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Chapter 1 Gibbs Point Process

1.1 Independent sets in triangle-free graphs

Given a graph G, the independence number of graph G, denoted by a(G), is the size of the largest
independent set, in which no two vertices are adjacent. Determining the independence number of a graph is
one of the most pervasive and fundamental problems in graph theory. There is a huge amount of studies about
bounding independence number from below and above in different problems. Besides, it is closely related to
the Ramsey problems and so on.

Let’s begin with a simple observation.

Observation 1.1

Let d € N and G be an n-vertex graph with A(G) < d. Then
n

G)> ——. 1.1
a(@) > - an
Proof Arbitrarily pick vq, then pick v, € G\ N(v1) with vy # vy, -+, v; € G\ U;;11 N(vj), vi # vy,
j =1,2,--- i— 1. Finally, we can generate an independent set I = {vy,va,---}, as A(G) < d, v; has at

_n_

most d neighbors, then the size of [ is at least -

Exercise 1.1 Prove that for any n-vertex graph with d(G) < d, o(G) > 5.

Remark The lower bound ﬁ in both Observation 1.1 and Exercise 4.1 is an optimal result. We can consider

G as the vertex-disjoint union of cliques of size d + 1.

Problem 1.1( Extremal problem ) Given a collection F' of all n-vertex graphs with average degree d, what is

the minimum independence number of a graph GG in F'? In this case, we can get min a(G)=#, G € o

Problem 1.2( Meta problem ) It is natural to ask what if we forbid graphs that look like extremal structures,
can we improve the bound? Since disjoint union of cliques have lots of triangles, whether the bound on a/(G)

can be improved if we add a triangle-free condition?

Ajtai-Koml6s-Szemenédi [3] proved that any triangle-free graph G on n vertices with average degree d

has an independent set of size at least 0.011°§dn. It improves the bound by a factor that is logarithmic in d.

Later on, Shearer [22] improved the constant to 1, showing that such a graph has an independent set of size at

least f(d) - n where f(d) = % = (1+0(1))'%8%, f(0) = 1, f(1) = L. Random graphs [21] show

that for infinitely many d and n with d = d(n) — oo as n — oo , there are n-vertex triangle-free graphs with

average degree d and independence number (2 — o(l))(%)n. Consequently, the results cannot be improved

apart from the multiplicative constant.

Exercise 1.2 Use shearer’s bound to derive R(3, k) < (14 o(1)); f; -

There is a tight connection between the problem of determining «(G) and questions in Ramsey theory.
More precisely, determining the minimum possible «(G) for a triangle-free G is equivalent to determining the
Ramsey number R(3, k), which is the minimum n such that every graph on n vertices contains either a triangle

or an independent set of size k. A result of Kim [17] shows that R(3, k) = @(%). Fiz Pontiveros, Griffiths,
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and Morris [19] proved that R(3,k) > (1/4 + 0(1))%. Reducing the gap between these bounds is still a
major open problem in Ramsey theory.
Given a graph G, we define @(G) to be the average size of all independent sets. We prove a lower bound

on it in a triangle-free graph of maximum degree d.

Let G be a triangle-free graph on n vertices with maximum degree d. Then

&(G) > (1+ o(1))2824 (12)

Idea The proofis based on Shearer’s method and a modification of Alon. The idea is to use the double-counting
method: we pick an independent set / in GG in a uniformly random way, and bound E|/| from two points of
views: v € I or not, and how N (v) N I looks like.

For the first view,

E[7]= ) Pr(vel). (1.3)
veV(Q)
For the second view, )
El1] > > > Pr(uel. (1.4)

veV(G) ueN (v)

We shall see these two bounds go in opposite directions, and the desired bound on &(G) follows.

Remark Spatial markov property drives the argument. In particular, whether v € I or not depends only on its

"boundary condition".

Proof Let I be an independent set chosen uniformly at random in GG. For every vertex v € G, let H =
G — v — N(v). Fix a "boundary condition" by conditioning that I NV (H) = S, and define X = N(v)\ N(5),

x = | X|. Here z denotes the number of vertices in N (v) that are suitable to be added to I.

