp . Think of f as a polynomial of x1 with coefficient

in Fp[x2, · · · , xn]. By polynomial dividion algorithm, for each a ∈ Fp, f(x) = P (x1, · · · , xn)(x1 − a) +

Q(x2, · · · , xn), where Q(x2, · · · , xn) is the remainder. As Q(x2, · · · , xn) = f(a, x2, · · · , xn) vanishes on
Fn−1
p . By induction hypothesis,Q is a 0− polynomial. And because for each a ∈ Fp, (x1− a) divides f , as a

univariate polynomial of x1, f has at least p roots, which means its degree is at least p. Contradiction!

3.1 Schwartz–Zippel Lemma

In this section, we will state and prove Schwartz–Zippel Lemma, which is a very basic and powerful lemma.

Lemma 3.4. Schwartz–Zippel

♥
Every non-zero polynomial f(x1, . . . , xn) of degree d on Fnp has at most dpn−1 roots.



3.2 Testing polynomial identity & Existence of Perfect Matching

Proof For every a, z ∈ Fnp and z 6= 0, we consider a line

L = {a+ tz : t ∈ Fp},

and the restriction of f on L, denoted by fL(t). The Fact 3.2 implies that fL(t) is a univariate polynomial (of
t) of degree at most d and leading coefficient fd(z), where fd(z) is the homogeneous degree d part of f . Since
fd is non-zero and d < p, by Lemma 3.3, there exists z 6= 0 such that fd(z) 6= 0, which implies that fL(t) is
a non-zero polynomial of degree d. Thus, fL(t) can have at most d roots on L, implying that the polynomial f
can vanish on at most d points of the line L. How many lines the field should have in same direction z? We
associate with each vector a ∈ Fnp the lineLa = {a+ tz : t ∈ Fp} in direction z through a. ThenLa∩Lb = ∅
as long as b /∈ La. Since z 6= 0, each line La contains |La| = p points. Hence, we can partition Fnp into
pn

p = pn−1 lines. Since the number of roots of f on each of the lines La is at most d, the total number of roots
of f cannot exceed dpn−1, as claimed.

Remark
Schwartz–Zippel Lemma says that multivariate low-degree polynomials cannot have too many roots.
The bound is sharp! (We can consider a example that f depends only on x1).
It is useful for polynomial identity testing.
We can also bound the number of roots of f in a finite subset.

The following probabilistic version of Lemma 3.4 bounds the probability that a non-zero multivariate
polynomial will have roots at randomly selected test points.

Lemma 3.5

♥

Suppose that f(x1, . . . , xn) is a nonzero polynomial of degree d over a field F and S ⊆ F is a non-empty
finite subset. Let r1, . . . , rn be random elements selected uniformly and independently from S. Then

Pr[f(r1, . . . , rn) = 0] ≤ d

|S|
.

Proof Suppose that f is a non-zero polynomial. We use induction on n, the number of variables of f . The
statement is true for n = 1 since the number of roots of f does not exceed its degree. Now let n ≥ 2 and write
f as a polynomial in x1, which means that

f(x1, . . . , xn) =

d∑
i=0

xi1 · fi(x2, . . . , xn).

Since f is a nonzero polynomial, we take max i, then fi is a nonzero polynomial and deg(fi) ≤ d − i. Let
r1, . . . , rn be random elements selected uniformly and independently from S. We define two events as follows:

A = {f(r1, . . . , rn) = 0}, and B = {fi(r2, . . . , rn) = 0}.

Then we shall upper bound

Pr(A) = Pr(A ∩B) + Pr(A ∩Bc)

= Pr(A | B) Pr(B) + Pr(A | Bc) Pr(Bc)

≤Pr(B) + Pr(A | Bc)

≤d− i
|S|

+
i

|S|
=

d

|S|
,

where the first term is from the induction hypothesis and the second term is from the basic fact that f(x1, r2, . . . , rn)

is a nonzero polynomial of degree i.
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3.2 Testing polynomial identity & Existence of Perfect Matching

3.2 Testing polynomial identity & Existence of Perfect Matching

In this section, Let’s see how to use the Schwartz–Zippel Lemma.

3.2.1 Polynomial identity testing

Problem 3.1 How do we test whether two given polynomials on Fnp are the same, i.e. f = g?

One can check the coefficients of all monomials, but there are too many terms. (The number of monomials
will be nd, if deg(f) = d.)

Schwartz–Zippel Lemma can be used to design efficient Probabilistic Algorithm: Given two polynomial f
and g of degree d on n variables. Suppose that f 6= g. Then f − g is a nonzero polynomial of degree at most d.

We pick random numbers in place of the variables and compute the value of the polynomial. That is,
pick r = (r1, . . . , rn), where every ri is random element selected uniformly and independently from Fp.
Then Lemma 3.5 tells us that

Pr[(f − g)(r) = 0] ≤ d

p
.

Repeat the above process k times and we have

Pr[(f − g) vanishes on all k choices] ≤
(
d

p

)k
.

So if dp <
1
2 , then we only need k = O(log 1

ε ) to make
(
d
p

)k
< 1

ε .
We only need to test O(log 1

ε ) to have probability at least 1 − ε to test correctly. It means that we have
two outcomes:
F If there exists some outcome 6= 0, then we get that f 6= g.
F If all outcomes = 0, then either f = g or f 6= g. If f 6= g, the above probability should be at most

ε.

3.2.2 Testing existence of Perfect matching

Problem 3.2 How do we test whether a given graph G has a perfect matching?

Idea The graph G has NO perfect matching⇐⇒ its corresponding polynomial is 0-polynomial.

Let us consider the special case of Problem 3.2 when the graph G is bipartite.

Definition 3.6. Edmonds matrix

♣

Let G = (U ∪ V,E) with U = {u1, . . . , un} and V = {v1, . . . , vn}. Its Edmonds matrix A is the n× n
matrix with variables entries corresponding to edges of G. That is

A = (aij)n×n, aij =

xij , if uivj ∈ E(G);

0, otherwise.

det(A) is a polynomial with e(G) many variables of degree at most n.
We can identify the perfect matching of G with permutation π ∈ Sn:

{(u1, vπ(1)), . . . , (un, vπ(n))}.
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3.3 Discrete Kakeya Problem

Note that

det(A) =
∑
π∈Sn

sgn(π)a1,π(1) · · · an,π(n) =
∑

π∈PM(G)

sgn(π)x1,π(1) · · ·xn,π(n),

where each term in sum a1,π(1) · · · an,π(n) is nonzero only when π is a perfect matching.

Lemma 3.7

♥The graph G has no perfect matching⇐⇒ det(A) is 0-polynomial.

� Exercise 3.1 Prove Lemma 3.7. (Hint: (=⇒) is trivial, and (⇐=) can try to prove contrapositive.)

3.3 Discrete Kakeya Problem

A famous unsolved problem in mathematics is the Kakeya conjecture in geometric measure theory. This
conjecture is descended from the following question asked in 1917 by Japanese mathematician Soichi Kakeya:
What is the smallest set in the plane in which one can rotate a needle around completely?

Obviously, one can rotate a unit needle inside a disk with radius 1/2, which has area π
4 . Note that a

necessary condition for turning a unit-length needle inside a setX is thatX must contain a unit-length segment
of every direction. Such set is called a Kakeya set. Besicovitch proved that there exists a Kakeya set of measure
zero. Wolff (1999) proposed a simpler finite field analogue of this problem:

Problem 3.3 How large is a Kakeya set in finite field setting?

Definition 3.8

♣

A set K ⊆ Fnp is a Kakeya set, if K contains a line in every direction, namely for any nonzero vector
z ∈ Fnp there exists a vector a ∈ Fnp such that the line

{a+ tz : t ∈ Fp} ⊆ K.

Dvir (2009) used a surprisingly simple and elegant application of the polynomial method to prove the
Kakeya conjecture on finite field.

Theorem 3.9

♥

LetK ⊆ Fnp be a Kakeya set. Then

|K| ≥
(
n+ p− 1

n

)
.

Remark
If we think of n fixed and p→∞, then we get

(
n+p−1
n

)
∼ pn

n! . In contrast to the Euclidean case, we will
see that Kakeya set in finite field is dense.

Let us start with giving a lower bound on the dimension of low degree multivariate polynomial on Fnp .

Lemma 3.10

♥

Given a set A ⊆ Fnp with |A| ≤
(
n+d
d

)
, there exists a non-zero polynomial f ∈ Fp[x1, . . . , xn] of degree

at most d vanishing on A.
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3.3 Discrete Kakeya Problem

Proof For every f ∈ Fp[x1, . . . , xn], we write its linear combination of monomials of degree at most d in
x1, . . . , xn. That is

f(x1, . . . , xn) =
∑

α1+···+αn≤d,αi≥0

cαx
α1
1 · · ·x

αn
n .

Wewant to count the number of such monomials parts. Using the fact that the number of ways to distribute
n + d sweets to n children in a fair way is

(
n+d−1
d−1

)
=
(
n+d−1

d

)
and we can show that the number of integer

solutions to the equation
x1 + · · ·+ xn = d

under the condition that xi ≥ 0 for all i = 1, . . . , n, is
(
n+d−1

d

)
. Then by Pascal Triangle:

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
,

we have
d∑
i=0

(
n+ i− 1

i

)
=

(
n+ d

n

)
.

Thus, the number of distinct monomials of degree at most d is
(
n+d
d

)
. Next, we treat each coefficient cα as

unkonwns and each ∈ A as constraints. Then the number of unknowns is larger than the number of constraints
(that is, the vector space F|A|p of all functions g : A → Fp has dimension |A| <

(
n+d
d

)
). Thus, there exists a

nonzero solution of this linear systems, meaning that the polynimal f vanishes on A.

Lemma 3.11

♥

Let f ∈ Fp[x1, . . . , xn] be a nonzero polynomial of degree at most d < p vanishing on a Kakeya set
K. Then its degree-d part fd is a nonzero polynomial vanishing everywhere on Fnp . In other words, if f
vanishes on a Kakeya setK, then f is the 0-polynomial.

Proof The argument is similar to that in the proof of Lemma 3.4. Let z ∈ Fnp \ {0} be an arbitrary direction.
As K is a Kakeya set, K contains a line L = {a + tz : t ∈ Fp} for some a ∈ Fnp . Recall the restriction of f
on L, denoted by fL(t). The Fact 3.2 implies that fL(t) is a univariate polynomial (of t) of degree at most d
and leading coefficient fd(z), where fd(z) is the homogeneous degree d part of f . As f vanishes on K, fL
vanishes on L. But deg(fL) = d < p = |L|. Hence, fL is 0-polynomial and fd(z) = 0. Obviously, we have
fd(0) = 0. Then fd vanishes on Fnp , as claimed.

Proof of Theorem 3.9. Take K Kakeya set and suppose that |K| <
(
n+p−1
n

)
. Then, by Lemma 3.10, there

exists a nonzero polynomial f of degree at most p− 1 vanishing onK, which contradicts Lemma 3.11.

Remark
Dvir [10] proved that every Kakeya set in Fnp is of size at least p

n

n! .

Sarof and Sudan [20] show that there exists a Kakeya set of size 2−n+1pn +On(pn−1).

Dvir, Kopparty, Saraf, and Sudan [11] give a lower bound that |K| ≥ (2− 1
p)−n+1pn (F).

Very recently, Bukh and Chao [5] improve the lower bound (F) by a factor of 2− 1
p , thereby closing the

factor-of-two gap in all dimensions.
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3.3 Discrete Kakeya Problem

Theorem 3.12. [Bukh–Chao]

♥

The size of every Kakeya setK ⊆ F3
p is

|K| ≥ (2− 1

p
)−(n−1)pn.

We begin by presenting a proof of a slightly weaker bound in dimension 3. Though this proof does not
seem to generalize to the n > 3, it illustrates one of the ideas used in the general case.

Recall Dvir’s method: Consider a vector space of polynomials of degree less than p and show that subspace
vanishing on a Kakeya setK must be trivial.

Let U = {
∑

α1+···+αn≤p,αi≥0 cαx
α : cα ∈ Fp}.

U ′ ⊆ U vanishes onK =⇒ U ′ is trivial.

|K| ≥ codim U ′ = dim U =
(
n+p−1
n

)
.

Theorem 3.13. [Bukh–Chao]

♥

LetK ⊆ F3
p be a Kakeya set. Then

|K| ≥ 1

4
(p3 + p).

Let
A = {(α1, α2, α3) ∈ Z3

≥0 : α1 + α2 + α3 < 2p, α1, α2 < p},

and consider the vector space of polynomials with the monomials indexed by A,

V = {
∑
α∈A

cαx
α : cα ∈ Fp}.

Considering V has some similarity to Green’s twist on corner-free set.

Bukh and Chao do so by considering a larger vector space of polynomila and subspace that vanishes on a
Kakeya set of high order.

Definition 3.14

♣

A polynomial f on F3
p vanishes at z ∈ F3

p to order 2, if f(z) = 0 and ∇f(z) = 0. (That is,
∂f
∂x1

(z) = 0, ∂f∂x2 (z) = 0 and ∂f
∂x3

(z) = 0.)

Lemma 3.15

♥

Let K be a Kakeya set in F3
p. If a polynomial f ∈ V vanishes to order 2 at every point of K, then f is

the 0-polynomial.

Proof Suppose that f ∈ V is a nonzero polynomial of degree d < 2p vanishing on K to order 2. Then
fd is nonzero. Let z ∈ Fnp \ {0} be an arbitrary direction. As K is a Kakeya set, K contains a line
L = {a + tz : t ∈ Fp} for some a ∈ Fnp . Recall the restriction of f on L, denoted by fL(t). The Fact 3.2
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3.4 Joint Theorem

implies that fL(t) is a univariate polynomial (of t) of degree at most d and leading coefficient fd(z), where
fd(z) is the homogeneous degree d part of f . Since f vanishes at every point of L to order 2, the polynomial
fL vanishes at all points of Fp to order 2. Because deg(fL) = d < 2p = 2|L|, this implies that fL is the
0-polynomial. So its leading coefficient fd(z) = 0.

Let g(x1, x2) = fd(x1, x2, 1) be a polynomial of degree less than p in each of x1 and x2. Then g vanishes
on F2

p. Write gi as g(x1, x2) =
∑p−1

i=0 x
i
1gi(x2) where deg(gi) < p (as α2 < p). Since f vanishes identically

on F2
p, g vanishes on Fp. But deg(gi) < p, this means that gi is 0-polynomial, and this implies that fd is zero

as well, contrary to deg(f) = d.

Proof of Theorem 3.13. Let V ′ ⊆ V be a subspace vanishing to order 2 on K. Then codimV ′ ≤ 4|K|.
Lemma 3.15 implies that V ′ is trival. Thus

4|K| ≥ codimV ′ = dimV = |A| =
p−1∑

α1,α2=0

(2p− α1 − α2) = p3 + p2.

3.4 Joint Theorem

In this section, we will show another important application of the polynomial method in discrete geometry.

Definition 3.16

♣

Given a set of lines in Rd, a joint formed by these lines is a point that lines on d given lines, whose
directions are linearly independent.

For example:Suppose that x, y and z are three given lines in R3. The origin is a joint.
Indeed, what we care about is that if we give a set of lines, how many joints are there? Namely, we want

to bound the number of joints formed by a set of lines. The Joint Theorem gives a tight upper bound for any
given a set of lines.

It has long been conjectured that the correct upper bound on the number of joints in R3 is O(n3/2). Guth
and Katz [Guth_2010] have settled the conjecture in the affirmative, showing that the number of joints in R3 is
need O(n3/2). Lately, Kaplan, Sharir and Shustin [Kaplan_2010], and Quilodrán [Ren_2020] independently
extended this result into Rd. In 2020, Carbery and Iliopoulou [Anthony_2020] solved this in all filed Fd. In
what follows, x .d (y) is the same as x = Od(y).

Theorem 3.17. [Joint Theorem]

♥The number of joints formed by N lines in Rd is .d Nd/(d−1).

Remark Take S hyperplanes in Rd in general position. Then
Any d− 1 of them intersect at a line and the number of lines is

(
s

d−1

)
.

Any d of them intersect at a point (joint) and the number of joints is
(
s
d

)
&d Nd/(d−1).

Idea Suppose a non-zero low-degree polynomial f is heavily incident to given lines. This means that f vanish
on all these lines. Then we will derive some information about5f to get a contradiction.

Proof Let J be the set of joints formed by a setL of lines. This theorem immediately follows from the following
claim. We see that if this claim is true, then take out one such "light" line at a time, each time we remove
.d |J |1/d joints. This implies |J | .d N |J |1/d, as required. Therefore, it suffices to show the following claim.
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3.4 Joint Theorem

Claim There exists a line l ∈ L containing .d |J |1/d points.
Proof of Claim Suppose not, i.e., for any line l ∈ L, the number of joints on L is &d |J |1/d. Let us take a
non-zero polynomial f with minimal degree in Rd that vanishes on J . Then the number of constraint is at most
|J |. This implies that the degree of F is .d |J |1/d.

For each l ∈ L, consider the restriction fl. Because

degfl ≤ degf .d |J |1/d < |J ∩R| ,

fl vanishes on the whole line l. This yields that f vanishes on all lines L. Thus, for each p ∈ J , let l1, . . . , ld
be the set of d linearly independent lines going through P . Let vi be the direction of li (See Figure 7.3).

Figure 3.1

Since f vanishes on li, we have 5f (p) · vi = 0 (directional derivation). Because {vi}i∈d linearly

independent, we get5f (p) = ~0. This implies5f =


∂f
∂x1...
∂f
∂xd

 vanishes on J . In particular, all ∂f
∂xi

vanishes on

J . Note that there is at least one ∂f
∂xi

such that it is not a 0-polynomial. Otherwise, f is a non-zero constant,
which contradicts the fact that f vanished on J . Now, ∂f∂xi is a non-zero polynomial with a lower degree than f
and vanishing on J , contradicting the choice of f .

There exists another different proof without taking derivative by Zhang. Before we launch out the proof,
we first give a definition about ordinary or special joints on a line with respect to a polynomial f .

Definition 3.18

♣

Let f be a polynomial. For each joint p in a given line l, take an affine linear map

T0 :


l 7→ xd-axis
p 7→ 0

f 7→ f ◦ T−1
0

Then f ◦ T−1
0 (0) = f(p) = 0. We say that p is ordinary on l if the lowest homogeneous part of f ◦ T−1

0

is independent of xd; Otherwise we say it special.

This definition is independent of choices of T0, because two such maps T0 = T ′0 ◦ T only differ by another
map T that is a scaling when restricted to xd-axis.

� Exercise 3.2Let x, y and z−a be three polynomial inR3, where a is a constant. What is the lowest homogeneous
part? (−xya is independent of z.)

Idea Instead of caring about polynomial vanish at a given point, Zhang rather looks at the Taylor series around
that point.
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3.4 Joint Theorem

Proof Let L be the set ofN given lines and J a set of joints. We first take a non-zero polynomial f with degree
.d |J |1/d and vanishing on J . Then we shall see the following two statements.

(i) Every point p is special on at least one line passing through it.
(ii) There exist at most degf many special joints on any line l ∈ L.
Next we use the double-counting method on the number of special joints. On the one had, the number of

special joints is at least |J | by (i). On the other hand, by (ii), the number of special joints is at most N · degf
.d N |J |1/d, as required. So we just need to prove these two statements.