Figure 1.1

Note that N (v) itself is an independent set due to the triangle-freeness of GG and [ is chosen uniformly at

random, so v or any subset of X is equally likely to be included in I. Hence
1
142w
Observe that } -, ¢ v,y Pr(u € I) = E[N(v) N I|. We obtain a conditional expectation of [N (v) N I also

from above two conditions,

PrveI|INV(H)=S) (1.5)

2. 90
E(N(0)NI| | INV(H) = 8) = xl/—i— o (1.6)
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So
2611 > > Pr(vEI)%—é YooY Pr(uel)
veV(G) veV(G) ueN (v)
1
> > (Prvel)+ SE(IN(v) N 1)))
veV(G)
11 z/2-2°
> i .
> 2 ooin max{ {0, 0 e (1.7)
veV(Q)
logsy d
>(1+o(1 .
2(1+o(1))— —n

where in the third line we used the law of total probability and eqs. (1.5) and (1.6), and in the last line the fact

that the function of x in eq. (1.7) achieves its minimum when its two terms equal.

1.2 Sampling with hard-core model

It is natural to ask what if we relax triangle-free in a different direction? Ajtai, Erdos, Komlds, and
Szemerédi [2] relax being triangle-free to /4-free or any fixed size cliques free. In 1981, they conjectured that

any K;-free graph with maximum degree d has a lower bound on independence number.

Conjecture 1.3

Let d € N and G be an n-vertex K-free graph with A(G) < d. Then

a(G) > Q(loidn). (1.8) ;

When ¢ > 4, it’s stll an open problem. However, they [2] proved that there exists an absolute constant c;

such that for any ¢-clique-free graph G on n vertices with average degree d, o(G) > c; Mw Besides,
Shearer [23] improved the bound.

Theorem 1.4
Let d € N and G be an n-vertex Ky-free graph with A(G) < d. Then
log d
G) > Q(————=——n). 1.9
(@) 2 (d-loglogdn) ( )QQ

Anothor direction is forbiding too many triangles instead of all triangles. On this direction, similar to the

previous section, we gain a log d -factor improvement for graphs with few triangles, which is locally sparse.

Let G be an n-vertex graph with A(G) = d. If G contains at most d*~“n triangles, then

logdn). (1.10)

a(G) =
Q

The remainder of this section still focus on triangle-free graph. Let G be a triangle-free graph on n

vertices with maximum degree d. Davies, Jenssen, Perkins, and Roberts [9] proved that the expected size

of an independent set drawn uniformly at random from such a graph is at least (1 + 0(1))l°§dn, which is

asymptotically tight.
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Theorem 1.6

Let G be an n-vertex triangle-free graph with A(G) < d. Then

a(G) > (1+ 0(1))IO§dn.

(1.11)
V)

The proof is based on the hard-core model from statistical physics which has received a lot of attention in
many fields. Next, we will introduce some notions about this model.

For a graph G = (V, F) and fugacity A > 0, the hard-core model is defined on the family Z(G) of all
independent sets of G where I € 7 has weight w(I) = A/l

Definition 1.7

The Partition function of the hard-core model on G is denoted by
Po(d) =Y wd)=>_ Al (1.12)
Iez IeT &
Definition 1.8
The hard-core distribution is given by
A A
Pr(l| = = . (1.13)
=B = S .

Remark
o If A = 1, the partition function is the number of independent sets and the hard-core distribution is the
uniform distribution over all independent sets of G.
o Among all probability distributions over all independent sets of graph GG with given mean size, the

hard-core model distribution has the highest entropy.

Definition 1.9

Let I be an independent set drawn from the hard-core model with fugacity \, the expected size is denoted
by ag(M).
y ag(A) &

Proposition 1.10

ag(N) is the scaled log derivative of the partition function, which means ag(\) = A(log Pg(\))'.

A
Proof
ElI| = a(\) = S |1] - Pr[1]
IeT
e AT APL(Y) ,

The proposition has many applications. For instance, if () has a lower bound, then we can get a lower

bound on Pg(\), and by setting A = 1, we can count the number of independent sets.

Definition 1.11

The occupancy fraction of G with fugacity \ is denoted by &fG(‘/\).

&

To prove Theorem 1.6, the following result is helpful, which gives a lower bound on the occupancy fraction
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for triangle-free graphs.

Theorem 1.12

Let G be a triangle-free graph on n vertices with maximum degree d. Then for any X > 0,
1_ A W(dlog(1+ \))
—ag(A) > . 1.14
naG( )z 1+X  dlog(l+\) (1.14)
where for z > 0, W (z) denotes the unique positive real number satisfying W (z)e" (%) = . v
Proposition 1.13
For any graph G, the expected size () of an independent set is monotone increasing in \. o

Proof It suffices to show &, (A) > 0. For convenience we use P for Pg(\). I is a random independent set

drawn from the hard-core model at fugacity .