Let us first prove (i). For any p ∈ J , take an affine linear map

T0 :

{
p 7→ 0

lines through p 7→ xi-axis

(See Figure 3.2). This implies that the lowest homogeneous part of f ◦T−1
0 depends on some xi, since otherwise,

it is a constant and f ◦ T−1
0 (0) 6= 0, a contradiction. Hence p is special on the corresponding line.

Figure 3.2

For (ii), we show the following claim.

Claim If p is special on l, for any T0 :

{
l 7→ xd-axis
p 7→ 0

, then f ◦ T−1
0 (x) =

∑
α x

(α,0)fα (xd), where

α = (α1, . . . , αd−1). Further, for any α with |α| = α1 + · · · + αd−1 and fα (xd) not a 0-polynomial, then
fα(xd) vanished at xd = 0.

Let us see how the claim prove (ii). For any map T :

{
l 7→ xd-axis

p 7→ (0, 0, . . . , 0, pT )
, we have f ◦ T−1(x) =∑

α x
(α,0)fα(xd − pT ). Then for any α with |α| minimal and fα 6= 0, pT is a root of fα. This implies that the

number of special p on l is at most degfα ≤ degf .d |J |1/d.

Proof of Claim Suppose for a contradiction that fα(0) 6= 0. Notice that fα(0) is the constant term of fα. By
minimality of α, we get that fα(0)x(α,0) is in lowest homogeneous part of f ◦ T−1

0 . This implies that other
terms in lowest parts are all independent of xd. Otherwise, some of power of x1, . . . , xd−1 is strict less than
|α|, contradicting the choice of α.
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Chapter 4 Capset problem and Slice rank

Definition 4.1

♣A capset A ⊆ Fn3 is a set with no line {x, x+ r, x+ 2r}, where x, r ∈ Fn3 and r 6= 0.

The capset problem is to bound the maximum size of a capset in Fn3 .
Remark

Meshulam extended Roth’s Founer argument ≤ O(3n

n ).

Croot-lev-Path, 3AP -free set in Zn4 in exponexily small.

Ellenberg-Gĳwĳt independently showed that a variation of CLP technique⇒ O(2.756n).

Lower bound: Edel showed the lower bound ≥ (2.2174)n .
Tao: a symmetrial variation of CLP , which treats all 3 variables the same.

4.1 Slice rank

let us start with the basic two variable polynomial. Let X,Y be two finite sets and F a field. Let
f : X × Y → F be a two-variable function of rank one if there exist two single variable functions u : X → F

and v : Y → F such that f(x, y) = u(x)v(y) for any (x, y) ∈ X × Y . In general, the rank of a two-variable
function is the minimal number of rank one functions whose linear span contains it. i.e.

f(x, y) =
k∑
i=1

ui(x)vi(y)

Further, if f : X × Y × Z → F is a three variable function,naturally,

f(x, y, z) =

k∑
i=1

ui(x)vi(y)wi(z).

Instead, f has slice rank one if f(x, y, z) = u(x)v(y, z) for each (x, y, z) ∈ X × Y × Z. In general, the
slice rank of f is the minimal number of slice rank one functions needed to write f as a linear combination.
This means

f(x, y, z) =

r1∑
i=1

ui(x)vi(y, z) +

r2∑
i=r1+1

ui(y)vi(x, z) +
r∑

i=r2+1

ui(z)vi(x, y).

In R2, if we have a diagonal matrix with centry f(x, y), which means f(x, y) 6= 0 if and only if x = y,
then rank of this function is the number of non-zero diagonal entries.

Frow now on, we use sr(f) to denote the slice rank of f . Let 1s denote indicator function for a set S. This

means 1s(x) =

{
1 if x ∈ S
0 otherwise

. If S = a, then we write 1a instead of 1{a}.

Lemma 4.2

♥

Let X be a finite set and A ⊆ X . Let F be field and f : X3 → F three variable function such that
f(x, y, z) 6= 0 if and only if x = y = z and x ∈ A. Then sr(f) = |A|.



4.1 Slice rank

Proof Since f(x, y, z) 6= 0 if and only ifx = y = z ∈ A, we have f(x, y, z) =
∑

a∈A 1a(x)1a(y)1a(z)f(a, a, a).

This implies sr(f) ≤ |A|. Therefore, it is left to show sr(f) ≥ |A|. Suppose sr(f) = r and write
f(x, y, z) =

∑r1
i=1 ui(x)vi(y, z) +

∑r2
i=r1+1 ui(y)vi(x, z) +

∑r
i=r2+1 ui(z)vi(x, y), without loss of generality

assume r1 > 0.
We shall construct a two variable function g : Y ×Z → F, that is, g(y, z) =

∑
x∈X h(x)f(x.y, z), where

h : X → F and show the rank of g (i) ≥ |A| − r1; (ii) ≤ r − r1. This yields r ≥ |A|, as desired.
Claim There exists a function h : X → F such that

∑
x∈X h(x)ui(x) = 0 and the number of zero entries in

h is at most r1.
Proof of Claim Consider the rector space of function h : X → F orthogonal to all ui in V . This implies

dimV ≥ |X| − r1. LetM =
( ... u1 ...
... u2 ...
... ... ...
... uv1 ...

)
. ThenMh = 0 for any h ∈ V . Now, we want to find h with at most

r1 zeros. We haveMr1,|x|h|x|,1 = Or1,1. Then the number of variables is |X| constraint is r1 and freedom is at
most |X| − r1. This implies that there exists a h ∈ V with at least |X| − r1 non-zero entries.
Claim g is diagonal with diagonal entry h(a)f(a, a, a) for any a ∈ A, out of which is at least |A| − r1

non-zero.
Proof of Claim Recall f(x, y, z) 6= 0 ⇔ x = y = z = a ∈ A. This yields that g(y, z) = 0 for any y 6= z,
and g(y, z) = 0 for any y = z /∈ A.

This claim implies (i). For (ii),

g(y, z) =
∑
x∈X

h(x)f(x, y, z) =
∑
x∈X

h(x)[

r1∑
i=1

ui(x)vi(y, z) +

r2∑
i=r1+1

ui(y)vi(x, z) +
r∑

i=r2+1

ui(z)vi(x, y)].

(4.1)
Sinceh ⊥ u1, the first termof the above equality equals0. The second termequals

∑
x∈X h(x)

∑r2
i=r1+1 ui(y)vi(x, z),

that is,
∑r2

i=r1+1 ui(y)
∑

x∈X h(x)vi(x, z). This implies the rank of g is at most r − r1.

Lemma 4.3. [Rank of diagonal hyper-matrices]

♥

LetX be a finite set, there is A ⊂ X . Let F be a field. Let f : X3 → F, where f(x, y, z) 6= 0 if and only
if x = y = z ∈ A, then the slice rank of f sr(f) = |A|.

Often we want to (upper) bound the cardinality of a set A, with certain forbidden structure, i.e. s-free.
Define a polynomial f : A3 → F, s.t. it is non-vanishing with f(x, y, z) 6= 0 if and only if x = y = z ∈ A.
Then there is slice rank of f sr(f) = |A|. Ellenberg and Gĳswĳt[12] gave a better upper bound.

Theorem 4.4. [Ellenberg-Gĳswĳt]

♥For any capset A ∈ Fn3 , i.e., there is no line {x, x+ r, x+ 2r} with r 6= 0,then |A| ≤ O(2.756n).

Toprove the theorem, wefirst give an observation for a necessary and sufficient condition onx = y = z = 0.
Then we define a suitable f with utilizing the opposite direction of the observation.

Observation 4.5

♠For x, y, z ∈ Fn3 , x+ y + z = 0 if and only if x = y = z = 0 or x, y, z form a line {x, x+ r, x+ 2r}

So for a capset A and for any x, y, z ∈ A, x + y + z = 0 if and only if x = y = z = 0. Recall that
if x ∈ Fp, x 6= 0, then xp−1 = 1. Then if x + y + z 6= 0, there exists i ∈ [n] s.t. xi + yi + zi 6= 0. And
1− (xi + yi + zi)

2 = 0.
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4.2 Sunflower

Definition 4.6

♣Define f : A3 → F3 to be f(x, y, z) =
∏n
i=1(1− (xi + yi + zi)

2).

Then f(x, y, z) 6= 0 if and only if x = y = z ∈ A. According to the rank of diagonal hyper-matrices
Lemma, there is sr(f) = |A|. The last preparation before proof is offering a Claim about contrainting sr(f)

with the number of 0,1,2-vectors.
Claim sr(f) ≤ 3R, where R =

∑ n!
a!b!c! denotes the number of 0,1,2-vectors v of length n, with a, b, c ≥

0, a+ b+ c = n and b+ 2c ≤ 2n
3 s.t. v1 + ...+ vn ≤ 2n

3 .
Finally, we finish the proof of the Ellenberg-Gĳswĳt theorem.

Proof Note that f(x, y, z) =
∏n

1 (1−(xi+yi+zi)
2) is a 3n-variable polynomial with total degree≤ 2n and the

degree of each variable (xi, yi, zi is no more than 2. Thus, f is a linear combination of monomials of the form
xαyβzγ =

∏n
j=1 x

αj
j

∏n
1 x

βj
j

∏n
1 x

γj
j , where α, β, γ are 0,1,2-vectors of length n and |α| + |β| + |γ| ≤ 2n.

Then for any such xαyβzγ , by pigeonhole principle, one of the exponent is no more than 2n
3 , i.e. either |α| ≤ 2n

3

or |β| ≤ 2n
3 or |γ| ≤ 2n

3 .

Besides, we have f = f1 + f2 + f3, with


f1(x, y, z) =

∑
|α|≤ 2n

3
Cαx

αgα(y, z),

f2(x, y, z) =
∑
|β|≤ 2n

3
Cβy

βgβ(x, z),

f3(x, y, z) =
∑
|γ|≤ 2n

3
Cγz

γgγ(x, y).

. Note that sr(f) =

∑3
1 sr(fi) where sr(fi is no more than the number of 0, 1, 2-vectors of length n with coordinates sum up to

2n
3 . Let a, b, c be the number of 0s, 1s, 2s in such vectors. Then we have R =

∑
a,b,c

n!
a!b!c! , where a, b, c satisfy

a, b, c ≥ 0, a+ b+ c = n and b+ 2c ≤ 2n
3 at the same time.

To estimate R, say a = (α + o(1))n, b = (β + o(1))n, c = (γ + o(1))n. Stirling’s formula tells us
that n!

a!b!c! = eh(α,β,γ)n+o(n), with h(α, β, γ) = α log 1
αβ log 1

βγ log 1
γ . Set N = en(X+o(1)), where X =

max h(α, β, γ), s.t. α, β, γ ≥ 0, α + β + γ = 1, and β + 2γ ≤ 2
3 . By Lagrange multiplier, the max attains

h(α, β, γ) ≈ 1.01345 when


α = 32

3(15+
√

33)

β = 4(
√

33−1)

3(15+
√

33)

γ = (
√

33−1)2

6(15+
√

33)

. And then we finish the proof.

4.2 Sunflower

Definition 4.7

♣

Let k ∈ N , sets A1, . . . , Ak form a k−sunflower, if they have common pairwise intersection, that is, ∃ a
set C, subject to, ∀ distinct i, j ∈ [k], Ai

⋂
Aj = C

Conjecture 4.8. [Erdös- Szemerédi sunflower conjecture]

♥

∀k, ∃c = c(k) < 2, subject to, ∀A ⊆ [n] with no k−sunflower has size | A |≤ Cn, we will see a solution
for 3−sunflower.

Naslund and Sawin[18] prove the following theorem for explicit bounds.

Theorem 4.9. [Naslund- Sawin]

♥
∀A ⊆ 2[n], a 3−Sunflower free collection of subsets of [n], then | A |≤ 3n

∑
k≤n

3

(
n
k

)
≤ ( 3

2
2
3

)(1+o(1))n
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4.2 Sunflower

Figure 4.1

3

2
2
3
≈ 1.8898 < 2

Proof Identify S ∈ A is equal to 1s ∈ {0, 1}n indicator function. So view A as a set of vectors in {0, 1}n.
Need to construct f : A3 → F .
f(x, y, z) 6= 0 is equal to x = y = z ∈ A, then [keylemma]⇒ sr(f) =| A |.
∀ distinct 3 sets, x, y, z ∈ A, 3− sunflower − free⇒ Y ∩ Z\X 6= �
⇒ ∃i, s.t.{xi, yi, zi} = {0, 1, 1}
⇒ z − (xi + yi + zi) = 0

Problematic off-diag case:
X,X,Y and X ⊆ Y ,
⇒ ∀i, {xi, yi, zi}can only be {0, 0, 0}, {0, 0, 1}or{1, 1, 1}
To fix this, partition A = ∪nl=1Al, where Al consists of all sets of size l.
Take l max | Al |, so | A |≤ n | Al |.
Now define f : A3

l → F2 as f(x, y, z) =
∏n
i=1(2− (xi + yi + zi))

then f(x, y, z) 6= 0⇔ x = y = z

so sr(f) =| Al |≥ 1
n | A |

f is spanned by monomials. xαyβzγ , s.t. | α | + | β | + | γ |, α, β, γ ∈ {0, 1}n

⇒ one of them ≤ n
3

group monomials by this smallest degree one.
f = f1+f2+f3, where f1 =

∑
|α|≤n

3
cαX

αgα(y, z), f2 =
∑
|β|≤n

3
cβX

βgβ(y, z), f3 =
∑
|γ|≤n

3
cγX

γgγ(y, z).
sr(fi) ≤ #{0, 1}n vectors with ≤ n

3 =
∑

k⊆y3
(
n
k

)
⇒ 1

n(A) ≤| Al |= sr(f) ≤ 3
∑

k⊆y3
(
n
k

)
In fact, we have a theorem by Alon[4] which is useful for lower bounding.

Theorem 4.10. [Alon, Combinatorial Nullstellensatz]

♥

Let f be a non-zero n-variable polynomial on Fnp . Let S1, S2, ..., Sn be subsets of Fp. Suppose f has
a term xk11 ...x

kn
n with non-zero coefficients and denote the degree of f equals

∑n
1 ki. For any i ∈ [n],

| Si |> ki, which implies f cannot vanish on S1 × ...× Sn.

Proof
To prove the theorem, we induct on degree of f .
Base case is degree f = 0, which is trivial.

33



4.3 Covering cube by affine hyperplanes

On inductive step, degf > 0, without loss of generality, assume k1 > 0. Suppose f vanishes on the∏n
1 Si, pick an arbitrary a ∈ S1 and use polynomial division to write f(x) = (x1−a)g(x)+h(x2, ..., xn).

As f(x) vanishes on {a} × S2 × ...× Sn, h(x2, ..., xn) vanishes on S2 × ...× Sn, then (x1 − a)g(x)

vanishes on S1 × ...× Sn, which implies g(x) vanishes on (S1 \ {a}) × ...× Sn.
f has xk11 ...x

kn
n with non-zero coefficients and g(x) has xk1−1

1 ...xknn term with non-zero coefficients and
degree equals deg g. A contradiction.

Combinatorial Nullstellensatz theorem is useful for lower bounding size of some set A. The strategy is to
suppose | A | is too small and that we want to find a low-degree polynomial f ′ which vanishes on a too large
Cartesian product set, leading to a contradiction.

Definition 4.11

♣A+B = {a+ b : a ∈ A, b ∈ B} denotes the sum set of set A and B.

We have an important inquation[Davenport, H.]

Theorem 4.12. [Cauchy-Davenport]

♥Let p be a prime and A,B ⊂ Fp. Then | A+B |≥ min {| A | + | B | −1, p}.

Remark
(i) Best possible: A = {0, 1, · · · , a− 1}, B = {0, 1, · · · , b− 1}, A+B = {0, 1, · · · , a+ b− 2}

(ii) P being a prime is necessary.
Divisibility barries: Consider Z2p, A = B = evens, A+B = A = B

Proof
If | A | + | B |> P , thenA+B = Fp Indeed, ∀c ∈ Fp, C−B = {c− b : b ∈ B},(C−B)∪A 6= ∅, then

∃a ∈ A, b ∈ B, subject to c− a = b or c = a+ b. Assume then | A | + | B |≤ P ,then | A | + | B | −1 < P .
Suppose for contrary that | A + B |≤| A | + | B | −2 < P − 1, and there exists set C ⊇ A + B of size
| A | + | B | −2. It is thought that we need to find ’low- deg’ f vanishing on a large product set and it is natural
product = A×B, i.e., we want to get f(a, b) = 0, then

∏
c∈C(x+ y − c).

Let f(x, y) =
∏
c∈C(x + y − c). The degree of f =| C |=| A | + | B | −2. Then f vanishes on A×

by definition of f . It is left to check f has term X |A|−1Y |B|−1 with non- zero coefficient. It is true about the
coefficient

(|A|+|B|−2
|A|−1

)
6= 0 in Fp, because | A | + | B | −2 < P and P is a prime.

What about restricted sumset A+̂A = {a+ a
′

: a, a
′ ∈ A, a 6= a

′}? We conjecture by Erdós-Heilbrown.

Theorem 4.13. [Dasilv- Hamidollne 94]

♥Let P prime, A ⊆ Fp, then A+̂P = Fp or | A | +̂A |≥ 2 | A | −3.

� Exercise 4.1 Prove the theorem.

4.3 Covering cube by affine hyperplanes

An affine hyperplane is a set of vectors H = {x ∈ Rn : 〈a, x〉 = b} with a ∈ Rn and b ∈ R. How many
affine hyperplanes we need to cover the hypercube (apart from origin: {0, 1}n \ {0̄}, where 0̄ = {0, . . . , 0})?
If we have no further restrictions on the covering, then just two hyperplanes H0 = {x ∈ Rn : 〈e1, x〉 = 0} and
H1 = {x ∈ Rn : 〈e1, x〉 = 1} are enough, where e1 = (1, 0, . . . , 0) is the first unit vector. So we require that
the all-0 vector 0̄ remains uncovered?
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4.3 Covering cube by affine hyperplanes

Theorem 4.14. [Alon–Füredi, 1993]

♥

LetH1, . . . ,Hm be hyperplanes in Rn such that none of them contain 0̄ and they together cover all other
vertices of the hypercube {0, 1}n \ {0̄}. Thenm ≥ n.

Let us recall that how do we use Theorem 4.10 to lower bound |A|?
Strategy: Suppose |A| is too small. Then we can find a polynomial f with “low degree” (w.r.t some set

Si) such that f vanishes on too large product set
∏
i Si.

Thought process:
Here, the natural product set is {0, 1}n, and we take each subset Si = {0, 1}. Note that |Si| = 2 implies
that x1x2 · · ·xn is a high order term and deg f = n. We need to construct a polynomial f to vanish on
{0, 1}n =

∏
i Si.

For each j ∈ [m], we write

Hj := {x : 〈aj , x〉 = bj} for some aj , bj 6= 0. (F)

We know that for every x ∈ {0, 1}n \ {0̄}, there exists some index j ∈ [m] such that x ∈ Hj , i.e.,
bj − 〈aj , x〉 = 0. This suggests that the polynomial

∏m
j=1(bj − 〈aj , x〉) vanishes on hypercube apart

from 0̄.

Then we need to add to above a polynomial

h =

−
∏m
j=1 bj , if x = 0̄;

0, elsewhere in hypercube;

and finally g = (−
∏m
j=1 bj) ·

∏n
i=1(1− xi) as we desired.

Proof We write Hj as in (F). We consider the polynomial

f(x) =

m∏
i=1

(bj − 〈aj , x〉)− (

m∏
j=1

bj)

n∏
i=1

(1− xi).

and S1 = · · · = Sn = {0, 1}. Supposem < n. Then deg f = max{m,n} = n and the coefficient at x1 · · ·xn
is nonzero. But f vanishes on

∏
Si. This is a contradiction because Theorem 4.10 implies that there must be a

point x ∈ {0, 1}n such that f(x) 6= 0.

Theorem 4.15. [Chevalley–Warning, 1935]

♥

Let p be a prime, and let f1, . . . , fm be polynomials on Fnp with
∑m

i=1 deg(fi) < n. If there is one
common root, then there is another common root.

We remark that the original statement is stronger: if there is one common root, then the number of common
roots of f1, . . . , fm is divisible by p. In particular, if there is one common root, then there are at least p common
roots.

Thought process:
Here, the natural product set is Fnp , and we take each slice Si = Fp for every i ∈ [n].

Suppose f1, . . . , fm have exactly one common root c ∈ Fnp . Then for every c′ 6= c, there exists an index
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4.4 Finding regular subgraphs

j ∈ [m] such that fj(c′) 6= 0 in Fp. Then we can take a polynomial

f(x) =

m∏
j=1

(1− fj(x)p−1) =

0, x ∈ Fnp \ c;

1, x = c.

To make it vanish also at c, we need to add to it −
∏n
i=1(1− (xi − ci)p−1).

Proof Take S1 = · · · = Sn = Fp and

f(x) =
m∏
j=1

(1− fj(x)p−1)−
n∏
i=1

(1− (xi − ci)p−1).

Then deg f = max
{

(p− 1)
∑m

j=1 deg fj , (p− 1)n
}

= (p − 1)n and the coefficient at xp−1
1 · · ·xp−1

n is
nonzero. But f vanishes on

∏
Si. This is a contradiction because Theorem 4.10 implies that there must be a

point x ∈ Fnp such that f(x) 6= 0.

4.4 Finding regular subgraphs

Theorem 4.16. [Pyber, 1985]

♥

Let k ∈ N and let G be an n-vertex graph with average degree d(G) ≥ 32k2 · log n. Then G contains a
k-regular subgraph.

Theorem 4.17. [Pyber–Rödl–Szemerédi, 1995]

♥

Let k ∈ N and let G be an n-vertex graph with average degree d(G) ≥ ck log ∆(G). Then G contains
a k-regular subgraph. In particulr, there exists an n-vertex graph G with d(G) ≥ c · log logn with no
3-regular subgraph.

The following sufficient condition for a graph to contain a regular subgraph was derived by Alon, Friedland
and Kalai (1984) using the Combinatorial Nullstellensatz.

Theorem 4.18. [Alon–Friedland–Kalai, 1984]

♥

Let p be a prime and let G be a loopless multigraph with d(G) > 2p− 2 and ∆(G) ≤ 2p− 1. Then G
contains a p-regular subgraph.

A standard trick to view a graph algebraically is to identify G with its edge set E(G).

Wewill often identifyE(G)with elements (vectors) of {0, 1}(
[n]
2 ) by associating a setwith its characteristic

vector.

Also, we treat subgraph of G with elements (vectors) of {0, 1}E(G).

(F) There exists a p-regular subgraph ⇔ a vector x ∈ {0, 1}m \ {0̄} (m = e(G)) such that for every
vertex v ∈ V (G),

∑
v∈e xe ≡ 0 mod p.

Thought process:
Here, the natural product set is

∏
e∈E(G) Se, where Se = {0, 1}. Note that |Se| = 2 implies that∏

e∈E(G) xe is a high order term and deg f = m. We need to construct a polynomial f to vanish on

36



4.5 Finding zero-sum multisubset

{0, 1}m =
∏
e∈E(G) Se.

Suppose no such vector of (F) exists. Then for every x ∈ {0, 1}m \ {0̄}, there exists a vertex v ∈ V (G)

such that
∑

e:v∈e xe 6= 0 mod p. It suggests that we can take a polynomial

g(x) =
∏

v∈V (G)

1−

(∑
e:v∈e

xe

)p−1
 =

0, x ∈ {0, 1}m \ {0̄};

1, x = 0̄.

To make it vanish also at {0̄}, we need to add to it

h(x) = −
∏

e∈E(G)

(1− xe) =

0, x ∈ {0, 1}m \ {0̄};

−1, x = 0̄.

Proof Associate each edge e of G with a variable xe and let

f(x) =
∏

v∈V (G)

1−

(∑
e:v∈e

xe

)p−1
− ∏

e∈E(G)

(1− xe) .

We have that deg f = max{n(p−1),m} = m as d(G) = 2m
n > 2p−2, and the coefficient at the highest order

term
∏
e∈E(G) xe is nonzero. Theorem 4.10 implies that there must be a point x ∈ {0, 1}m for which f(x) 6= 0.

But f vanishes on
∏
e∈E(G) Se, a contradiction.

4.5 Finding zero-sum multisubset

Let A = (ai,j) be an n× n matrix over a field F. The permanent per(A) of A is the sum

per(A) =
∑

(i1,i2,...,in)

a1,i1a2,i2 · · · an,in

of n! products, where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n).

Lemma 4.19. [Permanent Lemma]

♥

Let A be an n× n matrix over a field F with per(A) 6= 0. Let b = (b1, . . . , bn) ∈ Fn and S1, . . . , Sn be
subsets of F with |Si| = 2 for each i ∈ [n]. Then there exists a vector x ∈

∏n
i=1 Si such that Ax− b has

no zero coordinate, i.e., (Ax)i 6= bi for every i ∈ [n].

Proof Exercise!

Theorem 4.20. [Erdős–Ginzburg—Ziv, 1961]

♥

Let p be a prime and let A be a multiset of Zp with size 2p− 1. Then there exists a submultiset of size p
whose element sum up to 0 mod p.

Proof We first order elements of A in non-decreasing order as

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≤ ap+1 ≤ · · · ≤ a2p−1 ≤ p− 1.

We may assume that for any i ∈ [p − 1], ai 6= ai+p−1. Otherwise, for some i ≤ p − 1, we have ai = ai+p−1,
then ai = ai+1 = · · · = ai+p−1 which sum up to pȧi = 0 in p. Let Si = {ai, ai+p−1} for all i ∈ [p − 1] and
J = (1)(p−1)×(p−1) be all-1 matrix. Is is easy to verify that per(J) = (p − 1)! 6= 0. Let b = (b1, . . . , bp−1)

be such that B = {(b1, . . . , bp−1} = Zp \ {−a2p−1}. Then Lemma 4.19 implies that there exists a vector
x ∈

∏p−q
i=1 Si such that (Jx)i 6= bi for every i ∈ [p− 1]. It means that (Jx)i = x1 + · · ·+ xp−1 /∈ B. Thus we
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4.5 Finding zero-sum multisubset

have x1 + · · · + xp−1 + a2p−1 = 0. As xi ∈ Si and all Si is disjoint, we get a multisubset of size p with sum
up to 0.
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Chapter 5 Pseudorandomness

Recall Szemerédi’s regularity lemma, which partitions any (large) graph G into bounded number of parts
such that almost all pairs of parts induces a random-like bipartite graph. We will take a look at the notion of
pseudorandomness, also referred to in other contexts as quasirandomness, regularity, uniformity to describe
objects that are random-like.

5.1 Quasirandom graphs

We will first take a look at quasirandom graphs, introduced in the 80s by Thomason and independently
by Chung–Graham–Wilson. We shall define several properties that at the first glance seems irrelevant of one
another but turns out to be equivalent in the sense of being random-like. One immediate application of this is
that we have many different ways of checking whether a graph is quasirandom, as if a graph satisfies any one of
the equivalent properties, then it satisfies all of them.

We need some notations before stating the equivalent quasirandom properties.
G is an n-vertex graph with edge density p ∈ (0, 1), i.e. p = e(G)

(n2)
.

We let λ1, . . . , λn be the eigenvalues of the adjacency matrix A of G, ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

For every u, v ∈ V (G), we write d(u, v) = |NG(u) ∩NG(v)| for the codegree of u and v.
Subgraph density of H in G:

t(H,G) =
the number of label copies of H

|V (G)||V (H)|

= Pr(a uniform random map f induces a copy of H).

Homomorphism density of H in G:

t(H,G) =
the number of label homomorphisms of H

|V (G)||V (H)|

= Pr(a uniform random map f is a homomorphism).

Induced subgraph density of H in G:

tind(H,G) =
the number of induced label copies of H

|V (G)||V (H)|

= Pr(a uniform random map f induces an induced copy of H).

Theorem 5.1
Let p ∈ (0, 1) and G be a d-rgular n-vertex graph with d = pn. Then the following properties are
equivalent.

(1) [Induced Subgraph Count] For every graph H ,

tind(H,G) = pe(H)(1− p)e(H̄) + o(1).

(2) [Subgraph Count] For every graph H ,t(H,G) = pe(H) + o(1).



5.1 Quasirandom graphs

♥

(3) [4-cycle Count] t(C4, G) ≤ p4 + o(1).
(4) [Spectral gap] |λ2| = o(n).
(5) [Discrepancy] For any A,B ⊆ V (G), e(A,B) = p|A||B|+ o(n2).
(6) [Codegree]

∑
u,v∈V (G) |d(u, v)− p2n| = o(n3).

Proof We will prove [Induced Subgraph Count]⇒ [Subgraph Count]⇒ [4-cycle Count]⇒ [Spectral gap]⇒
[Discrepancy]⇒ [Codegree]⇒ [Induced Subgraph Count].

(Induced Subgraph Count)⇒ (Subgraph Count): Exercise.
(Subgraph Count)⇒ (4-cycle Count): By definitions.
(4-cycle Count)⇒ (Spectral gap):

IDEA:This amounts to writeC4-count using trace ofA4 and the correct count ofC4 means the contribution
from the non-trivial eigenvalues λi, i ≥ 2, is negligible.

Exercise. For every u, v ∈ V (G) and k ∈ N, (Ak)u,v, the u, v-th entry of the k-th power of the adjacency
matrix A, is the number of u, v-walk of length k in G.

Then the trace of Ak

tr(Ak) =
∑
i∈[n]

λki

counts the number of closed walks of length k inG. Among these walks, the non-degenerate ones areCk, while
the degenerate ones is easily seen to be negligible, at most O(nk−1). Recall that for d-regular graphs, λ1 = d.
Splitting out the first term in tr(A4), we see that

p4n4 + o(n4) ≥ t(C4, G)n4 + o(n4) = tr(A4) = λ4
1 +

∑
i≥2

λ4
i = p4n4 +

n∑
i=2

λ4
i ,

implying that |λi| = o(n) for all i ≥ 2.

5.1.1 (Codegree)⇒ (Induced Subgraph Count)

Proof Let H be a graph with vertex set V (H) := {v1, v2, . . . , vs}. For r ∈ [s], let Hr := H[{v1, . . . , vr}] be
an induced subgraph of H . Note that H = Hs. We shall use induction on 1 ≤ r ≤ s, via building Hr+1 from
Hr, to show that G has the ‘correct’ count of induced copies of H = Hs. We use Nr to denote the number of
labelled induced copies of Hr in G. Our aim is to show that

Nr = (1 + o(1))nrpe(Hr)(1− p)e(Hr). (5.1)

The base case r = 1 trivially holds. Now assume that (5.1) holds for 1 ≤ r < s, we will show that it holds for
r + 1.
Extension function. Let ε ∈ {0, 1}r be the vector recording the adjacencies of vr+1 to Hr in Hr+1. Namely,
for any j ∈ [r], we have εj = 1 if and only if vjvr+1 ∈ E(Hr+1). Let V (r) be the set of ordered r-tuples in V
and n(r) := |V (r)|. For any w ∈ V (r), define

X(w) = |{v ∈ V (G) : v /∈ w and v ∼ wj if and only if εj = 1 for all j ∈ [r]}|.

It is convenient to view things probabilistically. Let Ω := V (r) and Ω∗ := {w ∈ Ω : w ∼= Hr}. Note that

Nr+1 =
∑
w∈Ω∗

X(w). (5.2)
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5.1 Quasirandom graphs

Now we endow Ω with uniform probabilistic measure and letX be a random variable such that for any w ∈ Ω,

Pr[X = X(w)] =
1

n(r)
.

Concentration of random variable X. To complete the proof, we need a concentration equality as follows.∑
ω∈Ω∗

X(w) = |Ω∗| · E[X] + o(nr+1). (5.3)

Assuming (5.3) for now, let us finish the proof first. Recalling the inductive hypothesis and the definition,
we have that

|Ω∗| = Nr = (1 + o(1))nrpe(Hr)(1− p)e(Hr).

Observe that
E[X] =

1

|Ω|
∑
w∈Ω

X(w).

We count
∑
w∈Ω

X(w) from the perspective of the (r + 1)-tuple. For any ur+1, the number of w attaching to

ur+1 with respect to ε is p|ε|(1− p)r−|ε|nr, which implies that∑
w∈Ω

X(w) = (1 + o(1))p|ε|(1− p)r−|ε|nr+1.

Thus E[X] = (1 + o(1))p|ε|(1− p)r−|ε|n. Finally, combining (5.2) and (5.3), we derive

Nr+1 =
∑
ω∈Ω∗

X(w) = |Ω∗| · E[X] + o(nr+1)

= (1 + o(1))p|ε|(1− p)r−|ε|n · pe(Hr)(1− p)e(Hr)nr + o(nr+1)

= (1 + o(1))pe(Hr+1)(1− p)e(Hr+1)nr+1.

The last equality holds as |ε|+ e(Hr) = e(Hr+1) and r − |ε|+ e(Hr) = e(Hr+1).
Proof of concentration equality. Use Cauchy-Schwarz inequality to prove the following lemma (Exercise).

Lemma 5.2

♥

Let X be a random variable over finite set Ω with uniform measure. Let Ω∗ ⊆ Ω, then∑
ω∈Ω∗

X(w) = |Ω∗| · E[X]±
√
|Ω∗| · |Ω|Var[X]

By lemma above, it suffices to prove that√
|Ω∗| · |Ω|Var[X] = o(nr+1). (5.4)

As Var[X] = E[X − E[X]]2 = 1
|Ω|
∑
w∈Ω

(X − E[X])2, (5.4) is equivalent to

√
|Ω∗| · |Ω|Var[X] =

√
|Ω∗|

∑
w∈Ω

(X − E[X])2

=

√
|Ω∗|

∑
w∈Ω

(X2 − (E[X])2)

= o(nr+1).

Recall |Ω∗| = Nr = O(nr) and it suffices to show∑
w∈Ω

X(w)2 = |Ω|(E[X])2 + o(nr+2) = p2|ε|(1− p)2(r−|ε|)nr+2 + o(nr+2). (5.5)
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5.1 Quasirandom graphs

We shall approximate it by
T =

∑
w∈Ω

X(w)(X(w)− 1)

using double counting. Counting from the perspective of {u, v} where both u and v attach to the same w with
respect to ε, we have

T =
∑

dG(u, v)|ε|dG(u, v)r−|ε|.

To compute T , we need a claim as follows (Exercise).
Claim For any u 6= v ∈ V and any integers k, k′ ≥ 1, we have∑

u6=v
dG(u, v)kdG(u, v)k

′
= (1 + o(1))p2k(1− p)2k′nk+k′+2.

Hint: Let δuv = dG(u, v)−p2n. Codegree condition actually implies that for any k ∈ N,
∑
u6=v
|δuv|k = o(nk+2).

In addition, δuv = dG(u, v)− (1− p)2n and
∑
u6=v
|δuv|k = o(nk+2).

This claim implies that
T = (1 + o(1))p2|ε|(1− p)2(r−|ε|)nr+2.

Finally, we compute the difference and obtain∑
w∈Ω

X(w)2 = T +
∑
w∈Ω

X(w) = T +O(nr+1) = p2|ε|(1− p)2(r−|ε|)nr+2 + o(nr+2)

as desired.

5.1.2 (Spectral gap)⇒ (Discrepancy)

Definition 5.3. [(n, d, λ)-graph]

♣

An (n, d, λ)-graph is an n-vertex, d-regular graph whose adjacency matrix has eigenvalues d = λ1 ≥
· · · ≥ λn satisfying max{|λ2|, |λn|} ≤ λ.

If we can prove the following lemma, then (Discrepancy) holds.

Lemma 5.4. [Expander mixing lemma]

♥

If G is an (n, d, λ)-graph, then for any S, T ⊆ V (G),∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |.
Proof Consider characteristic vectors 1S and 1T . Let A be the adjacency matrix of G and assume that
λ1 ≥ · · · ≥ λn be the eigenvalues of A and v1, . . . , vn be the corresponding eigenvectors which form an
orthonormal basis. Thus, there exist constants α1, . . . , αn, β1, . . . , βn such that

1S =
∑
i∈[n]

αivi, 1T =
∑
i∈[n]

βivi.
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5.1 Quasirandom graphs

Note that λ1 = d and v1 = (1/
√
n, · · · , 1/

√
n)T is a corresponding eigenvector. We have

e(S, T ) = 1TSA1T = 〈
∑
i∈[n]

αivi,
∑
i∈[n]

βiAvi〉

= 〈
∑
i∈[n]

αivi,
∑
i∈[n]

βiλivi〉

=
∑
i∈[n]

λiαiβi = dα1β1 +
n∑
i=2

λiαiβi.

To bound the last term, we first compute the values of α1, β1. We have α1 = 〈v1, 1S〉 = |S|√
n
and β1 = |T |√

n
.

Thus, we have

e(S, T )− d|S||T |
n

=
n∑
i=2

λiαiβi.

By Cauchy-Schwarz inequality, we have∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ n∑
i=2

|αiβi| ≤ λ(
n∑
i=2

α2
i )

1/2(
n∑
i=2

β2
i )1/2

= λ
√

(|S| − α2
1)(|T | − β2

1) = λ

√
|S|(1− |S|

n
)|T |(1− |T |

n
)

≤ λ
√
|S||T |,

the first equality holds since |S| = 〈1S , 1S〉 = 〈
∑

i∈[n] αivi,
∑

i∈[n] αivi〉 =
∑

i∈[n] α
2
i , as desired.

5.1.3 (Discrepancy)⇒ (Codegree)

Proof We will prove a stronger statement that every vertex has small codegree deviation: for any u,∑
v:v 6=u

|d(u, v)− p2n| = o(n2).

To get rid of the absolute value sign, we split V (G) \ {u} = B+ ∪B− whereB+ := {v : d(u, v) > p2n},
let A := N(u), so |A| = pn and we have∑

v:v 6=u
|d(u, v)− p2n| =

∑
v∈B+

(d(u, v)− p2n) +
∑
v∈B−

(p2n− d(u, v))

=
(
e(A,B+)− p2n|B+|

)
+
(
p2n|B−| − e(A,B−)

)
=
(
e(A,B+)− p|A||B+|

)
+
(
p|A||B−| − e(A,B−)

)
.