Beacuse NS
aa(\) = E|I| = Z—
ag(N) ] P
e 1P~ |1
B E|I|2 — E|I
P’ = I|(1| — 1Al = P
IeT
we have
AP\ P AP"  A(P')?
7/ )\ = = — _
acM) ( P ) PP P2
_E|I[+E|I]* — E|I| - (E|1])*
- A
_ Var(|1]) 0.
S 2

In order to get a lower bound a(G) > (1 + o(l))losdn, we use a(G) = ag(l) > ag(N), for any

1
logd*

0 < A < 1, and here we use A =

Idea Similar to the proof of Theorem 1.2, the idea is to use the double-counting method: we pick an independent

set I in GG in a uniformly random way, and bound E|I| from two points of views.

E[7l|= ) Pr(vel). (1.15)
veV(Q)
E|I] z% > > Pr(uel. (1.16)

veV(G) ueN (v)

Proof of Theorem 1.12 Let [ be an independent set drawn uniformly at random from the hard-core model at
fugacity \. A vertex v € V(QG) is suitable if N(v) NI = (. Sov € I only if v is suitable.

Pr(v € I) =Pr({v € I} N{vis suitable})
=Pr(v € I | vis suitable) - Pr(v is suitable).

Claim: For any vertex v in G, Pr(v € I | v is suitable) = 1%\
Proof Pair up choices of I by conditioning I N (G — v — N(v)) = S. There are two posibilities for I:
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I=Sorl=5U{v},so

o AlSI+1 A
Pr(v € I | vis suitable) = ST = T h

It remains to estimate Pr(v is suitable).
Define a random variable X, to be the number of suitable neighbors of v. So v is suitable when none of
the X, suitable neighbors in /. For any suitable vertex u € N (v),

Pr(u ¢ I| uis suitable) = Ton

Note that N (v) is a independent set due to the triangle-freeness, therefore,

Pr(v is suitable) = Pr(none of X, suitable neighbors in I)

:;; <1+1)\>x Pr(X, = )

:E(L)XU'

1+ A
Counting in eq. (1.15),

Elfl= Y Pr(vel)= Y Pr(vel|vissuitable) - Pr(vis suitable)

VeV (G) veV(G)
A 1
- 3 e
v (&) 1+ 14+ A

Then the occupancy fraction
Bl __» 1 Z X,
n 1+ A n. e 1 + )\
A 1
-E 7)X .

1A (1 + A
where the random variable X is the number of suitable neighbors of a uniform random v and X has two layer

of randomness — I, v. By Jensen’s inequality, E(p (X)) > ¢(E(X)) with (X)) = (H)\)X, we get
ElIl A 1 ex
> 1.17
n — 1+ )\(1 + )\) (L17)
Counting in eq. (1.16),
1 . L
E|I| > 3 Z Z Pr(u € I'| uis suitable) - Pr(u is suitable).
veV(G) ueN (v)
Thus
E| A1
r‘z | 8 o n Z Z Pr(w is suitable)
veV(G) ueN (v)
1A
-—. 1.18
d 1+\ (118)
Combining eq. (1.17)) and eq. (1.18), we have
1_ A 1 gy EX
- >7 — .
log(1

)\ W (dlog(1l+ X)) (1.20)

“1+X dlog(l+\)
where in the last line we used the fact that the function in eq. (1.19) is optimized when its two terms are equal.

From Theorem 1.12, we have the following consequences:
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o Since a(A) is monotone increasing in A,
1 logd
o(G) =ag(l) > a =(1 1
6(G) = aall) = dalig) = (1+0(1) %
o Recall that &g (\) = A[log Pg ()], then
1 Lagl(t
1ogPG(1):/ aclt)
n 0 t
1
21/ n -W(d10g<1+t))dt (121)
dJo 1+t log(1+1t)
(1.22)

log? d

i

1 W (dlog 2)
:a / (1+u)du
0
1

=(5 +oa(1)) 2

2
where we used Theorem 1.12 in eq. (1.21) and we let u := W (dlog(1 4 t)) in eq. (1.22).

Using this counting result, we have the following corollary

Corollary 1.14

2
log“ d
a ",

Let d € N and G be a triangle-free graph on n vertices with A(G) < d. Then the number of independent
Q

sets in G
i(G) > e(3+04(1))

1.3 Conclusion
and statistical method. Our motivation is trying to see whether the (global) macrocopic properties of matter can

This occupancy fraction method comes from statistical physics which studying of matter via probabilistic
be derived solely from their local microscopies interactions. Instead of keeping track of all particles, we gonna

treat them as random distributed with certain local constraints
For our problems, we use the following table to give a summary.
Local

For any edge u ~ v whether vertex v can be chosen into the

Global
a(G)

independent set depends on whether v is suitable or not
Centers of balls are not so close(the distance of centers of balls
is at least 2r4 where r4 is the radius in d-dimension )

Independent set

Packing density

Sphere packing




Chapter 2 Sphere Packing

In this chapter, we will set up the distribution that can be viewed as continuous version of hard-core model.
Before setting on, we introduce the packing density firstly. Let P be a sphere packing of none overlapping

identical spheres in R?, we have the following definitions.