Now applying (Discrepancy) to the two terms, we finish the proof.
For sparse graphs, the analogue of (Spectral gap) (λ2 = o(d)) implies the analogue of (Discrepancy)

(|e(A,B) − p|A||B|| = o(n2))) by Lemma 5.1.2, while the analogue of (Discrepancy) does not necessarily
imply the analogue of (Spectral gap). For example, consider an n-vertex graphG, which is the disjoint union of
a random d-regular graph with n− d− 1 vertices and a Kd+1 where d = o(n). This graph has (Discrepancy)
property, because for any A,B ⊆ V (G), |e(A,B) − p|A||B|| = o(dn). However, we obtain λ1 = λ2 = d by
the following claim.
Claim For a d-regular graph G, the multiplicity of the eigenvalue d is exactly the number of components of
G.
Proof Assume that the number of components of G is k, its adjacency matrix A can be block diagonal with k
blocks, denoted by A1, . . . , Ak. We have det(xE−A) = det(xE−A1) · · · det(xE−Ak), so the multiplicity
of d for A is the sum of the multiplicity of d of each Ai, i.e. the number of components of G.
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5.2 Basics on Caylay graphs

Remark In retrospect, it is perhaps not that surprising now that the seemingly weaker property of [4-cycle
Count] is equivalent to [Induced Subgraph Count]. Indeed, we’ve seen that [4-cycle count]⇒ [Codegree]. In
the proof of [Codegree]⇒ [Induced Subgraph Count], we count H-subgraphs by building it up one vertex at
a time, and define H1, H2, . . . ,Hs = H . Let H∗r+1 be the graph obtained from Hr+1 by adding a new vertex
v∗r+1, which is a copy of vr+1. To count Hr+1, we need to control the variance: the number of H∗r+1, which in
view of the twins vr+1 and v∗r+1, is governed by the [Codegree] property.

Consider sparse graphs(d = (n)) and see what still holds. By expanding lemma, the [Eigenvalue](Spectral
gap,|λ2| = o(d)) implies the [Discrepancy](|e(A,B)− d

n |A||B|| = o(dn)), but the converse implication is no
longer true for sparse graphs. Let us consider an example graph which is union of a d-regular genuinely random
graph on n− d− 1 vertices and aKd+1. It satisfies the discrepancy property but not the eigenvalue property.

What if we impose more symmetry to exclude such examples? In fact, a theorem that [Discrepancy]
implies [Eigenvalue] for all Caylay graphs was proved by Kohayakawa, Rödl and Schacht.

Definition 5.5. [Disc(δ)]

♣

Let 0 < δ ≤ 1, we say a d-regular graph G satisfies Disc(δ) if for any disjoint subset U, V of V (G), we
have

eG(U, V ) = (1± δ)d
n
|U ||V |.

Definition 5.6. [EIG(ε)]

♣

For a d-regular graph G and its eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn, we say it satisfies EIG(ε) if for
any i ≥ 2, we have |λi| ≤ εd.

Definition 5.7. [Caylay graph]

♣

LetΓ be an abelian group and letA ⊆ Γ\{0} be symmetric(i.e. A = −A). The Caylay graphCay(Γ, A)

is the graph with vertex set Γ and edge set {xy : x− y ∈ A}.

For example, if Γ = ZN , A = {−1, 1}, then Cay(Γ, A) = CN .
Now the previous theorem could be stated more formally as following, and we shall see a proof by Gowers.

Theorem 5.8. [K-R-S/G]

♥

For any ε > 0, there exists δ > 0 and n0 such that the following holds. Let G = Cay(Γ, A) be a
Caylay graph for some abelian group Γ with |Γ| = n ≥ n0 and a symmetric A ⊆ Γ \ {0}. Then Disc(δ)
⇒ EIG(ε).

5.2 Basics on Caylay graphs

Let Γ be a finite abelian group. A character χ of Γ is a group homomorphism from Γ to S1, where S1 is
the multiplicative group of complex numbers. In another word, χ : Γ→ S1 has a property that for any a, b ∈ Γ,
χ(a+ b) = χ(a)χ(b). For example, all 1 function is a trivial character. If |Γ| = n, then there are n characters
χ1, χ2, . . . , χn pairwise orthogonal,i.e.

〈χi, χj〉 =
∑
g∈Γ

χi(g)χj(g).
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5.2 Basics on Caylay graphs

Consider the space of functions from Γ to C, then the characters χ1, χ2, . . . , χn form an orthonormal
basis of this space.
If |{χ(g) : g ∈ Γ}| = m, then χ takes value inm-th root of unity.
Eigenvalues of Caylay graphs Cay(Γ, A) are Fourier coefficient of A.

Theorem 5.9

♥

Let G = Cay(Γ, A) with Γ finite abelian and A ⊂ Γ \ {0} symmetric. Then every character χ is an
eigenvector of the adjacency matrix of G with eigenvalue

Â(χ) = 〈A,χ〉 =
∑
a∈A

χ(a).

Proof LetM be the adjacency matrix of G, it suffices to show that

M · χ = 〈A,χ〉 · χ =

(∑
a∈A

χ(a)

)
· χ.

Fix a coordinate g ∈ Γ,

(M · χ)g =
∑
b∈g+A

χ(b)

=
∑
a∈A

χ(g + a)

=
∑
a∈A

χ(g) · χ(a) =

(∑
a∈A

χ(a)

)
· χ(g).

Lemma 5.10. [Chernoff type concentration]

♥

Let p1, · · · , pn ∈ [0, 1] and p = 1
n

∑n
i=i pi. Let Xi be centered Bernoulli random variables, i.e.

Xi =

1− pi with probability pi
−pi with probability 1− pi

and X =
∑n

i=1Xi. Then for any a > 0,

Pr(|X| > a) < 2e
−2a2

n .

Definition 5.11

♣

Given two functions f and h : Γ→ C, let f ∗ h : Γ→ C be their convolution defined as: for any a ∈ Γ,

f ∗ h(a) =
∑
g∈Γ

f(a− g)h(g).

Idea In order to prove Theorem 5.8, it suffices to prove the contraposition. More precisely, we prove that if
λ1 = d = |A|, λ2 ≥ εd, then we can find two sets X,Y such that e(X,Y ) is abnormal. We shall find such
X,Y randomly by choosing elements g ∈ Γ with probability depending on χ, a nontrivial character, whose
corresponding eigenvalue is large.
Proof Write χ = c + i · s = eiθχ , for any g ∈ Γ, c(g) = Re(χ(g)) = cos(θχ), s(g) = Im(χ(g)) = sin (θχ).
By the orthogonality of character, we have χ ⊥ 1, then

0 = 〈1, χ〉 =
∑
g∈Γ

(c(g) + i · s(g)) .

we can get
∑

g∈Γ c(g) = 0,
∑

g∈Γ s(g) = 0.
Since A is symmetric, ∀a ∈ A,∃ − a ∈ A, then s(a) = −s(−a) ⇔ s(a) + s(−a) = 0, we can get
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5.2 Basics on Caylay graphs∑
a∈A s(a) = 0.

〈A,χ〉 =
∑
a∈A

χ(a)

=
∑
a∈A

(c(a) + i · s(a))

= 〈A, c〉.

Set probability vector p = 1+c
2 . Define−X to be the random set obtained as follows: ∀g ∈ Γ, g is included

in −X with probability p(g) = 1+c(g)
2 independently. Define Y in the same way.

The goal is to bound the deviation |e(X,Y )− d
n |X||Y ||.

Let us first get a hold on sizes of X ,Y . Each element g appears independently with probability p(g), thus
|Γ| = n,

E|Y | = E|X| =
∑
g∈Γ

1 + c(g)

2
=
n

2
.

Since each element is chosen independently and Lemma 5.2, we have

P

(
|X| = (

1

2
+ o(1))n

)
= 1− o(1).

P

(
|Y | = (

1

2
+ o(1))n

)
= 1− o(1).

By linearity of expectation,

E|X ∩ Y | =
∑
g∈Γ

p(−g) · p(g)

=
∑
g∈Γ

p(g)2

=
1

4

∑
g∈Γ

(1 + c(g))2

=
1

4
n+

1

4

∑
g∈Γ

c(g)2

=
1

4
n+

1

4
· n

2
=

3n

8
.

By the Lemma 5.2, we have

P

(
|X ∩ Y | = (

3

8
+ o(1))n

)
= 1− o(1).

P

(
|X ∪ Y | = (

5

8
+ o(1))n

)
= 1− o(1).
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5.2 Basics on Caylay graphs

e(X,Y ) =
∑
a∈A

∑
g∈Γ

X(g − a)Y (g)

=
∑
a∈A

∑
g∈Γ

(−X)(a− g)Y (g)


=
∑
a∈A

(−X) ∗ Y (a)

=
∑
g∈Γ

A(g) · (−X) ∗ Y (g)

= 〈A, (−X) ∗ Y 〉.

E ((e(X,Y )) = E〈A, (−X) ∗ Y 〉

=
∑
a∈A

∑
g∈Γ

E ((−X)(a− g)) E (Y (g))

=
∑
a∈A

∑
g∈Γ

p(a− g)p(g)


=
∑
a∈A

p ∗ p(a)

=
∑
a∈A

1 + c

2
∗ 1 + c

2
(a)

=

〈
A,

1 + c

2
∗ 1 + c

2

〉
=

1

4

∑
a∈A

∑
g∈Γ

(1 + c(a− g)) · (1 + c(g))

=
1

4

∑
a∈A

∑
g∈Γ

(1 + c(a− g)c(g))

=
1

4
dn+

1

4
〈A, c ∗ c〉.

Claim c ∗ c(g) =

n
2 c(g) m > 2

nc(g) m = 2
.

∣∣∣∣E(e(X,Y ))− 1

4
dn

∣∣∣∣ > 1

8
n |〈A, c〉|

>
1

8
nεd.

Recall 0 ≤ e(X,Y ) ≤ dn = |A|n, η = η(X,Y ) = e(X,Y )− dn
4 , we can get

−1

4
dn ≤ η ≤ 3

4
dn.

Write q = Pr(|η| 6 εdn
16 ),

1

8
εdn ≤ |E(η)| ≤ E(|η|) ≤ q εdn

16
+ (1− q)3dn

4
.
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5.3 Quasirandomness for Hypergraphs

we get

q = Pr(|η| ≤ εdn

16
) ≤ 1− ε/6

1− ε/12
≤ 1− ε

12
.

thus there exist choices of X,Y such that |η| ≥ εdn
16 and |X|, |Y | are as expected. That is,

|X| = |Y | =
(

1

2
+ o(1)

)
n.

|X ∩ Y | =
(

3

8
+ o(1)

)
n.

|X ∪ Y | =
(

5

8
+ o(1)

)
n.

|η| = |e(X,Y )− dn

4
| ≥ εdn

16
.

Apply Disc(δ) on X ∩ Y , X ∪ Y , X − Y , Y −X , finally we can get
εdn

16
≤ |e(X,Y )− dn

4
| < 5δdn

16
.

By setting δ < ε
5 , we get a contradiction.

5.3 Quasirandomness for Hypergraphs

We restrict attention to bipartite graphs.

Theorem 5.12

♥

Let G be a bipartite graph with vertex sets X and Y , each of size N . Suppose that G has pN2 edges.
Then the following properties of G are equivalent.

(i) [C4 Count] The number of labelled 4-cycles in G is at most p4N4 + o(N4).
(ii) [Discrepancy] For any X ′ ⊆ X , Y ′ ⊆ Y , |e(X ′, Y ′)− p|X ′||Y ′|| = o(N2).

Now we define a notion of quasirandomness for subsets of ZN .

Theorem 5.13. [Chung and Graham [6]]

♥

Let A be a subset of ZN of size pN . Then the following properties are equivalent.
(i) The number of quadruples (a, b, c, d) ∈ A4 such that a+ b = c+ d is at most p4N3 + o(N3).

(ii) For any arithmetic progression X in ZN , |A ∩X| = p|X|+ o(N).

� Connection between quasirandom subsets of ZN and quasirandom graphs.
Take A ⊆ ZN with |A| = pn. Consider the following Caylay Sum graph. Define a bipartite graph G with
vertex setsX = Y = ZN by letting (x, y) ∈ XY be an edge if and only if x+ y ∈ A. Note that e(G) = pN2.
Take a C4 in G, say (x1, x2, y1, y2), then x1 + y1, x1 + y2, x2 + y1, x2 + y2 all belong to A, and moreover that
(x1 + y1) + (x2 + y2) = (x1 + y2) + (x2 + y1). So there is anN -to-one correspondence between the 4-cycles
from Theorem 5.12 (i) and the quadruples from Theorem 5.13 (i). Thus, the set A is quasirandom if and only if
the corresponding graph G is quasirandom.
� What about quasirandom hypergraphs, how to define them?

Consider 3-uniform hypergraphs. When a set is is quasirandom, the number of 3-AP (arithmetic progression) is
as expected. But there are quasirandom set whose 4-AP count deviates a lot from expected. To detect whether
a set has abnormal count of 4-AP. Gowers introduced a high order quasirandomness.
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5.3 Quasirandomness for Hypergraphs

Definition 5.14. (quadratic uniformity)

♣

Let A ⊆ ZN of size pN . We say A is quadratically uniform if the number of octuples (x, x + a, x +

b, x+ c, x+ a+ b, x+ a+ c, x+ b+ c, x+ a+ b+ c) in A8 is at most p4N4 + o(N4).

Remark Since quadruples (a, b, c, d) with a + b = c + d are in one-to-one correspondence with quadruples of
the form (x, x+ a, x+ b, x+ a+ b), this definition is a natural generalization of property (i) of Theorem 5.13.

To define quasirandom properties for 3-uniform hypergraphs, we consider Caylay Sum hypergraphH with
vertex sets X = Y = Z = ZN . The triple (x, y, z), x ∈ X, y ∈ Y, z ∈ Z forms an edge of H if and only if
x+ y + z ∈ A, where A ⊆ ZN .

It turns out a counterpart of C4 in 3-uniform hypergraphs is octahedron, where an octahedron is a set of
eight 3-edges of the form (xi, yj , zk) : i, j, k ∈ {1, 2}, with x1, x2 ∈ X , y1, y2 ∈ Y , z1, z2 ∈ Z. Equivalently,
an octahedron isK(3)

2,2,2, a complete tripartite subhypergraph with two vertices from each vertex set of H .
Another way to look at it is that the dual of 2-dimensional cube (4-cycle) is 4-cycle and the dual of

3-dimensional cube is octahedron (see Figure 5.1).

Figure 5.1: the dual of 3-dimensional cube

Definition 5.15. (Octahedron count)

♣

LetH be a tripartite 3-uniform hypergraph withN vertices in each partite sets and pN3 edges. ThenH
is quasirandom if it contains at most p8N6 + o(N6) octahedra.

Remark A subset A of ZN gives rise to an quasirandom 3-graph H (Calay Sum hypergraph) if and only if A is
quadratically uniform.

� What about Discrepancy for 3-uniform hypergraphs?
A natural way is the following.

Definition 5.16. (vertex-uniformity)

♣

Let H be a 3-uniform hypergraph with partite sets X,Y, Z each of size N and suppose that H has pN3

edges. Then H is vertex-uniform if, for any X ′ ⊆ X , Y ′ ⊆ Y , Z ′ ⊆ Z,

|e(X ′, Y ′, Z ′)− p|X ′||Y ′||Z ′|| = o(N3).

A quasirandom 3-graph must be vertex-uniform, but the reverse is not true. Here is a simple example. Let
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5.3 Quasirandomness for Hypergraphs

X,Y, Z be three sets of size N and let G be a random tripartite graph with vertex sets X, Y and Z and density
1/2. LetH be the hypergraph consisting of all triangles inG. Then the edge density ofH is 1/8, but the number
of octahedra in H is about 2−12N6 rather than 8−8N6 as it should have if H is quasirandom.

Definition 5.17. (edge-uniformity)

♣

Let H be a 3-uniform hypergraph with partite sets X,Y, Z each of size N and suppose that H has pN3

edges. Then H is edge-uniform if, for every t ∈ [0, 1] and every tripartite graph G with vertex sets
X,Y, Z and tN3 triangles, the number of triangles in G are edges in H is ptN3 ± o(N3).

The discrepancy property says that a bipartite graph does not significantly correlate with graphs induced
by sets of vertices (that is, complete bipartite graphs on subsets of the vertex sets).
Edge-uniformity says that a 3-uniform hypergraph does not correlate with 3-uniform hypergraphs induced
by sets of edges.

50



Chapter 6 The Spectral method

6.1 Spectral theorem and Hoffman’s bound

Spectral methods use linear algebra to derive information about graphs, usually via studying certain real
matrices (often symmetric) associated to graphs. For example there are adjacency matrix, Laplacian matrix and
transition matrix.

LetG = (V,E) be an n-vertex graph. We can view every set of vertexX ⊆ V as an {0, 1}n-vector. Edge
sets correspond to quadratic forms defined by some matrices. For example, in the Expander Mixing Lemma,
we have seen that if there are two sets X and Y , then we can take the adjacency matrix and compute

XTAY = e(X,Y )

=
∑
u,v∈V

XuAuvYv

When dealing with matrixM , we usually use it in two ways. The first way is to view them as linear operator
x 7→Mx for x ∈ Rv andMx ∈ Rv. The second way is to define a quadratic form x 7→ xTMx ∈ R.

Theorem 6.1. [Spectral theorem]

♥

LetM ∈ Rn×n be a real symmetric n× n matrix. Then it has n real eigenvalues(not necessary distinct)
{λ1, λ2, ..., λn} and n orthonormal real eigenvectors {x1, ..., xn} ∈ Rn where xi is eigenvector of λi.

We will prove the theorem later.
Equipped with this theorem, we can already prove something meaningful. Let’s try to prove one of the

basic results on Hoffman’s bound on independence number. Before getting into it, let’s introduce the first matrix
which is the most natural one which is the adjacency matrix.

Let A be the adjacency matrix of G. Au,v = 1 if and only if u is adjacent to v. The following are some
basics.

Theorem 6.2

♥

If G is an n-vertex and d-regular graph, then
1 is an eigenvector for adjacency matrix A with eigenvalue d;
d = λ1 ≥ ... ≥ λn;
λn < 0;
trac(A) = 0 =

∑
i∈[n]

λi;

the multiplicity of λ1 = d is the number of connected components in G.

For adjacency matrix A as an operator, take some x ∈ Rv,

Ax =


a11 . . . a1n

. . . ...
an1 ann



xv1
...
xvn

 . Let’s take a look at a specific example

(Ax)v =
(
av1 . . . avn

)
xv1
...
xvn

 =
∑

u∈N(v)

xu where (Ax)v is the sum of weights at N(v).



6.1 Spectral theorem and Hoffman’s bound

Clearly, xTAx = e(X,X) = 2e(X). Next, let’s take a look at an easy example. Kn is a complete graph.
It is easy to check that the eigenvalues ofKn is {n− 1,−1, ...,−1} and the multiplicity of λ1 is 1.

� Exercise 6.1 The d-regular graph has d as eigenvalue.

Theorem 6.3. [Hoffman’s bound]

♥

For every n-vertex d-regular graphG, let λ1 ≥ ... ≥ λn be the eigenvalues of its adjacency matrix. Then
α(G) ≤ ( −λnd−λn )n.

Remark The Hoffman’s bound is tight. Kd,d is an example of the tightness. Since in the adjacency matrix of
Kd,d, we have λ1 = d, λn = −d and α(Kd,d) = d.

Before the proof of Hoffman’s bound, we need some facts. By Theorem 6.1, we have orthonormal
eigenvectors {v1, ..., vn} for the adjacency matrix A of n-vertex and d-regular graph G. For any set of
vertices X ⊆ V , X =

∑
i∈V

aivi. Here we want to know the meaning of coefficient ai. Some coefficients

have special meaning. For example, a1 has a special meaning. Let G be an n-vertex and d-regular graph.

Then v1 = 1√
n


1
...
1

. We can obtain a1 by taking 〈x, v1〉 = 〈
∑
a1vi, v1〉 = a1. On the other hand,

〈x, v1〉 = 〈x, 1√
n
1〉 = 1√

n
|X|. So the meaning of the coefficient is the size of the set. Next, we want to know

the meaning of
∑
a2
i . Note that |X| = 〈X,X〉 = 〈

∑
aivi,

∑
aivi〉 =

∑
a2
i .

Proof Take an independent set I in G. We have I =
∑
aivi, a1 = 1√

n
|I| and

∑
a2
i = |I|. Given by the

adjacency matrix,

0 = 2e(I) = ITAI

= 〈I, AI〉

= 〈
∑

aivi, A(
∑

aivi)〉

= 〈
∑

aivi,
∑

ai(Avi)〉

= 〈
∑

aivi,
∑

λiaivi〉

=
n∑
i=1

λia
2
i

= d · a2
1 +

∑
i≥2

λia
2
i

≥ d · a2
1 +

∑
i≥2

λna
2
i

= (d− λn)a2
1 + (

n∑
i=1

a2
i )λn

≥ (d− λn)
|I|2

n
+ |I|λn.

Now, we have 0 ≥ (d− λn) |I|
2

n + |I|λn and |I| ≤ ( −λnd−λn )n.

Corollary 6.4

♥
Let G be an n-vertex and d-regular graph G with λ1 ≥ ... ≥ λn. Then χ(G) ≥ n

α(G) ≥
λ1−λn
−λn .
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6.1 Spectral theorem and Hoffman’s bound

Remark χ(G) ≥ λ1−λn
−λn also holds for irregular graph.

Definition 6.5

♣
The Rayleigh quotient of x with respect toM is xTMx

xT x
= RM (x).

If x is an eigenvector ofM with eigenvalue λ, then the Rayleigh quotient RM (x) = xTMx
xT x

= xTλx
xT x

= λ.
The variational characterisation of eigenvalues.

Theorem 6.6. (Courant-Fisher)

♥

et M be a real n × n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn. Then λk =

min
k−dim,V

max
x∈V,x6=0

xTMx
xT x

= min
k−dim,V

max
x∈V,x 6=0

RM (x).

Proof By Theorem 6.1, we can take orthonormal eigenvectors {v1, ..., vn} and denote the corresponding
eigenvalues as {λ1, ..., λn}. We divide the proof into following two cases.

λk ≥ min
k−dim,V

max
x∈V,x6=0

RM (x);

λk ≤ min
k−dim,V

max
x∈V,x6=0

RM (x).

Case 1: We need to find some k-dimensional space V such that λk ≥ max
x∈V,x6=0

RM (x). We consider V as

a space which spans from {v1, ..., vk} and take non-zero x ∈ V and x =
k∑
i=1

aivi. We have

xTMx = xTM(

k∑
i=1

aivi)

= 〈
k∑
i=1

aivi,

k∑
i=1

aiλivi〉

=
k∑
i=1

λia
2
i

≤ λk
k∑
i=1

a2
i

and

xTx = 〈
k∑
i=1

aivi,

k∑
i=1

aivi〉

=

k∑
i=1

a2
i .

Hence, we have xTx =
k∑
i=1

a2
i ≥ xTMx

λk
and λk ≥ xTMx

xT x
.

Case 2: We need to show that, for every k-dimensional V , there exists a non-zero x ∈ V withRM (x) ≥ λk.
Fix an arbitrary k-dimensional V , let U be a space which spans from {vk, ..., vn} and dim(U) = n − k + 1.

As dim(U)+dim(V ) > n, there exists non-zero x ∈ U ∩ V . Since x ∈ U , x =
n∑
i=k

aivi. We also have

xTx =
n∑
i=k

a2
i . Now,
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6.2 Laplacian matrix

xTMx = 〈
n∑
i=k

aivi,

n∑
i=k

λiaivi〉

=

n∑
i=k

λia
2
i

≥ λk
n∑
i=k

a2
i = λkx

Tx.

Hence, we have xTMx ≥ λkxTx and λk ≤ xTMx
xT x

.
We will see that the Courant-Fisher theorem has lots of quick applications. For example, we can extend

Hoffman’s bound on independence number to irregular graphs. Previously, we only deal with d-regular graphs.
Remark Courant-Fisher theorem means that we can view eigenvalues as optima of min-max optimisation
problem in which the cost function is the Rayleigh quotient.

Usually, the important eigenvalues that we care about are λ1, λ2 and λn, where λ1 ≤ λ2 ≤ . . . ≤ λn. For
λn, we have already seen in Hoffman’s bound that λn has link to the independence number. For λ1 and λ2, they
are both important in Expander Mixing Lemma where we use to derive some equivalence on the quasirandom
properties.

By the Courant-Fisher theorem, we have the following corollary.

Corollary 6.7

♥

λ1 = min
x 6=0

RM (x) = min
x6=0

xTMx

xTx
.

λn = max
x 6=0

RM (x) = max
x 6=0

xTMx

xTx
.

λ2 = min
x 6=0,x⊥v1

RM (x) = min
x 6=0,x⊥v1

xTMx

xTx
,

where v1 is the eigenvector of λ1.

6.2 Laplacian matrix

Definition 6.8. (Laplacian matrix)

♣

Given an n-vertex d-regular graph G, we define

L = dI −A =


d

d
. . . −1

d


as the Laplacian matrix of G, where I is the identity matrix, A is the adjacency matrix and Luv = −1 if
u and v are adjacent.
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6.3 Hoffman’s bound for irregular graphs

Fact 6.9.

♥

L · 1 = 0;
If vi is an eigenvector of A with eigenvalue αi, then vi is also an eigenvector of L with eigenvalue
d− αi.

Definition 6.10. (Normalised Laplacian matrix)

♣

Given an n-vertex d-regular graph G, we define N = 1
d · L = I − 1

d · A as the normalised Laplacian
matrix of G.

Note that this definition makes that the spectral radius is independent of d.

For a general graph, the Laplacian matrix is L = D −A, where D =


d(v1) 0

d(v2)
. . .

0 d(vn)

.

Convention:
A denotes the adjacency matrix with eigenvalues α1 ≥ α2 ≥ · · · ≥ αn.
L denotes the Laplacian matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
N denotes the normalised Laplacian matrix with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ νn.

6.3 Hoffman’s bound for irregular graphs

Theorem 6.11. [Godsil-Newman]

♥

Let I be an indpendent set inG and let d(I) be the average degree of vertices in I , then |I| ≤ λn−d(I)
λn

·n,
where λ1 ≤ λ2 ≤ . . . ≤ λn are eigenvalues of Laplacian of G.

Remark If G is d-regular, then it implies Hoffman’s bound. This is because λn = d − αn by Fact 6.2
(α1 ≥ α2 ≥ . . . ≥ αn are eigenvalues of adjacency matrix A) and then

|I| ≤ λn − d
d− αn

· n =
−αn
d− αn

· n

Proof By the Courant-Fisher theorem, we have λn = max
x 6=0

RL(x) = max
x 6=0

xTLx
xT x

. Hence, λn ≥ RL(x) = xTLx
xT x

for arbitrary x 6= 0. Let x = 1I − |I|n · 1, where 1I is the indicator vector of I . So x ⊥ 1. We have

xTLx = (1I −
|I|
n
· 1)TL(1I −

|I|
n
· 1)

= 1TI L1I

= 1TI (D −A)1I

=
∑
u,v

(1I)u(D −A)u,v(1I)v

=
∑
v∈I

d(v)− 2e(I)

= |I| · d(I),

where the second equation holds as L · 1 = 0 and the last equation comes from e(I) = 0. Moreover,
xTx = (1I − |I|n · 1)T (1I − |I|n · 1) = |I|(1 − |I|n ) by the following exercise. Then λn ≥ |I|·d(I)

|I|(1− |I|
n

)
. Hence,
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6.4 Why this definition of Laplacian?

|I| ≤ λn−d(I)
λn

· n.
Remark The reason to choose centered characteristic function of I instead of 1I is because xTLx remain the
same, shifting by |I|n · 1 minimises the norm xTx.

� Exercise 6.2 Let S ⊂ V be a set of size s|V | and let ft = 1S − t · 1. Then ||ft||2 is minimised when t = s,
i.e. when ft ⊥ 1 and ||1S − s · 1||2 = s(1− s)|V |.

6.4 Why this definition of Laplacian?

Motivation: Given a graphG, one type of problem we care about is to find a cut betweenX andXC = V \X ,
and then see how many edges between them. Sometimes we want to find a sparse cut, sometimes we want to
find a dense one. For example, one of the basic theorem says that you can always find a cut with at least half of
the number of edges of the graphG, which can be proved by probability method and take a random bi-partition.
In that problem, our aim is to try to cut many edges, i.e. find a dense cut. Meanwhile, people are also interested
in sparse cuts. For example, theoretical computer scientists care about finding sparse cuts. Why do they care
about this? Because sometimes we can use divide-conquer idea to solve a problem. If there is too much work to
run the algorithm on the whole graph, then we want to find a sparse cut and cut the graph into two parts. Then
we repeatedly try to find sparse cuts, and finally find very small components. Then we just run the algorithm
on each small component. Not only improve the running time, but we also don’t need much space to store the
information. Because the cut is very sparse, sometime we can place them together, and the solution will be ok.
These are some big motivations.

Now, we represent a cut in terms of linear algebra, using the following homogeneous quadratic polynomial.
We define a degree-2 homogeneous polynomial for graph G = (V,E):∑

uv∈E
(xu − xv)2,

which measures smoothness of x. The value of this polynomial is small when no big jump over edges. When
x ∈ {0, 1}V is a Boolean vector and let X be a subset of V with indicator vector x, then e(X,XC) =∑
uv∈E

(xu−xv)2, i.e. the cut value. Note that every homogeneous quadratic polynomial can be written as xTMx

for some matrixM . For d-regular graph,
∑
uv∈E

(xu − xv)2 = xT (dI − A)x = xTLx, whose both sides equal

to
∑
v∈V

dx2
v − 2

∑
uv∈E

xuxv. From this, we immediately get the following.

Proposition 6.12

♠The Laplacian L is singular and positive semidefinite.

Note that this proposition is true for all graphs.
At the end, let’s conclude what does Laplacian matrix do? Both as operator and as quadratic form. Recall

that for d-regular graph G = (V,E), the Laplacian L =


d

d
. . . −1

d

, where Luv = −1 if u and v are

adjacent. Take x ∈ RV , then (Lx)v = dxv −
∑

u∈N(v)

xu = d(xv − 1
d

∑
u∈N(v)

xu). Moreover, the quadratic form

xTLx =
∑
uv∈E

(xu − xv)2 represents the cut value when x ∈ {0, 1}V . When x ∈ RV , optimising xTLx can be

viewed as a relaxation of the cut problem.
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6.5 Spectrum of the normalised Laplician

6.5 Spectrum of the normalised Laplician

In this section, we study spectrum of the normalised Laplician. We start with regular graphs and prove
that the spectrum of normalised Laplician for regular graphs is between 0 and 2. Later, we will see how we can
normalise the Laplician for irregular graphs and they also have spectrum from 0 and 2.

Consider an n-vertex d-regular graph G = (V,E) with normalised Laplician N = I − 1
d · A. Recall that

the quadratic form xTNx =
∑
v∈V

x2
v − 1

d

∑
uv∈E

2xuxv = 1
d(
∑
v∈V

dx2
v −

∑
uv∈E

2xuxv) = 1
d

∑
uv∈E

(xu − xv)2 and

the Rayleigh quotient of x is RN (x) =

∑
uv∈E

(xu−xv)2

d
∑
v∈V

x2v
.

Theorem 6.13

♥

Let G = (V,E) be an n-vertex d-regular graph and let N = I − 1
dA be its normalised Laplician with

eigenvalues ν1 ≤ ν2 ≤ · · · ≤ νn. Then
(i) ν1 = 0.

(ii) νk = 0 if and only if G has at least k connected components. In particular, the number of
components in G equals the multiplicity of the eigenvalue 0.

(iii) νn ≤ 2. The equality holds if and only if G has a bipartite component.

Proof

(i) By theCourant-Fisher theorem, ν1 = min
x 6=0

RN (x) = min
x 6=0

∑
uv∈E

(xu−xv)2

d
∑
v∈V

x2v
≥ 0. On the other hand,N ·1 = 0.

Hence, ν1 = 0.
(ii) (⇒) Suppose νk = 0. We want to show the number of components is at least k. By the Courant-Fisher

theorem, νk = min
dimU=k

max
x∈U,x 6=0

RN (x) = min
dimU=k

max
x∈U,x 6=0

∑
uv∈E

(xu−xv)2

d
∑
v∈V

x2v
= 0. Thus, there exists a k-

dimension space U such that for any x ∈ U, x 6= 0, we have RN (x) =

∑
uv∈E

(xu−xv)2

d
∑
v∈V

x2v
= 0. This means

that if u and v are adjacent, then xu = xv. This further implies that x is constant over any connected
component. Hence, the dimension of U (= k) is at most the number of components of G.
(⇐) Suppose the number of component is at least k. Consider the subspace U spanned by vectors that
are constant on each component, then the dimension of U equals the number of components (≥ k). For
every x ∈ U and x 6= 0, RN (x) = 0. Then by the Courant-Fisher theorem, νk = 0.

(iii) By the Courant-Fisher theorem,

νn = max
x 6=0

RN (x)

= max
x 6=0

xTNx

xTx

= max
x 6=0

∑
uv∈E

(xu − xv)2

d
∑
v∈V

x2
v

.
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6.6 Examples about eigenvalues of Laplacian

Moreover,

xTNx =
1

d

∑
uv∈E

(xu − xv)2

=
∑
v∈V

x2
v −

2

d

∑
uv∈E

xuxv

= xTx− 2

d

∑
uv∈E

xuxv

= 2xTx− 2

d

∑
uv∈E

xuxv − xTx

= 2xTx− 1

d

∑
uv∈E

(xu + xv)
2.

So RN (x) = 2−
∑

uv∈E
(xu+xv)2

d
∑
v∈V

x2v
≤ 2. Hence, νn ≤ 2.

If νn = 2, then we must have ∑
uv∈E

(xu + xv)
2 = 0, (6.1)

which means that if u and v are adjacent, then xu = −xv. Define S = {v : xv > 0}, T = {v : xv < 0}.
ThenS∪T sends no edge to V \(S∪T ), for otherwise such edge contributes positively to

∑
uv∈E

(xu+xv)
2,

contradict (6.1). Also, N(S) ⊆ T and N(T ) ⊆ S by (6.1). Thus, S ∪ T induces union of bipartite
component in G.

6.6 Examples about eigenvalues of Laplacian

Example 1: Complete graphKn.
� Exercise 6.3 For complete graphKn, the Laplacian ofKn has

eigenvalue eigenvector multiplicity
0 1 1
n ∀x : x ⊥ 1 n− 1

Example 2: Star Sn.
Consider a star Sn with core vertex v1 and its neighbours v2, · · · , vn. The Laplacian of Sn has

eigenvalue eigenvector multiplicity
0 1 1
1 δvi − δvi+1 (2 ≤ i ≤ n− 1) n− 2

n


−(n− 1)

1
...
1

 1

where δv = 1v is the indicator vector for a single vertex v.
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6.6 Examples about eigenvalues of Laplacian

Lemma 6.14

♥

Let G be an n-vertex graph with two degree-1 vertices a and b both adjacent to another vertex c, then
x = δa − δb is an eigenvector of G with eigenvalue 1.

� Exercise 6.4 Prove the above lemma. Check (Lx)v = xv.
We can apply the above lemma to all adjacent pairs of star Sn. So v2 − v3, v3 − v4, . . . , vn−1 − vn are all

eigenvectors with eigenvalue 1 and they are all linearly independent. Now consider the largest eigenvalue λn of

Laplacian L of Sn. Recall that L =


n− 1 −1

1
. . .

−1 1

, then tr(L) = 2n− 2 =
n∑
i=1

λi = n− 2 + 0 + λn

Hence λn = n. Moreover, y =


−(n− 1)

1
...
1

 is the eigenvector with eigenvalue n. It is easy to check that y is

orthogonal to 1 and δvi − δvi+1 (2 ≤ i ≤ n− 1).

Example 3: Hypercube Qd.

Definition 6.15

♣

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), G1 ×G2 is a graph with

V (G1 ×G2) = V1 × V2,

E(G1 ×G2) = {(x, y) ∼ (x′, y),where xx′ ∈ E1} ∪ {(x, y) ∼ (x, y′),where yy′ ∈ E2}.

Theorem 6.16

♥

LetG1 = (V1, E1) be a graph with Laplician eigenvalues λ(1)
1 ≤ · · · ≤ λ(1)

n and eignevectors x1, · · · , xn.
LetG2 = (V2, E2) be a graph with Laplician eigenvaluesλ(2)

1 ≤ · · · ≤ λ(2)
m and eignevectors y1, · · · , ym.

Then G1 × G2 has eigenvalues λ(1)
i + λ

(2)
j , for any i ∈ [n] and j ∈ [m], with eigenvectors zi,j , where

(zi,j)(u,v) = (xi)u · (yj)v.

Let Qd be a d-dimension hypercube. Consider Laplacian LQd . When d = 1, Q1 has

eigenvalue eigenvector

0
(

1
1

)
2

(
1
−1

)

If Qd−1 has eigenvalue λ with eigenvector x, then Qd = Q1 ×Qd−1 has

eigenvalue eigenvector

λ

(
x
x

)
λ+ 2

(
x
−x

)
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6.7 Isoperimetry and the second eiginvalue

Hence,Qd has eigenvalues 2i for each 0 ≤ i ≤ dwithmultiplicity
(
d
i

)
. We can identify eigenvectors ofLQd

with V (Qd): take v ∈ V (Qd) = {0, 1}d and the corresponding eigenvector x(v) is for any u ∈ V (Qd), x
(v)
u =

(−1)v
Tu.

6.7 Isoperimetry and the second eiginvalue

Definition 6.17

♣The boundary of a set S ⊂ V is ∂(S) = EG(S, V \ S) = EG(S, Sc).

Definition 6.18

♣
The isoperimetric number of S ⊂ V is θ(S) = |∂S|

|S| , basically the average degree out of S.

Note that θ(S) = |∂S|
|S| = RL(1S), where 1S is the characteristic function of the set S.

Definition 6.19

♣

The isoperimetric number, or Cheeger constant of a graph G with |G| = n is

h(G) = min
0<|S|≤n/2

θ(S) = min

{
|∂S|
|S|

: S ⊂ V (G), 0 < |S| ≤ n

2

}
.

Trivially,h(G) > 0 if and only if G is connected. The Cheeger constant h(G) measures how small the
“bottleneck" inG is. If "bottleneck" is large, then it is difficult to cut off the graph, then the graph is an expansion
graph.

Theorem 6.20

♥

For any graph G with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn of Laplacian, we have

h(G) ≥ λ2

2
.