Definition 2.1

1. Bg(0) denotes the radius-R ball in R? centered at the origin;

2. rq denotes the radius such that B, ,(0) has volume 1 (a unit ball);

3. 0(d)=supp Rh_r}réo % denotes the sphere packing density in R%.

&

In history, there are numerous results on sphere packing density. Obviously, §(1)=1. Since R! is a line and
the ball in R! is a line segment. If we want to pack the Br(0) in R!, then we just need to put the line segment

one next another.

In 1910, Thue [24] proved the following theorem.

In R? 6(2) = 2 = 0.9068 - - -.
vi2 0

Remark: The optimal arrangement is achieved by hexagonal packing. We can place the ball inside every

hexagon. Figure 2.1 (1) is an illustration of hexagonal packing.

(1) (2
Figure 2.1: Illustration of hexagonal packing and orange packing

After more than one hundred years late, Hales [13] proved the the following theorem in 2005.

InR3 6(3) = 5 =0.7404 - - .

Remark: The optimal arrangement is orange packing. Figure 2.1 (2) is an illustration of orange packing.

In 2017, Maryna S. Viazovska [26] showed an optimal arrangement in R®. After the sphere packing in
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R® was sloved, within a week, Viazovska, along with Cohn and three other mathematicians [8], successfully
extended her method to cover R?* too. So it is natural to have the following problem.
Problem 2.1 What’s the order of the main magnitude of (d) with d — o0?

2.1 Definitions

To define the partition function of Caronical Hard Sphere model and Grand Camonical Hard Sphere model

respectively, we employ the following definitions.

Definition 2.4

Let S be asetand k € N,
1. (“Z) denotes the set of all k-sets in S;
2. Sk denotes all ordered k-tuples in S.

Definition 2.5
Let S C R® be a measureable set, Py(S) C (‘2) with Py(S) = {(z1, 2, ..., 2) : d(zi, xj) > 2rq}, e,
Py(S) is the set of all size-k sphere packing in S.

&

Equipped with these two definitions, we focus on the definitions of partition function of Canonical Hard
Sphere model and Grand Canonical Hard Sphere model.

Definition 2.6

The partition function of Canonical Hard Sphere model is denoted by

A 1
Zs(k) = 0 /Sk Ip(a,,. . z) d71, - . ., dy,

where D(x1, ..., xy) is the event that d(x;,x;) > 2rg.

)
Note that Zg(k) is the volume of Py () and for a uniform random k-tuple X,
Zs(k) k! X
Pr(Xy € Py(9)) = = - 7ok
where |V| = vOl,Ef)k is the total volume.
Definition 2.7
The partition function of Grand Canonical Hard Sphere model at S with fugacity X is denoted by
Zs(\) = NZg(k).
k=0 *
Remark Zg()\) = Pg()\) = Y ix(G)N\where ij,(G) denotes the number of independent set in G of size k.

k=0

Definition 2.8

Let P be a sphere packing with same radius and non-overlapping in R%, the sphere packing density is
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denoted by
_ . vol(¢, Br(0))
6(d) =sup lim = BR0))

2.2 Known Results

The following are two results about the upper bound of 6(d). In 1978, Kabatianskii and Levenshtein [15]

proved the following theorem.

Theorem 2.9
Letd € N, (d) < 2705994, v

In 2013, Venkatesh [25] showed the following results.

Theorem 2.10

For a fixed d € N, it holds that
1. For a sufficiently large d, 0(d) > 65963 - 27%;
2. Along a sparse sequence of dim{d;}, 0(d) = Q(d - loglog d; - 2~%).

Later on, in 2014, Cohn and Zhao [7] proved that

Let d € N, there exists ¢ > 0 such that in every R? the following holds
< ¢.9—0599d
0(d) <c-2 0

#:  Exercise 2.1 : Prove that 6(d) > 27%.
Idea Consider a maximal packing in R¢.

In this section, we will prove a lower bound with a slightly small constant ¢ < 65963 which holds for every
d. Before the proof, we recall some definitions of Hard-Sphere model over bounded measureable set S C R

The first one is the partition function of Hard-Sphere model.