Proof 1 It suffices to show that for any S ⊂ V (G) of size sn, where 0 < s ≤ n
2 , n = |V (G)|, we have

θ(S) ≥ (1− s)λ2.
By Courant-Fischer,we have that

λ2 = min
x6=0
x⊥1

RL(x) = min
x 6=0
x⊥1

xTLx

xTx
.

Then

∀x ⊥ 1, x 6= 0,
xTLx

xTx
≥ λ2. (6.2)

We shall use the characteristic function of the set S(1S), but first we center it to be orthogonal to 1.
So we will use

x = 1S − s1, 〈x, 1〉 = 0

in eq. (6.2). As L · 1 = 0,
xTx = 1TSL1S = e(S, Sc) = |∂S|.

So we have
xTLx

xTx
=

|∂S|
|S|(1− s) =

|∂S|
s(1− s)n

≥ λ2
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6.7 Isoperimetry and the second eiginvalue

Proof 2 We want to show that for any S with |S| ≤ n
2 , we have θ(S) ≥ λ2

2 . By Courant-Fischer we have

λ2 = min
dimU=2

max
x 6=0
x∈U

RL(x) (6.3)

We’ll take U = Span of 1S and 1Sc . Since 1S ⊥ 1Sc , we have dimU = 2.
Suppose z 6= 0, z ∈ U such that

max
x 6=0
x∈U

RL(x) = RL(z).

We have then eq. (6.3) is saying λ2 ≤ RL(z).

Lemma 6.21

♥

LetM be a positive semidefinite matrix and x, y be two orthogoral vectors. Then

RM (x+ y) ≤ 2 max {RM (x), RM (y)}.

Assuming this lemma holds and L is positive semidefinite matrix. Write z = αx + βy where α, β ∈ R
and x = 1S , y = 1Sc , then we have

λ2 ≤ RL(z) = RL(αx+ βy)

≤ 2 max {RL(αx), RL(βy)}

As multiplying by a scalar does not change Rayleigh quotient, i.e. RL(αx) = RL(x). And we also have
RL(x) = RL(1S) = θ(S). We can get

λ2 ≤ 2 max {RL(αx), RL(βy)}

= 2 max {RL(x), RL(y)}

= 2θ(S).

Proof of Lemma 6.21 Let λ1 ≤ λ2 ≤ · · · ≤ λn be eidenvalues of M with corresponding eig-vectors
v1, v2, · · · , vn which are basis.

We write x =
n∑
i=1

aivi, y =
n∑
i=1

bivi, then

RM (x+ y) =

(
n∑
i=1

(ai + bi)vi)
TM(

n∑
i=1

(ai + bi)vi)

||x+ y||2

=

n∑
i=1

λi(ai + bi)
2

||x+ y||2

≤

n∑
i=1

λi · 2(a2
i + b2i )

||x||2 + ||y||2

=
2RM (x)||x||2 + 2RM (y)||y||2

||x||2 + ||y||2

≤2 max {RM (x), RM (y)}.

Cheeger constant h(G) is often useful when dealing with vertex subsets. For edge expansion, it’s more
convenient to work with a notion called conductance. For this, we need to define normalized Laplacian for
general graphs.
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6.7 Isoperimetry and the second eiginvalue

Recall for d-regular graphs, L = dI −A = D −A,N = I − 1
dA. It turns out for general graphs,

N =D
1
2LD

1
2

=D
1
2 (D −A)D

1
2

=I −D
1
2AD

1
2 .

Definition 6.22

♣

For a d-regular graph G = (V,E), the conductance (or edge expansion) of a set S ⊆ V is

φ(S) =
∂S

d|S|
= RN (1S) =

∑
uv∈E(xu − xv)2

d
∑

v∈V x
2
v

i.e. φ(S) is the average fraction of neighbours (of vertices of S) lying outside S.
The conductance (edge expansion) of a cut is

φ(S, Sc) = max{φ(S), φ(Sc)}.

The conductance (edge expansion) of G is

φ(G) = min
1≤|S|≤n

2

φ(S) = min
S
φ(S, Sc).

If there exists a polynomial time approximation with constant-factor,then there is an approximation ratio.
Find sparse cut has many applications. The first is clustering problem and image segmentation. The second is
divide and conquer algorithm.

Fiedler’s algorithm (1970s) is particularly useful when applied to x=eigenvectors of the second eigenvalue
of normalized Laplacian ν2.

First step is sorting vertices so that xv1 ≤ xv2 ≤ · · · ≤ xvn . This step runs in O(|V |log|V |).
Second step is finding k make φ({v1, · · · , vk}, {vk+1, · · · , vn}) minimize. Next we only need to check

the how long it takes. Let ek = e({v1, · · · , vk}, {vk+1, · · · , vn}), ek+1 = e({v1, · · · , vk+1}, {vk+2, · · · , vn}),
so ek+1 = ek − a + b, where a = |N(vk+1) ∩ {v1, · · · , vk}|,b = |N(vk+1) ∩ {vk+2, · · · , vn}|. Thus the kth

step of finding requires d(vk+1), the total time of finding is
∑
d(vk+1) = O(|E|).

So Fiedler algorithm runs in O(|E|+ |V |log|V |).

Theorem 6.23. (Cheeger’s inequality)

♥

Let G = (V,E) be a regular graph and νi be eigenvalues of its normalized Laplacian N . Then
ν2

2
≤ φ(G) ≤

√
2ν2 =

√
2RN (x).

In Theorem 6.20, we have h(G) ≥ λ2
2 . So for d-regular graph and normalized Laplacian N , we have

φ(G) ≥ ν2
2 .

For the other part, we shall see an analysis of Fiedler’s algorithm by Trevisan and show that Fiedler’s
algorithm produce the cut φ(S, Sc) ≤

√
2ν2.

Trevisan’s idea Define a clever distribution to cut randomly and show in expection (w.r.t. this distribution),
the cut is sparse (in terms of ν2).

For random t ∈ [0, 1], t2 is uniformly distributed in [0, 1], i.e. the probability density function is f(x) = 2x.
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6.7 Isoperimetry and the second eiginvalue

Theorem 6.24. (robust version)

♥

Let x ⊥ 1 and let the cut (S, Sc) be the minimizer in Fiedler’s algorithm. Then

φ(S, Sc) ≤
√

2RN (x).

Remark This robust version can be used on approximate eigenvectors (i.e. verctors with small Rayleigh
quotient) and produce a sparse cut.

Consider the first non-negative vector, we have the following lemma:

Lemma 6.25

♥

Let y ∈ RV≥0, 0 ≤ yv1 ≤ · · · ≤ yvn = 1. Then ∃t > 0 such that

φ(St) := φ({v : yv ≥ t}) ≤
√

2RN (y).

Proof As multiplying by a scalar does not change Rayleigh quotient, i.e. RN (cy) = RN (y), we may assume
yvn = 1. Let t ∈ [0, 1] be a random variety with probability density function f(x) = 2x, so that t2 is uniformly
distributed in [0, 1]. It suffices to prove

Et|∂St|
E(d|St|)

≤
√

2RN (y) (6.4)

Indeed,

eq. (6.4)⇔E|∂St| ≤
√

2RN (y)E(d|St|)

⇔E(|∂St| −
√

2RN (y)d|St|) ≤ 0.

Then we can get: ∃ a choice of t ∈ [0, 1] such that

|∂St| −
√

2RN (y)d|St| ≤ 0

⇔|∂St|
d|St|

= φ(St) ≤
√

2RN (y)

as desired.
Then let’s see the denominator:

E(d|St|) =d
∑
v∈V

P(v ∈ St)

=d
∑
v∈V

P(t ≤ yv)

=d
∑
v∈V

P(t2 ≤ y2
v)

=d
∑
v∈V

y2
v .
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6.7 Isoperimetry and the second eiginvalue

Next we analyse the numerator.

E|∂St| =
∑
uv∈E

P(uv ∈ ∂St)

=
∑
uv∈E

P(yu ≤ t ≤ yv)

=
∑
uv∈E

P(y2
u ≤ t2 ≤ y2

v)

=
∑
uv∈E

|y2
u − y2

v |

=
∑
uv∈E

|yu − yv|(yu + yv)

≤
√∑
uv∈E

(yu − yv)2

√∑
uv∈E

(yu + yv)2 (Cauchy − Schwarz inequality)

≤
√∑
uv∈E

(yu − yv)2

√
2d
∑
v∈V

y2
v .

Therefore, we have

E|∂St|
E(d|St|)

≤
√∑

uv∈E(yu − yv)2
√

2d
∑

v∈V y
2
v

d
∑

v∈V y
2
v

=

√
2
∑

uv∈E(yu − yv)2∑
v∈V y

2
v

=
√

2RN (y).

Lemma 6.26

♥

Let x⊥1. Then there exists y ∈ RV≥0 such that
(i) |{yi > 0}| ≤ n

2 ;
(ii) RN (y) ≤ RN (x);
(iii) Cuts considered in Fiedler’s algorithm with input y are the same as those with input x.

Proof of Theorem 6.24. : Let x ⊥ 1 and let the cut (S, Sc) be the minimizer in Fiedler’s algorithm. Take y
from Lemma 6.26 and let St be the set returned from Lemma 6.25. We have

φ(St) = φ({v : yv ≥ t})
lem6.25
≤

√
2RN (y)

lem6.26(ii)

≤
√

2RN (x).

On the other hand, φ(St)
lem6.26(i)

= φ(St, S
c
t )

lem6.26(iii)

≥ φ(S, Sc). (as (S, Sc) is the minimizer.) Combines the
above inequalities, we have done.

It reminds to show that Lemma 6.26.
Proof of Lemma 6.26. : First, we use the standard trick so-called “shifting”: for every c ∈ R, we just take the
shifting x+ c1, and observe the change of the Rayleigh quotient of x. Note that for every c ∈ R, we claim that

RN (x+ c1) ≤ RN (x).

In order to see it, just analyze the formula of the Rayleigh quotient RN (x) = xTNx
‖x‖22

. For every regular graph,
the all-1 vector is a eigenvector of its normalised Laplician operator, N · 1 = 0, so both numerator are same
(“shifting” part vanishing). We only need to compare denominator. ‖x+ c1‖2 = ‖x‖2 + ‖c‖2, as x⊥1. Thus
denominator is increasing.

Let m = median value of entries of x. We define z = x −m1, so RN (z) ≤ RN (x) . Note that z has at
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6.8 Application for isoperimetry in hypercube

most n2 positive entries and at most n2 negative entries. Write z = z+ − z−,

z+
v =:

xv, positive v,

0, otherwise.
z−u =:

−xu, negative u,

0, otherwise.

It is easy to check that cuts in Fiedler’s algorithm with input z+ or z− same as those with input x.
Left to show RN (z) ≥ min{RN (z+), RN (z−)}.

RN (z) =

∑
uv∈E

(zu − zv)2

‖z‖2
=

∑
uv∈E

[(z+
u − z+

v )− (z−u − z−v )]2

‖z+‖2 + ‖z−‖2
.

Claim [(z+
u − z+

v )− (z−u − z−v )]2 ≥ (z+
u − z+

v )2 + (z−u − z−v )2.

With this claim,

RN (z) ≥

∑
uv∈E

[z+
u − z+

v )2 + (z−u − z−v )2]

‖z+‖2 + ‖z−‖2
=
RN (z+)‖z+‖2 +RN (z−)‖z−‖2

‖z+‖2 + ‖z−‖2

≥ min{RN (z+), RN (z−)}.

6.8 Application for isoperimetry in hypercube

Recall.
• Qd: d-dim hypercube.
L denotes the Laplacian matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.
N denotes the normalised Laplacian matrix with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ νn.

eigenvalue(0 ≤ i ≤ d) multiplicity

2i

(
d
i

)
2i
d

(
d
i

)

• θ(G) ≥ λ2
2 .

Theorem 6.27. (Harper, 1976)

♥

The isoperimetric number of Qd is
θ(Qd) ≥ 1.

Proof We know that λ2 = 2 and θ(Qd) ≥ λ2
2 = 1.

The lower bound is tight: consider a copy of Qd−1 inside.
• Conductance:

φ(Qd) ≥
ν2

2
=

1

d
.

Using multicommodity flow method,

Theorem 6.28. (Babai-Szegedy, 1992)

♥

If G is connected, edge-transitive with diameter D, then

φ(G) ≥ 1

D
.
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6.9 Normalised Laplacian for general graph

Note that diam(Qd)=d, thus [Babai-Szegedy] implies that φ(Qd) ≥ 1
d .

6.9 Normalised Laplacian for general graph

• For a general graphG, theLaplacianmatrix ofG isL = D−AG, whereD =


d(v1) 0

d(v2)
. . .

0 d(vn)

.

• Normalised Laplacian for general graphG isN = D−
1
2LD−

1
2 = D−

1
2 (D−A)D−

1
2 = I−D−

1
2AD−

1
2 ,

where D =



1√
d(v1)

0

1√
d(v2)

. . .
0 1√

d(vn)

.

Recalling that for a d-regular graph G,
• N = I − 1

dA;
• νi ∈ [0, 2] for all eigenvalues νi of the normalised Laplacian matrix of G;
• Multiplications with eigenvalues equal to 0 are equal to the number of connected components;
• νn = 2⇔ there exists a bipartite component.
For irregular graph, the above “nice” properties still holds. Let us mention some details in previous proof

of regular graph. For d-regular graph,

RN (x) =
xTNx

xTx
= 2−

∑
uv∈E

(xu + xv)
2

d
∑
v∈V

x2
v

.

If the concerned graph is irregular, the above formula suggests that

2−

∑
uv∈E

(xu + xv)
2∑

v∈V
d(v)x2

v

=

∑
uv∈E

(xu − xv)2∑
v∈V

d(v)x2
v

=
xTLx

xTDx
=

xTLx

(xTD
1
2 )(D

1
2x)

.

As for numerator, we need
xTLx = (xTD

1
2 )D−

1
2LD−

1
2 (D

1
2x).

Then
xTLx

(xTD
1
2 )(D

1
2x)

= R
D−

1
2LD−

1
2
(D

1
2x) =

xTLx

xTx
.

Some properties.
• The point is that the map x 7→ D

1
2x is bĳective. Note that ν1 ≤ · · · ≤ νn for N = D−

1
2LD−

1
2 .

νk = min
dimU=k

max
x∈U
x 6=0

RN (x) = min
dimU=k

max
x∈U
x6=0

RN (D
1
2x) = · · · = xTLx

xTDx
.

• d
1
2 =


√
d(v1)√
d(v2)
...√
d(vn)

 is an eigenvector for 0.
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6.9 Normalised Laplacian for general graph

Check: N · d−
1
2 = D−

1
2L(D−

1
2 · d

1
2 ) = D−

1
2L · 1 = 0.

• [C-F]

ν2 = min
x⊥d−

1
2

x 6=0

xTNx

xTx
= min

y⊥d
y 6=0

yTNy

yTDy
.

• Define volume of S =vol(S) =
∑
v∈S

d(v).

φ(S) =
|∂S|
vol(S)

, φ(S, Sc) = max{φ(S), φ(Sc)}.

• φ(G) = min|S|≤n
2
φ(S) = minS φ(S, Sc).

Theorem 6.29. (Cheeger’s inequality)

♥

Let G = (V,E) be a graph and νi be eigenvalues of its normalized Laplacian N . Then
ν2

2
≤ φ(G) ≤

√
2ν2.

• Recall Spectral theorem: LetM ∈ Rn×n be a real symmetricn×nmatrix. ThenM hasn real eigenvalues
(not necessary distinct) {λ1, λ2, . . . , λn} and n orthonormal real eigenvectors {ν1, . . . , νn} ∈ Rn where
νi is the eigenvector of λi.

Corollary 6.30. (Eigenvalue decomposition)

♥

LetM ∈ Rn×n be a real symmetric n× n matrix with eigenvalues {λ1, λ2, . . . , λn}. Then

M = V ΛV T =

n∑
k=1

λkvkv
T
k , where V = (v1, . . . , vn),Λ =


λ1 0

. . .
0 λn


Proof Note that MV = M(v1, . . . , vn) = (λ1v1, . . . , (λnvn) = V Λ. Then M = V ΛV T . (Note that
V −1 = V T .)

Perron–Frobenius theorem: If A = (aij) is an n × n real matrix with non-negative entries aij ≥ 0 and
irreducible, then there is a real eigenvalue r of A such that

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij

and any other eigenvalue λ satisfies |λ| ≤ r. A matrix is reducible if there is a subset I ⊆ [n] such that aij = 0

for all i ∈ I and j /∈ I . In particular, an adjacency matrix of a graph is irreducible if and only if the graph is
connected.

Theorem 6.31. (Perron–Frobenius symmetric version)

♥

Let G = (V,E) be a connected graph with adjacency matrix A and eigenvalues α1 ≥ · · · ≥ αn. Then
(i) The largest eigenvalue α1 has a strictly positive eigenvector.
(ii) For every i ∈ [n], αi ∈ [−α1, α1].
(iii) α1 > α2.

Lemma 6.32

♥

Let G = (V,E) be a connected graph with adjacency matrix A. If x is a non-negative eigenvector, then
x has to be a positive vector.
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6.10 Random Walk

Proof Suppose that the conclusion is not true. Then there exists uv ∈ E such that x(v) = 0 and x(u) > 0.
Note that 0 <

∑
u∈N(v) x(u) = (Ax)v = (αx)v = 0, contradict!

Proof of Theorem 6.31 :
• For (i). LetA be a realn×n adjacencymatrixwith eigenvaluesα1, . . . , αn and corresponding eigenvectors
x1, . . . , xn. Let y ∈ RV≥0 such that y(v) = |x1(v)| (Thus yT y = xT1 x1). We claim that y is an eigenvector
of α1. Then by Lemma 6.32, y ∈ RV>0 is a positive eigenvector.

α1 = xT1 Ax1 =
∑
u,v

x1(u)A(u, v)x1(v) ≤
∑
u,v

|x1(u)|A(u, v)|x1(v)| = yTAy = RA(y) ≤ α1.

That tells us that all of “the equal” above hold. Then y is an eigenvector of α1.
• For (ii). It suffices to show that αn ≥ −α1. Let z ∈ RV≥0 such that z(v) = |xn(v)|.

|αn| = |xTnAxn| ≤ |
∑
u,v

xn(v)| ≤
∑
|xn(u)|A(u, v)|xn(v)| = zTAz ≤ α1.

• For (iii). Let ω ∈ RV≥0 such that ω(u) = |x2(u)|. Similar analysis in (ii), we have

α2 = xT2 Ax2 ≤ ωTAω ≤ α1.

If α2 = α1, then the above equality holds. Thus ω is a non-negative vector of α1, by Lemma 6.32, ω is a
positive vector. Then x2 has no zero entry. As G is connected and x2⊥x1 (assume that x1 is positive by
Part (i)), there exists uv ∈ E such that x2(u) > 0 and x2(v) < 0. Then such u, v contributes negative to
xT2 Ax2. So xT2 Ax2 < ωTAω. It means that α2 < α1.

Corollary 6.33

♥

For every connected G with adjacency matrix A, if a positive vector x is an eigenvector of A, then the
corresponding eigenvalue is α1.

Proof Let Ax = αix for some i ∈ [n]. By Theorem 6.31, there exists yRV>0 which is a eigenvector of α1. As
A is a symmetric martrix, then

αix
T y = 〈Ax, y〉 = 〈x,Ay〉 = x1x

T y.

Note that xT y > 0, and we have αi = α1.

6.10 RandomWalk

• A random walk on a graphG is a random process that starts at a vertex inG, and in each step, a neighbor
is uniformly and randomly selected to move.
• Let (P )ij = p(i, j) be a transition matrix of a randomwalk on an undirected connected graphG = (V,E)

with n vertices V = {1, . . . , n}. That is, p(i, j) = 1/d(i) if {i, j} ∈ E, and p(i, j) = 0 otherwise (in
other words, p(i, j) = Pr[i→ j]).
• For every d-regular graph G with adjacency matrix A, P = 1

dA.
• For each general graph G with adjacency matrix A,

P = D−1A = D =



1
d(v1) · · · 1

d(v1)
...

...
1

d(vi)
· · · 1

d(vi)
...

...
1

d(vn) · · · 1
d(vn)


where D =


d(v1) 0

d(v2)
. . .

0 d(vn)

 .
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6.10 Random Walk

• Consider an initial distribution p0 =

(
p0(v)
...

)
, where p0(v) = Pr[A random walk starting at v] and write

pt for the distribution at time t. We will see that

pTt = pT0 · P t ⇔ (P T )t · p0 = pt.

It suffices to show that pTt+1 = pTt · P.We often write (pt+1)v = pt+1(v)

pt+1(v) = Pr[arrive at v at time t+ 1] =
∑

u∈N(v)

Pr[arrive at u at time t] · Pr[u→ v]

=
∑

u∈N(v)

pt(u)P (u, v) = (pTt · P )v = (P T · pt)v.

• pt(i, j) = Pr(start at i and arrive at j at time t) = δTi · P t = pTt .

Definition 6.34

♣

Stationary distribution π for a random walk with transition matrix P is

P t · π = π.

� Exercise 6.5 Let

π =
d

n∑
i=1

d(vi)

=
d

1T · d
, where d =


d(v1)

d(v2)
...

d(vn)

 .

It means that at stationary distribution, every vertex is visited with probability proportional to its degree.
If G is regular, then π = 1

n · 1.
Here, the question we care about is that: does random walk converge to stationary distribution? If yes,

how fast? We shall see a connection between this and spectral gap of the transition matrix P . So let us first
look at the spectral of P .

Recall that P = D−1A in general is not symmetry, so we don’t have orthogonal eigenvectors for P .
However,P is similar to the symmetrymatrix Ã = D1/2AD1/2. (DefineX to be similarwithY ifX = Q−1Y Q.
Similar matrices have the same set of eigenvalues.) Here, we can write P = D1/2ÃD1/2 or Ã = D1/2PD1/2.

Lemma 6.35

♥

Given a connected graph G, let Ã be the normalised adjacency matrix and P be the transition matrix,
then the vector x is the eigenvector of Ã with corresponding eigenvalue α if and only if y = D−1/2x is
the eigenvector of P with corresponding eigenvalue α.

Proof The proof is simple. So we only give the proof of the necessity, and the sufficiency is left to the reader.
Since P = D1/2ÃD1/2, we obtain Py = D1/2ÃD1/2D−1/2x = D−1/2αx = αy, and we are done.

Lemma 6.36

♥The degree vector d is a Perron vector of P T with eigenvalue 1.

Proof dTP = dTD−1A = 1TA = dT .
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Corollary 6.37

♥The spectral of P is in [−1, 1].

Definition 6.38

♣

A lazy random walk is a normal random walk with 1/2 of the time staying put and 1/2 of the time doing
the same as random walk.

The transition matrix of a lazy random walk is P̃ = P/2 + I/2, and the spectral of P̃ is in [0, 1].
Remark

Lazy random walk converges on all graphs.
All eigenvalue non-negative, convergence (of the random walk) only depends on α2 or the spectral gap
1− α2.

Next we shall prove that for any non-bipartite connected graph G, the random walk (with any initial
distribution P0) converges to the stationary distribution π.
Remark

Not true for bipartite graphs because of the parity issue.
Can consider instead lazy random walk for bipartite graph.

We shall see that in fact the rate of convergence is exponential when having spectral gap.

Definition 6.39

♣Mixing matrix of a random walk is µ = limt→∞sup maxi,j |P t(i, j)− π(j)|1/t.

Theorem 6.40

♥

Let G be a graph with transition matrix P and eigenvalues α1 ≥ · · · ≥ αn. Then any starting vertex i
and any other vertex j, we have |P t(i, j)− π(j)| ≤

√
π(j)
π(i) · µ

t, where t > 0 and µ = max{|α2|, |αn|}.

More generally, for any S ⊆ V (G), |P

(
start at i

end in S at time t

)
− π(S)| ≤

√
π(S)
π(i) · µ

t.

If G is connected, then α2 < α1, if G is non-bipartite, then αn > −1.

Corollary 6.41

♥For every connected and non-bipartite G, mixing rate is µ ≤ max{|α2|, |αn|}.

Proof of Theorem 6.40 : Recall P = D−1A = D−1/2ÃD1/2, where Ã = D−1/2AD−1/2. As Ã is symmetry,

we can write it as Ã =
n∑
k=1

αkvkv
T
k , where v1, . . . , vk are orthogonal with eigenvalue α1 ≥ · · · ≥ αn. Now

P t = (D−1/2ÃD1/2)t = D−1/2ÃtD1/2 =
n∑
k=1

αtkD
−1/2vkv

t
kD

1/2.

So

P t(i, j) = eTi P
tej =

n∑
k=1

αtke
T
i D
−1/2vkv

T
kD

1/2ej =

√
d(vj)

d(vi)

n∑
k=1

αtke
T
i vkv

T
k ej .

Let us look at the first term in sum. That is, αt1eTi v1v
T
1 ej =

√
π(i)

√
π(j). This implies the first term
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of above equality is π(j), and then |P t(i, j) − π(j)| ≤
√

π(j))
π(i) |

n∑
k=2

αtke
T
i vkv

T
k ej .|. What is left is to show

|
n∑
k=2

αtke
T
i vkv

T
k ej | ≤ µt, where µ = max{|α2|, |αn|}. Then

|
n∑
k=2

αtke
T
i vkv

T
k ej | ≤ µt

n∑
k=1

|eTi vk| · |vTk ej | ≤ µt
√√√√ n∑

k=1

|eTi vk|2

√√√√ n∑
k=1

|vTk ej |2 = µt‖ei‖‖ej‖ = µt,

where the second inequality holds by Cauchy Schwartz inequality, and the last equality holds, as v1, . . . , vk are
orthogonal. This completes the proof.
Remark Usually by considering the lazy random walk (so P̃ = P/2 + I/2, and the spectral of P̃ is in [0, 1]),
the mixing rate is only related to α2 or the spectral gap 1− α2.

� Exercise 6.6 In the above proof, show v1 = π1/2, v1(i) =
√
π(i), i.e., π1/2 is a Perron eigenvector of P .

• A more quantitative version,mixing time, measures how many steps needed to get close to stationary
distribution? What is a good measure of distance between distributions?
• Natural condidate: Enclideam l2− norm,it means ‖x‖2 =

(∑
x2
i

) 1
2 .But it is not ideal here: Consider

S =
[
n
2

]
,x = 2

n · 1s,y = 2
n · 1sc . ‖x− y‖2 =

√∑(
2
n

)2
= 2√

n
→ 0, n→∞.

But x, y as distribution are very different.
• Better one: a scaled l1− norm.

Definition 6.42

♣

The total variation distance between x, y is ‖x− y‖TV = max
S⊆V

∣∣∑
v∈S x (v)−

∑
v∈S y (v)

∣∣.Which is

the maximal difference of probabilities of events with respect to x and y.

� Exercise 6.7 ‖x− y‖TV = 1
l ‖x− y‖1 .Intheaboveexample,‖x− y‖TV = 1 In general,distributions with

disjoint support have distance 1.

Definition 6.43

♣

A random walk mixes at time t if

‖Pt −Π‖TV <
1

4
(∗)

.

Call such t the mixing time.

Remark The constant 1
4 is not that important.Any small constant will do.

It means that:for most of i ∈ V ,Π(i)
2 ≤ Pt (i) ≤ 2Π (i)

It has an useful equivalent form: ∀i ∈ V,|Pt (i)−Π (i)| ≤ Π(i)
2 .

Consider the simpler d− regular G = (V,E) case do lazy random walk, no need to worry about αn.
Recall 1 ≥ α1 ≥ α2 ≥ ... ≥ αn ⇐ Ã

L̃ = N = I − Ã = I −D−
1
2AD−

1
2

γ2 = 1− α2 > 0

Assume there exists spectral gap
∣∣P t (i, j)−Π (j)

∣∣ ≤√d(j)
d(i) · µ

t

We want to show
∣∣P t (i, j)−Π (j)

∣∣ ≤ Π(j)
2

So we want to show
∣∣P t (i, j)−Π (j)

∣∣ ≤√d(j)
d(i) · µ

t ≤ d(j)
2·
∑n
i=1 d(i)

Let µ = α2 = 1− γ2,
e−γ2t ≈ (1− γ2)t ≤

√
d(j)
d(i) · e

−γ2t < d(j)
2·
∑n
i=1 d(i)

, and
∑n

i=1 d (i) = 2e (G)
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6.10 Random Walk

⇔ e−γ2t ≥ 4e(G)√
d(i)−d(j)

.

If G is d−regular, 4e(G)√
d(i)−d(j)

= 2n. Then t ≥ 1
γ2
· log 4e(G)√

d(i)−d(j)
= 1

γ2
· log (2n) .

Remark Sometimes,the logn term can be avoided as we use α2 to bound all αi, i ≥ 2.

If there is eigenvalue decay, then we can take advantage to improve the bound.
Example.

Qd is a d−regular graph,where n ≥ 2d, γ2 = 2
d , the above bound on mixing time yields

t = O

(
logn

γ2

)
= O

(
d2
)
.

But the mixing time for hypercuse is known to be Θ (dlogd).
Then I want to mention that conductance and mixing time

1

Φ (G)
≤ tmix ≤

logn

Φ (G)2

Where Φ (G) = min
|S|≤n

2

|∂S|
d|S| , G is a d− regular graph.

The second inequality was proved by Lovász − Simonvits.
The first inequality is nature.

E (# steps to cross) ∼ 1

P (cross)
=

1

Φ (G)

This offers a probabilistic way to define an expander :if the random walk on it is fast mixing.
Application.

Make use of the following fact:
"Random walk on expanders resembles independent sampling."
From computational aspect ,it is used in error reduction for probabilistic algorithm.
Suppose we have a probabilistic algorithm A,

A:usesK random bits→

{
right answer with probability 2

3

wrong answer with probability 1
3

To boost the probability, we can run it t times and take the majority answer.

P (we get the wrong answer) ≤ (1− c)t , c > 0

The cost is t ·K random bits.
More economic:K +O (t)

We can consider G = (V,E),with constant degree expander and V = {0, 1}K .
We need initialK random bits, and do t steps random walk.
Then t random vertices(t strings of random k− bit).
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Chapter 7 Applications of Concentration of measure

7.1 Concentration of measure

Let’s see some basic inequalities:
• (Markov) Let X be a non-negative random variable. Then

∀a > 0,P (X ≥ a) ≤ EX
a
.

• (Chebyshev) Let X be a random variable with finite EX = µ, V arX = σ2. Then

∀k > 0,P (|X − µ| ≥ kσ) ≤ 1

k2
.

Let’s start with the simplest setup. Consider sum of Rademacher random variable Xi:

Sn = X1 + ...+Xn,

where Xi is independent of random variable .
Trivially: −n ≤ Sn ≤ n.
Typically: We shall see that S concentrates sharply within a window of width O (Sn).
Intuition: It is very rare that all independent random variable. Xi team up to go in the same direction.
For instance:P (Sn = n) = P (all Xi = 1) = 2−n exponentially unlikely.
General phenomenon: Assuming boundedness and sufficient independence.Then we get concentration of
measure. Usually of subgausiam nature

i.e.P (λσ away from mean µ) ≤ c1 · e−c2λ
2

Simple scenario:

Sn = X1 + · · ·+Xn, Xi, i.i.d r.v.

−n ≤ Sn ≤ n,Xi =

1, with probability 1
2 ;

−1, with probability 1
2 .

But typicllay the value of Sn is sharply concentrated in a small window with width O(Sn).

Theorem 7.1. [Chernoff]

♥

et X1, . . . , Xn be i.i.d, Rademacher random variables and Sn = X1 + · · ·+Xn. Then for any a > 0,

P(|Sn| > a) < 2 exp

(
−a2

2n

)
.

The idea to prove it is applying Markov inequality to exponential moment.
Proof By symmetry, it suffices to show P(Sn > a) < e

−a2
2n . Consider the exponential moment of eachXi. For

any λ > 0,

E(eλXi) =
eλ + e−λ

2
= cosh(λ) ≤ e

λ2

2 ,

where the least inequality is obtained by comparing Taylor series. Note that independence of Xi’s implies that

E(eλSn) = E(eλ
∑n
i=1Xi) = E(

n∏
i=1

eλXi)
indep.

=
n∏
i=1

EeλXi ≤ e
λ2n
2 .

Then
P(Sn > a) = P(eλSn > eλa) <

E(eλSn)

eλa
≤ e

λ2n
2
−λa,



7.1 Concentration of measure

where the first inequality holds as Markov inequality. It is optimised when λ = a
n .

There are many extensions. For example, we can replace each Xi with some bounded random variable.
Another direction is that we can replace “sum” with other functions f(X1, . . . , Xn) under some restrictions
like Lipshitz condition.

Theorem 7.2. [Hoeffding’s inequality]

♥

et X1, . . . , Xn be independent random variables, where Xi ∈ [ai, bi] and let Sn =
n∑
i=1

Xi and σ2 =

n∑
i=1
|bi − ai|2. Then

P(|Sn − ESn| ≥ λσ) ≤ Ce−cλ2 .

Remark Note that that is equal to P(|Sn − ESn| ≥ a) ≤ C exp

 ca2
n∑
i=1
|bi−ai|2

 (let a = λσ).

Definition 7.3. [Martingale]

♣

A sequence of random variablesX1, . . . , Xn is a martingale if E|Xn| <∞, and E(Xn+1|Xn, . . . , X1) =

Xn.

Example.
1. Random walk on Z where Xn denotes the position at time n.
2. Gambler’s fortune where Xn denotes the total fortune at time n.

Theorem 7.4. [Azuma–Hoeffding’s inequality]

♥

et X0, X1, . . . , Xn be martingales with |Xi −Xi−1| ≤ ci. Then for any a > 0,

P(|Xn −X0| ≥ a) ≤ 2 exp

−2a2

n∑
i=1

c2
i

 .

Using Azuma–Hoeffding’s inequality, we can get the large deviation for Lipschitz functions.

Definition 7.5. [bounded difference]

♣

function f : Ω1 × · · · × Ωn → R has bounded difference with parameter c1, . . . , cn ∈ Rn if for any
i ∈ [n], and any xi, x′i ∈ Ωi, we have |f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(. . . , x′i, . . . )| ≤ ci.

Theorem 7.6. (McDiarmid’s inequality)

♥

Let x1, · · · , xn be independent random variables with xi taking values inωi and let f : ω1×· · ·×ωn → R

with bounded difference (c1, · · · , cn), then we have, ∀a > 0, P (| f(x1, · · · , xn) − Ef(x1, · · · , xn) |≥

a) < 2e
− 2a2∑

c2
i

We shall see some variation. A common product space is Ωi = {0, 1} ⇒ {0, 1}n. The following is a large
deviation inequality for Lipschitz functions on a slice of Boolean Cube.
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7.1 Concentration of measure

Lemma 7.7. [Kwan,Sudakov,Tran]

♥

Suppose g : {0, 1}n → R satisfies the bounded difference condition with parameter (c1, · · · , cn) and
ξ ∈ {0, 1}n is a random variable uniformly distributed in

([n]
k

)
. Then ∀t > 0, P (| g(ξ)− Eg(ξ) ≥ t) ≤

2e
− t2

8
∑
c2
i .

Proof We may assume without loss of generality that c1 ≥ c2 ≥ · · · ≥ cn. Consider the Doob martingale
Zi = E[g(ξ)|ξ1, · · · , ξi], so Z0 = Eg(ξ) and Zn = Zn−1 = g(ξ). Let L(x1, . . . , xi) be the conditional
distribution of ξ given ξ1 = x1, . . . , ξi = xi.

We claims that

| E(g(L(x1, · · · , xi−1, 0)))− E(g(L(x1, · · · , xi − 1))) ≤ 2ci,

for any feasible choice of x1, · · · , xi−1 ∈ {0, 1}. The claim implies that |Zi−Zi−1| ≤ 2ci and the conclusion
follows from Azuma–Hoeffding bound.

If ξ ∼ L(x1, · · · , xi−1, 0) changes ξi to 1 and then randomly choose one of the ones among ξi+1, · · · , ξn
and change it to 0. We thereby obtain the distribution L(x1, . . . , xi−1, 1). This provides a coupling between
L(x1, . . . , xi−1, 0) and L(x1, . . . , xi−1, 1) that differs in only two coordinates i and j ≥ i, as cj ≤ ci this
implies the desired bound.

Lemma 7.8. [Kim, Liu, Tran]

♥

Suppose f : {0, 1, . . . , q−1}n → R satisfies the bounded difference conditionwith parameter (c1, . . . , cn)

and η is drawn uniformly at random from {0, 1, . . . , q−1}n subject towt(η) = k ((wt(η) =the number
of non-zero coordinates). Then

P(|f(η)− Ef(η)| ≥ t) ≤ 2 exp

(
− t2

68
∑
c2
i

)
for all t ≥ 0.

Next, we shall use Lemma 7.7 and the following standard fact about subgaussian random variables to prove
Lemma 7.8.

Lemma 7.9. Subgaussian properties

♥

Let X be a random variable with mean 0. Then the following properties are equivalent:
(i) There existsK1 > 0 such that the tails of X satisfy

P(|X| ≥ t) ≤ 2e−t
2/K1 , ∀t ≥ 0.

(ii) There existsK2 > 0 such that the moment generating function of X satisfies

EeλX ≤ eK2λ2 , ∀λ ≥ 0.

In particular, for (i)⇒ (ii), we can takeK2 = 2K1 and for (ii)⇒ (i), we can takeK1 = 4K2.

Proof of Lemma 7.8 Let ξ ∈ {0, 1}n be a random vector uniformly distributed in
([n]
k

)
and u be drawn

uniformly from [q− 1]n = {1, . . . , q− 1}n, independent from ξ. Then the conclusion is that the distribution of
η coincides with the distribution of u ∗ ξ = (u,1 ξ1, . . . , unξn).

By Lemma 7.9, it suffices to show that

EuEξe
λ(f(u∗ξ)−Euξf(u∗ξ)) ≤ e17‖c‖2λ2 .

Fix an instance of u. Note that the function f(u ∗ ·) has the bounded different condition with parameter
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7.2 Applications.

c = (c1, . . . , cn). Then by Lemma 7.7 with f(u ∗ ·) playing the role of g(·) and Lemma 7.9, we get

Eξe
λ(f(u∗ξ)−Ef(u∗ξ)) ≤ e16‖c‖2λ2 .