Definition 2.12

Let S C R® be a measureable set, the partition function of Hard-Sphere model with fugacity X is denoted

by
Zs(\) = NZg(k)
k=0
where .
Zs(k) = i /Sk 1D(x1,...,a:k) dry...dxy,

is the volume of size-k packing and D(x1,...,xy) is the event that, for any i,j € [k] and i # j,
d(wi,xj) > 2rg.

&

By the definition of partition function of Hard-Sphere model, we have following observations.
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Observation 2.13

1. Let S be a measureable set in R%, then Zs(0) = 1;

2. Ifwe sample a packing X according to Hard-Sphere model distribution over some region S, then

k.5
Pr(|X| = k) = 25250,

)

Next, we give the definition of expected packing density with X ~ Hard Sphere model distribution over .S.

Definition 2.14

Let S C R be a measurable set with fugacity )\, then the expected packing density was denoted as

E X
ag(A) = 55?((5))-

&

In this notation, there are two results about expected packing density. The first one was proved by Jenssen,
Joos and Perkins [14] in 2019.

Letd € N, S is a bounded measurable set in R® and )\ > 3—%) then

6(d) > as(A) > (1 +o(1) - log(%) Ld 2,
0

Recently, Gil-Fernandéz, Kim, Liu and Pikhurko improves the bound by a factor of 2.4.

Theorem 2.16

For any € > 0, there exist 6 > 0 and dy such that for any d > dy and X > (% — 6), it holds that

2
as(\) > (logvV2 —€)-d-274.

Q@
Before the proof of Theorem 2.16, we need following basic properties.
The excepted density cvg() is the scaled log derivative of the partition functions which is
A
A\) = -(log Zg(\))'.
OZS( ) ’UOZ(S) (Og S( ))
Q@
Proof :
E|X]| 1 -
A) = : k-Pr(|X| =k
as(A) vol(S)  wol(S) ; r(1X] )

vol(S) — Zs(N)
A &, M Ze(k)
~ wol(S) ;k Zg(N)
A Zg(k)

~wol(S)  Zs(k)

= (log Zs(V)
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Lemma 2.18
The excepted density aus(\) is monotone increasing with \ . 0

Proof : By Lemma 2.17, we have ag(\) = ﬁ(s) -(log Zs(X))', then A - vol(S) - o/g(X) = Var(|X|) > 0.

Another key definition we need to define is some notation for points that are suitable to be added, which is

so called the free volume.

Definition 2.19

The expected free volume of the hard sphere model on S is denoted by

1
m/gPr(d(m,X) > 2rq)dzo

where X is the random packing sample in the hard sphere model.

FVg =

&

Note that F'Vg is the expected fraction of the volume at which a new sphere can be added to X. Now let

see some basic properties about the free volume.

Let S be a bounded measurable set in R® with positive volume, then

as(A) = \- FVs. )
Proof :
as() :vlf)‘l?;‘)
:vli‘l?;') i(k +1)Pr(IX] =k +1)
= k+1 5
_voll(S) kzzo(k + 1)>\5;9&m
:vol(S)lzs(/\) i(k +1) /S,C+1 >\];—;_11D(xo,x1,...,xk)d$1...dl‘kdl‘o

A — [ A
:Uol(S)ZS()\)/S[l—FZ/Sk H]-D(aco,m,...,mk)dxl'-'dwk]dx()

where in the last equality, we used

1 — [ A
1 —1 dzy...dxy|dzo = | Pr(d(zo, X) > 2rg)dxo.

Recall that for independent set problems, we have two layers of randomness, one is that we sample [
according to hard-core model, another one is that we sample uniform random vertex v. Now we can do the
same two layers of randomness experiment. We sample X according to hard sphere model over .S with fugacity

A, then we sample a uniform point v over S.

Definition 2.21

Let
T :={z € By, (v) NS :d(z,y) > 2rq,Yy € X N B3, }.




2.3 Proof of Theorem 2.7

We call T the set of externally uncovered points, see Figure 2.2.

-
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Figure 2.2

2.3 Proof of Theorem 2.7

Idea We will bound a,g() in two ways.
o The first way is to use F'Vg.

o The second way is to run separate Poisson point process on 7'.

Now, we do the first way of counting by the following lemma.

(i) as(A) = A- Elgkyl:

(i1) as(A) = A - Ex (e v,

Proof :

(1) By Lemma 2.20, we have

as(A\) =A- FVg

1
=\ wl(5) /SPr(d(v,X) > 2rq) - dv

=\ E[1yrnx—n]




2.3 Proof of Theorem 2.7

(i) Recall that
Zs(\) = N Zs(k)

k>0

)\k

k>0

< Al 1(S)*

<2 Ggvol(s)
k>0

:e)\-vol(S)'

By (i), as(A) = A+ E[z55]2A - Exo(e 7o),

Lemma 2.22 (i) is the first bound we obtain. Next, we do the second way of counting.

as(A) > 274 Elar(N) - vol(T)].