Thus,

EuEξe
λ(f(u∗ξ)−Ef(u∗ξ) = e−λEu,ξf(u∗ξ))Eue

λEξ(f(u∗ξ)Eξe
λ(f(u∗ξ)−Eξf(u∗ξ))

= e16‖c‖2λ2Eue
λ(Eξf(u∗ξ)−Eu,ξf(u∗ξ)).

As g(·) := Eξf(· ∗ ξ) has the bounded different condition with parameter c, by McDiarmid’s inequality,

P(|g(u)− Eug(u)| ≥ t) ≤ 2e−2t2/‖c‖2 .

By Lemma 7.9, we have Eueλ(g(u)−Eg(u)) ≤ e‖c‖2λ2 .

7.2 Applications.

We shall see a geometric application of the large deviation inequality over a slice. The question to consider
is that given a metric space (X, d), how can we bound the volume of intersection of two balls. We will prove
a result providing natural sufficient condition on the metric space (X, d) guaranteeing exponential decay on
intersection volume.

Definition 7.10

♣

A metric space (X, d) has exponential growth at radius r with rate c. If ∀a ∈ X and ∀t < r,
vol(B(a, r − t))
vol(B(a, r))

≤ 2e−ct

which B(a, r − t) is a ball centered at a with radius r − t.

Definition 7.11

♣

For a, b ∈ X , let `a,b : X → R be

`a,b(x) = d(x, b)− d(x, a).

Given r, k ∈ N and α > 0, we say that the metric space (X, d) is (r, k)-dispersed with constant α if
∀a, b ∈ X with d(a, b) = k and any 0 ≤ i ≤ αk,

Ex∼S(a,r−i)[`a,b(x)] ≥ 2αk

which S(a, r − i) are all points of distance r − i from a.
Recall a real-valued random variable X isK-subgaussian if

∀t ≥ 0,P(|x| ≥ t) ≤ 2e−t
2/K .

Theorem 7.12. (Kim, Liu,Tran)

♥

Let (X, d) be a finite metric space with d taking values in N ∪ {0} and let k, r ∈ N. Suppose
(A1) (X, d) has exponential growth at radius r with rate c > 0.
(A2) (X, d) is (r, k)-dispersed with a constant α > 0

(A3) ∀a, b ∈ X with d(a, b) = k and ∀0 ≤ i ≤ αk, `a,b(x) − E`a,b(x) is K-subgaussian, where x is
drawn uniformly from S(a, r − i). Then ∀a, b ∈ X with d(a, b) = k,

vol(B(a, r) ∩B(b, r))

vol(B(a, r))
≤ 2e−Ωc,α(k+k2/K).
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7.3 Intersection volume

Proof Let T = B(a, r) ∩B(b, r) and η ∼ B(a, r). Then
vol(B(a, r) ∩B(b, r))

vol(B(a, r))
= P(η ∈ T ) = P(d(η, b) ≤ r).

By (A1), we have P(d(η, a) ≤ r − αk) ≤ 2e−Ω(k). Thus,

P(η ∈ T ) ≤ P(η ∈ T |d(η, a) > r − αk) · P(d(η, a) > r − αk) + P(d(η, a) ≤ r − αk)

≤
αk∑
i=0

P(d(η, b) ≤ r|d(η, a) = r − i)P(d(η, a) = r − i) + 2e−Ω(k)

≤ max
0≤i≤αk

P(d(η, b) ≤ r|d(η, a) = r − i) + 2e−Ω(k).

Fix an i ∈ [0, αk] and let x ∼ S(a, r − i). Note that, conditioning on d(η, a) = r − i, η and x are
identically distributed, we can get that

P(d(η, b) ≤ r|d(η, a) = r − i) = P(d(η, b)− d(η, a) ≤ i|d(η, a) = r − i)

= P(d(x, b)− d(x, a) ≤ i)

= P(`a,b(x) ≤ i).

By (A2), we have E`a,b(x) ≥ 2αk. Consequently, we have i− E`a,b(x) ≤ i− 2αk ≤ −αk.
Since by (A3) which show that `a,b(x)− E`a,b(x) isK-subgaussian, then we have

P(`a,b(x) ≤ i) = P(`a,b(x)− E`a,b(x) ≤ i− E`a,b(x))

≤ P(`a,b(x)− E`a,b(x) ≤ −αk)

≤ 2e−Ω(k2/K).

7.3 Intersection volume

We first consider intersection of two balls in R3. Take ε > 0 sufficiently small and consider two unit balls
A and B whose centers are of distance ε apart, then vol(A ∩ B) ≥ 99%vol(A). But this is not longer true in
high dimension.

Proposition 7.13

♠

Let ε > 0. Then there exists n0 = n0(ε) such that the following holds for all n ≥ n0.
Let A and B be two unit balls whose centers are of distance ε apart, then

vol(A ∩B)

vol(A)
< 1%.

Before the proof of Proposition 7.13, we need the following basic fact.

Fact 7.14

♥

The volume of radius-r ball in Rn is

voln(r) ∼ 1√
nπ

(
2πe

n

)n/2
rn.

Proof of Proposition 7.13
It is easy to see that r′ < r − ε/10. Then vol(A ∩B) < voln(r′), and then we are done because

vol(A ∩B)

vol(A)
<
voln(r′)

voln(r)
=

(
r′

n

)n
<
(

1− ε

10r

)n
→ 0
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7.3 Intersection volume

as n→∞.

Figure 7.1

• This idea of using a ball of smaller radius to bound the intersection in the continuous Rn setting fails in
many discrete settings.

Example. Take the discrete cube {0, 1}n endowed with the Hamming metric and let k, r ∈ N with 2k ≤ r.
Consider the two radius-r Hamming balls A and B centered at a = 0n and b = 12k0n−2k respectively. Take a
mid-point c of a and b, say by symmetry c = 1k0n−k. Then the point x = 0k1r0n−r−k lies in the intersection
A ∩B, but it is of Hamming distance r + k from the chosen mid-point c.

Figure 7.2

Recall the result Theorem 7.12 from last time. It gives natural sufficient condition for (X, d) to guarantee
intersection volume is small.

The Hamming space satisfies the conditions of Theorem 7.12 as follows.

Theorem 7.15

♥

Let 0 < p < q−1
q and let k ∈ N. Consider X = {0, 1, · · · , q − 1}n endowed with the Hamming metric

∆. Then (X,∆) satisfies the conditions (A1)− (A3) of Theorem 7.12 as follows.
(A1) (X,∆) has exponential growth at radius pn with rate c = Ωp,q(1).
(A2) (X,∆) is (pn, k)-dispersed with constant α = 1

2

(
1− pq

q−1

)
> 0.

(A3) For any a, b ∈ X with ∆(a, b) = k and any 0 ≤ i ≤ αk, `a,b(x)− E`a,b(x) is 400k-subgaussian,
where `a,b(x) = ∆(x, a)−∆(x, b) and x is drawn uniformly from S(a, pn− i).
Consequently, for every a, b ∈ X ,

vol(B(a, r) ∩B(b, r))

vol(B(a, r))
= 2e−Ωp,q(∆(a,b)).

• The conditions (A1)− (A3) can be easily verified. In particular, (A3) follows from the concentration of
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7.3 Intersection volume

measure on a slice.

This exponential decay on intersection volume for balls in Hamming space has applications on, for example,
list-decodability of random codes, and improvements on Gilbert-Varshamov type bounds.

Next we give a unified proof of improvements on Gilbert-Varshamov type bounds on various models of
error correction codes, which we now discuss in details.

An error correcting code (ECC) is an encoding scheme that transmits messages as binary numbers, in such
a way that the message can be recovered even if some bits are erroneously flipped. They are used in practically
all cases of message transmission, especially in data storage where ECCs defend against data corruption.

By encoding messages with codewords that are pairwise far apart, we can recover the message even if some
bits are corrupted by noise. For example, suppose there are two persons, Alice and Bob. Bob is asking Alice a
question, and is waiting Alice’s answer “YES” or “NO”. Suppose there is some noise that could corrupt up to
2 bits of the binary strings. We denote the encode “YES” by, say “000100”, and “No” by “111111”. Suppose
the code that Bob receive is x := 011100. So how do we know what Alice says, YES or NO? It is very simple,
we can look at their Hamming distances. It is easy to see that ∆(x, Y ES) = 2 and ∆(x,NO) = 3. So we can
know that Alice said “YES”. In general, if the noise could corrupt up to t bits, then as long as all messages are
encoded by strings with distance at least 2t+ 1.

Definition 7.16

♣

Given positive integers n and d, we denote by A(n, d) the maximum number of messages (or codewords)
in {0, 1}n with minimum distance d.

Theorem 7.17. (Gilbert-Varshamov bound)

♥

A(n, d+ 1) ≥ 2n

vol(n, d)
,

where vol(n, d) =
d∑
i=0

(
n
i

)
is the volume of radius-d ball.

We can prove Gilbert-Varshamov bound by the follwing Turán’s theorem.

Theorem 7.18. (Turán)

♥
Let G be an N -vertex D-regular graph. Then α(G) ≥ N

D+1 .

The bound is tight. (considerKD+1)

� Exercise 7.1 Prove Gilbert-Varshamov bound using Turán’s theorem.

We can improve Gilbert-Varshamov bound, if we get a better bound on independence number. Ajtai-
Komlós-Szemerédi [1] proved that if G isK3-free or locally sparse, then α(G) ≥ cND logD.

Theorem 7.19
Let G be an N -vertex graph with maximum degree D and minimum degree at least D/2. Let K ∈ [D]

and let Γ ⊆ G be a subgraph induced by the neighborhood of an arbitrary vertex. Suppose there is a
partition V (Γ) = B ∪ I such that
(1) For any u ∈ B, degΓ(u) ≤ D/k; and
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7.4 Johnson–Lindenstrauss Lemma

♥

(2) |I| ≤ D/k.
Then α(G) ≥ (1 − ok(1))ND log k, and the number of the independents sets in G is at least
e(

1
8

+ok(1))ND log2 k.

To apply the above theorem to improve Gilbert-Varshamov bound, we use Theorem 7.15 to check that
certain auxiliary graph is locally sparse.

7.4 Johnson–Lindenstrauss Lemma

Motivation. In this digital era, lots of data are transmitted as we speak. Many data (such as images, videos)
can be represented by high dimensional vectors. To speed up computation, it is of greet practical importance to
try to reduce the dimension.

Applications.
• Clustering.
• Regression analysis.
• · · ·
The basic task we want to do is to tell distinct vectors apart. Using points in Rd to represent data and the

Euclidean distance between points measures their “similarity”.

Given x ∈ Rd, we write ‖x‖ := ‖x‖2 =

√
d∑
i=1

x2
i .(`2-norm)

Euclidean distance between x and y is ‖x− y‖.
The Johnson–Lindenstrauss Lemma was first introduced in the paper “Extensions of Lipschitz mappings

into a Hilbert Space” by William B. Johnson and Joram Lindenstrauss published 1984 in Contemporary
Mathematics. The Lemma is as follows.

Lemma 7.20. [Johnson, Lindenstrauss]

♥

Given 0 < ε < 1 and a set X of n points in Rd. Then there exists a linear map f : Rd → Rm, where
m = O( logn

ε2
) such that for every u, v ∈ X,

‖f(u)− f(v)‖ = (1± ε)‖u− v‖.

The Lemma states that after fixing an error level, one can map a collection of points from one Euclidean
space (no matter how high it’s dimension m is) to a smaller Euclidean space while only changing the distance
between any two points by a factor of 1±ε. The dimension of the image space is only dependent on the error and
the number of points. Given that the dimension is very large, one can achieve significant dimension reduction,
which has applications in data analysis and computer science.

Idea. Project points randomly to a low dimensional subspace. (Random projection trick is a powerful
technique behind compressive sensing and matrix completion.)

Note that there is a naive way to choosem coordinates out of d uniformly at random. We can easily see this
way failing by a simple example. Just take u = (1, 0, . . . , 0) ∈ Rd and v = (0, 1, 0, . . . , 0) ∈ Rd. To preserve
distance between u and v, there m random coordinates need to include the first one or the second coordinate,
which is quite unlikely if d� n.

80



7.4 Johnson–Lindenstrauss Lemma

Lemma 7.21. [Distribution Johnson–Lindenstrauss Lemma]

♥

Given 0 < ε, δ < 1, there exists a constant C such that the following holds. Let A be anm× d random
matrix, in which each entry is a normal random variable ∼ 1√

m
N(0, 1) independent of others, where

m ≤ C · ε−2 log 1
δ . Then for every x ∈ Rd,

P(‖Ax‖ = (1± ε)‖x‖) ≥ 1− δ.

To get the original Johnson–Lindenstrauss Lemma, we use Lemma 7.21 to all
(
n
2

)
pairwise distances inX:

let A = f, f(u)− f(v) = Au−Av = A(u− v). Choose δ = δ′

(n2)
, wherem = O(ε−2 log 1

δ ) = O(ε−2 log n).

Proof of Lemma 7.21 Fix x ∈ Rd, we want to show that with high probability, ‖Ax‖ ≈ ‖x‖.
First we show that

E‖Ax‖2 = ‖x‖2.

Indeed, let g = (g1, . . . , gd) ∈ Rd, where gi ∼ 1√
m
N(0, 1) ∼ N(0, 1

m), and let

Am×d =


· · · g(1) · · ·
...

...
...

· · · g(m) · · ·

 ,

where g(i) ∈ Rd. Note that ‖Ax‖2 =
m∑
i=1

〈
g(i), x

〉2
= m 〈g, x〉2, then

E 〈g, x〉 = E
d∑
i=1

gixi =

d∑
i=1

xiEgi = 0.

Thus

E 〈g, x〉2 = Var 〈g, x〉 =

d∑
i=1

x2
iVar[gi] =

1

m
‖x‖2.

We have done as E‖Ax‖2 = E(m 〈g, x〉2) = ‖x‖2.
In particular, ‖Ax‖2 =

m∑
i=1

〈
g(i), x

〉2
, where

〈
g(i), x

〉
∼ 1√

m
‖x‖Ṅ(0, 1). So ‖Ax‖2 is a χ2-random

variable with m degree of freedom. By concentration of χ-squared distribution (better than Chernoff bound),
we have

P(|X − EX| ≥ εEX) ≤ 2e−ε
2m/8 ≤ δ,

where the last inequality holds by takingm = O(log 1
δ/ε

2).

7.4.1 Applications to regression analysis

Setup. Given many data points a1, a2, . . . , an ∈ Rd.

Figure 7.3
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We want to figure out the relation between the data and the outcome y1, y2, . . . , yn ∈ Rn. We write

An×d =


· · · a1 · · ·
· · · a2 · · ·
...

...
...

· · · an · · ·

 ,


y1

y2

...
yn

 ∈ Rn.

Whether ∃ x ∈ Rd s.t. Ax ≈ y?

Goal. (Least square regression)
min
x∈Rd

‖Ax− y‖2.

Denote an optimal solution of the above original problem by x∗. Instead, we only need to solve the following
sketched problem.

min
x∈Rd

‖ΠAx−Πy‖2.

Let x̃∗ be an optimal solution of the above sketched problem.
Claim If for any vector of the form Ax − y, we have ‖ΠAx − Πy‖2 = (1 ± ε)‖Ax − y‖2, then x̃∗ gives a
good approximate for x∗.
Proof Our goal is to obtain ‖Ax̃∗ − y‖2 ≤ (1 + ε)‖Ax∗ − y‖2.

Note that for any x ∈ Rd, we have ‖ΠAx̃∗ −Πy‖2 ≤ ‖ΠAx−Πy‖2. It is easy to see that

‖Ax̃∗ − y‖2 ≤ (1 + ε)‖ΠAx̃∗ −Πy‖2 ≤ (1 + ε)‖ΠAx∗ −Πy‖2 ≤ (1 + ε)2‖Ax∗ − y‖2.

The first and last inequalities hold since the property of Π, while the second holds since the optimality of x̃∗.
Next, we want to obtain the condition of the above claim. Lemma 7.21 can preserve a single vector’s

length, but there are infinitely many vectors of the form Ax − y, the union bound cannot work. Thus, we use
another tool.

Idea: We construct an ε-net for the subspace spanned by coln of A and y, apply union bound over the
ε-net.

Theorem 7.22

♥

Let U ⊆ Rn be a d-dimension linear subspace of Rn and let Π ∈ Rm×n be the matrix from Lemma 7.21,
wherem = O(

d log 1
ε

+log 1
δ

ε2
). Then with probability at least 1− δ, for any v ∈ U , we have

‖Πv‖2 = (1± ε)‖v‖2.

We want to show how Theorem 7.22 implies Least square regression. Theorem 7.22 implies that we
can find a projection Π ∈ Rm×n with m = O(

d log 1
ε

+log 1
δ

ε2
) such that for any vector of the form Ax − y,

‖ΠAx−Πy‖2 = (1± ε)‖Ax−y‖2. Take U to be a space spanned by coln ofA and y. Note that the dimension
of U is d+ 1, we can use Theorem 7.22, as desired.

To prove Theorem 7.22, first observe that as Π is linear, it suffices to consider unit vectors v ∈ U . Write
SU for the unit sphere SU = {v ∈ U : ‖v‖2 = 1}, we shall find an ε-net Nε for SU , that is, for any v ∈ SU ,
there exists x ∈ Nε such that ‖v − x‖2 ≤ ε.

Lemma 7.23

♥

For 0 < ε < 1, there exists an ε-net Nε ⊆ SU with |Nε| ≤ (4
ε )d such that for any v ∈ SU , we have

min
x∈Nε

‖x− v‖2 ≤ ε.

Proof Sketch. Iteratively pick x1, x2, . . . such that xi’s pairwise distance is at least ε. Let Nε be the
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7.4 Johnson–Lindenstrauss Lemma

maximal set of such xi. Note that for distinct xi and xj , we have B(xi, ε/2) is disjoint with B(xj , ε/2) and
B(xi, ε/2) ⊆ B(0, 1 + ε/2). Thus, |Nε| · vold(ε/2) ≤ vold(1 + ε/2). Recall that vold(r) = c · rd, we have
|Nε| ≤ (1+ε/2

ε/2 )d ≤ (4
ε )d.

Proof of Theorem 7.22 LetNε be an ε-net for SU . By Lemma 7.21 and union bound form = O( log |Nε|/δ
ε2

) =

O(
d log 1

ε
+log 1

δ
ε2

), there is a linear projection Π ∈ Rm×n such that with probability at least 1− δ, for any x ∈ Nε,
‖Πx‖2 = (1± ε)‖x‖2. We need to show for any v ∈ SU , we have ‖Πv‖2 = (1± ε)‖v‖2.
Claim For any v ∈ SU , there exists a sequence of points x0, x1, x2, . . . ∈ Nε such that v = x0 + c1x1 +

c2x2 + · · · for |ci| ≤ εi.
Thus, we have

‖Πv‖ = ‖Πx0 + c1Πx1 + c2Πx2 + · · · ‖

≤ ‖Πx0‖+ c1‖Πx1‖+ c2‖Πx2‖+ · · ·

≤ (1 + ε) + ε(1 + ε) + ε2(1 + ε) + · · ·

≤ 1 +O(ε).

The first equality holds by the triangle inequality and the second equality holds since the choice of Π and
‖xi‖2 = 1 for any i. Similarly, ‖Πv‖2 ≥ 1−O(ε). We obtain that ‖Πv‖2 = (1± ε)‖v‖2 since ‖v‖2 = 1.
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