Proof : Asvol(S N By, (v)) < 2% for any v € S, we have
1
N =—— - E|X
s =gy B
>274 . E|X N By, (v)]
=274 E[ar(\) - vol(T)],

where the last equality holds by Spatial Markov property.

Let t = vol(T'). By the two lemmas above, we have
as(A) > max{\ - Ex,(e),27% E(ar(\) - t)}. (2.1)
Note that the first bound ) - Ex ,(e~*!) is a decrease function of ¢, while the second bound 2= - E(ar()) - t)
is an increase function of ¢. Hence the first bound is large when ¢ is small, and the second bound is large when
t is big.
To bound 2~ - E(ar () - t), we use the following lemma.

Lemma 2.24

For every B > 0, there exists kg such that for any integer k > ko and any A\, t,d > 0, if a measurable set
T CR% s of volume t and k < \t, then we have

ar(A) -t > (1 —B)Py - k,

where P; = Pr(uniform independent i points in T are at pairwise distance at least 2r).

To bound \ - E X,U(e"\t), we first give some definitions and lemmas.

Definition 2.25

o For a measurable set A C RY, its symmetric rearrangement is

AT = Bvol(A)l/d~'rd (0) 0

o For a measurable set T C R?, define

f(T) = /T’UOZ(de(U) NT)du.




2.3 Proof of Theorem 2.7

For any bounded measurable set T C R?,

F(T) < £(T). .

This lemma can be proved by Riesz’s rearrangement inequality.

Let T be a measurable set in R? of volume t € [2d/ 2 29 and u be a uniform random point in T. Then

Eu[vol(Bay,(u) N T)] < 2-2¢(1 — §2/dyd/2,

Proof : Note that
Eu[vol(Bay,(u) NT)] =

By Lemma 2.26, we may assume that 7" is the ball of radius p = ¢!/ r; around the center 0, thatis 7" = B,(0).
Then

1
Eu[vol(Ba;,(u) NT)] :t/T(/T 1{d(u,v)§2rd}dv)du
2
:t/ / 1{d(u7v)§27'd}1{HU‘|§HUH}d'Ud’U,
TJT

—9. 1 1 dv.
uér}ga:(co)/T {d(u,v)<2ra} H{||v]|<[[ul[} 4V

When u is on the boundary of 7', the volume of the intersection is maximum and we bound it by the red ball in

Figure 2.3

Figure 2.3. To be more precise, we may assume that p > v/2r, otherwise ¢ < 2%/2. Then the radius of the red
ballis 2-v/1 —t=2/4. ;. Hence

Eu[vol(Bay, (u) N T)] <max{2¥2,2. max (2y/1—z2)%}

V2<z<tt/d
=2 (2V1—t=¥/d)d
=2 24(1 — ¢~/ 4y,

Proof of Theorem 2.16. : Given ¢ > 0, choose 5 > d > 0. Let d — oo. Since ag(\) is non-decreasing in A,
it is enough to consider A = (1/1/2 — §)%. Let S be a large ball in R?. We need to show that

as(A\) > (logV2 —¢)-d-27% (2.2)

Then we do the two-step experiment, where we sample X according to hard sphere model over S with



2.3 Proof of Theorem 2.7

fugacity A, then we sample a uniform random point v over S. This generates an externally uncovered part
T = T(X,v), which depends on X and v.

Let k = (log /2 —¢€/2)-d. Now we cut the points in S into two parts. For the part where the corresponding
volume of 7" is small, we can use the first bound in eq. (2.1). For the other part, we can use the second bound
in eq. (2.1).

For X C S, let

L=LX)={ueS:t(X,u) <k/A},

where t(X, u) is the volume of 7'(X, u). Using the first bound in eq. (2.1), we get
ag(A) > X ExEne M),
Then

vol(S) - ag(N) > AEx [/ e M) gy
ves

> AEx| / e MXD) gy ]
veEL

> e/ . 270 Ex[vol(L)].

This means we may assume E x [vol(L)] < vol(S) - e=¥/4, otherwise eq. (2.2) holds. By Markov’s inequality,
we have
Prx (vol(L) > vol(S) - e=¥/0) < ¢=<¥/12,

That is, for a typical outcome X, ¢ is relatively large.

That is, for a typical outcome X, ¢ is relatively large,except for a very small of points in S. Now let’s fix
one such outcome X where the inequality section 2.3 holds.Take any X with vol(L) < vol(S)e~“%/%. And for
every v € S\ L,by defination we have

t=1t(X,v) > k/A> (V2+6/3)4,
we also have ¢ < 2%as T C Bo,,(+). This means k& < At,by Lemma 2.24.So for every v € S\ L,we have
ar(A)t > (1 — B)Pyk.
Claim Py is very close to 1 i.e. forevery § > 0,P, > 1 — 6.

Idea Greedily pick k points .Each point takes up negligible(in particular exponentially small in d) portion of
T'(by Lemma 2.27).

Proof Let’s consider the function g(t) = (f(7))~%where 7 := t"/? and f(7) = 5 \/ﬁ'we can observe that
f(v/2) = 1,and f is strictly increasing on [v/2, 2],since
. 2 -2
fi(z) > 0.

BN Y
Then recall that for v ¢ L,t > (/2 + 6/3)% that means
FAVY > F(V2+6/3) > 1

i.e. g(t) is exponentially small in d.

The Lemma 2.27 says that 2¢g(t) upper bounds expected fraction of measure of 7" intersect ball of radius
2r4 center at a uniform point of 7. Let x1, - - - , 3 € T independent uniform points.Call z; bad if
(E1) : vol(Bay, (x;) UT) > t/d?
or

(E2) : within distance 2rg from zq,- -+ , ;1.



2.4 Example

Figure 2.4

Therefore, in order to solve the above problem, it is sufficient to show P, (exite at least one bad z;) = o(1);
this is equivalent of showing that for each i, P, (z; is the bad vertex ) = o(1/k).

This is simple because this probability P,(x; is the bad vertex ) < P.(EY) + P,.(ES|Ef). By Markov
inequality, P, (EY) = e~ ) (we have shown that in Lemma 2.27). Meanwhile, P.(ES|ES) < * d31, SO we can
get the conclusion above.

By Lemma 2.24, for every point v € S\ L,we have ap(A)t > (1 — 8)Pyk. According to the Claim, we
have ar (M)t > (1 — B) Pk > (1 — 20)k.

Now useing the second bound in eq. (2.1), we get

Qdas()\) > FEx U(OéT(

= S / A)tdv]
= 5ol(S) vol(S) /eS\L Nido]
> (1= ) (1 — e 0)(1 - 28)k 2.3)

(1-
= (1-o(1))(In(V2) — ¢/2)d
where in eq. (2.3), We only take X such that vol(L) < vol( )e—<4/S(this is by the inequality section 2.3).
Finally, we can find out that ag(\) > (In(v/2) — €)2~

2.4 Example

The last example is about counting the number of the independent sets in G.

Definition 2.28
The number of independent sets in G is denoted by i(G). &

In 2000,Kahn [16] implied the above question, and in 2010, Yufei Zhao [27] solved it. We get the following

theorem.




2.4 Example

Theorem 2.29. [Kahn-Zhao]

For every n — vertex d — regular G,

i(G) < i(Kqq)"*. @4,

And then,Davies,Jessen,Perkins and Roberts [9] made an extention in 2017.

Theorem 2.30. [Davies-Jessen-Perkins-Roberts]

For every d — regular G and every A > 0,

d—1
a6(N) < axy () = oLt @.5)

21+ )41

Exercise 2.2 Show that theorem Davies-Jessen-Perkins-Roberts implies theorem Kahn-Zhao.

To proof theorem Davies-Jessen-Perkins-Roberts:
Idea We will draw this random independent set I according to the hard core model with fugacity A on this
graph G. Independently, we draw vertex v uniformly over all vertices in G. Let random value X = X (I, v)
counting the number of occupied neighbour |I N N (v)|. We write for k € {0,1,--- ,d}, P, = Pr(X = k).

Again we get a bound of occupency fraction a () in two ways. For the first view, if v is in the independent
set I or not. Only when v is suitable, i.e. X = 0, v is in X. For the second view, by looking at X, how N (v)
interset /.

Our goal is that maximize a(\) via a linear program(involving Py, Py, - - - , Py).
Proof For the first view, we have

ag(A) = Bl _ 1

el Z Pr(uel)=Pr(vel)

uev(G)
=Pr{vel}n{X =0})
=Pr(vellX =0)Pr(X =0).
Recall \
Pr(velIlX =0)= Pr(veIvis suitable) = Tn
Then we can get

For the second view,

G| ueV(G) d
=—(P1+2P,+ -+ dPy).
Then we have
aa(A) = 1iAPO
_ é(P1+2P2+---+de).

Next, we want too get maximum Fy, such that
Cl Bhb+P+---+P;=1.

C2 5P =45(PL+2P + - +dPy).
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C3 forevery2 < k <d,(d—k+ 1)A\Px_1 > kPx.
Proof of C3 On the one hand, for an outcome (of X = k) J from the independent set I with |J N N (v)| = k,
we have k ways from G to get J' with |J' N N(v)| =k — 1.
On the other hand, by the defination of hard-core model, we have
APr(J') = Pr(J).
And, J' cam be obtained from at most d — k + 1 many other choices of J with |J N N (v)| = k. That finish the
proof.

Recall, we have ag(\) = H%PQ, suffices to show that
(14 )4
Ph< ——m—F7F—.
0= 21+ A +1
Claim If a choice of (Pp, - - - , Py) with maximum Fj, then all equality hold in C3.

Proof of Claim Suppose not, say for some k, (d — k + 1)A\Py_1 > kP, then we can increase Py by small
e > 0, move some mass (function of €) from P;_; to P; and fix other P;. We can check that these C1,C2,C3
still hold, snd thne we get Py is not maximum. Contradiction!

Now that the equality in C3 holds, we have a system linear equations with (d + 1) unknows and (d + 1)
equalities constraints. Then it’s full rank, so there exits an unique solution. One can check K 4 satisfies all
C1-C3.

To solve it, we iterate C3 (d — k + 1)\Py_1 = kPy for 2 < k < d. We can show that
(d—1)!

P, = ——=A\P. 2.6
P Rd— k)] 26)
Then plug eq. (2.6) into C2 we can show that
P Py
—_ = —. 2.7
dx  (1+ )9 @7

Plug eq. (2.6) and eq. (2.6) into C1 then we can get the result we want.
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Chapter 3 The Polynomial method

Usually, the idea of polynomial methods is to use the information of roots of polynomial to solve some
combination problems.

Disc-Kakeya problem is an example of using the low degree polynomial can not have too many roots to

show that certain combination structure can not be too small.

Definition 3.1

o We say a polynomial is a 0 — polynomial if the coefficient of all its monomials are O.
o We say that a polynomial f vanishes on a set A, or we also say f is identically 0 on A, if f(a) = 0,
for every a € A. &

The two definition are different. The difference is, f is polynomial on F, i.e. n — variatepolynomial in
Fplz1, -, xy), f could identically O everywhere (on F3) but not 0 — polynomial, e.g. f(x) = 2P — x when
n = 1.

For every non-zero polynomial f on F with degree d, and every a,z € F; with z # 0, let L =
{a +tz : t € F,} be the corresponding line. Then the restriction of f on L, denote by fr,(t), is a

univariate polynomial (of t) with degree at most d and leading coefficient fy(z), where f;(z) is the

homogeneous degree d part of f.

Q

Proof For each monomials [}, z* of f has value [];(a; + t2;)" at @ + tz. To get ¢ term, we need to

choose t2; term in each bracket. So the leading coefficient is ¢4 [}, 2}, where [} 2" = fa(2) as require.

If f is a non-zero polynomial on F}; with degree d < p, then [ cannot vanish on the F.

Proof We use induction on n.

For the basic case n = 1, if f vanish on F?, then it has at least p roots which implies that the degree of f
is at least p. Contradiction!

For general n, we suppose that f vanishes on Fj. Think of f as a polynomial of x; with coefficient
in Fy[za,- -+, x,]. By polynomial dividion algorithm, for each a € F,, f(z) = P(x1,- - ,2,)(x1 — a) +
Q(xa,- -+ ,x,), where Q(xa, -+ ,x,) is the remainder. As Q(x2, -+ ,z,) = f(a,x2,--- ,x,) vanishes on
Fg_l. By induction hypothesis, @ is a 0 — polynomial. And because for each a € F, (21 — a) divides f, as a

univariate polynomial of x, f has at least p roots, which means its degree is at least p. Contradiction!

3.1 Schwartz-Zippel Lemma

In this section, we will state and prove Schwartz—Zippel Lemma, which is a very basic and powerful lemma.

Lemma 3.4. Schwartz—Zippel

n—1

Every non-zero polynomial f(x1,...,x,) of degree d on F, has at most dp roots.




3.2 Testing polynomial identity & Existence of Perfect Matching

Proof Forevery a, z € F)) and z # 0, we consider a line
L={a+tz:teFy},

and the restriction of f on L, denoted by f(¢). The Fact 3.2 implies that f7 (¢) is a univariate polynomial (of
t) of degree at most d and leading coefficient fy(z), where f;(z) is the homogeneous degree d part of f. Since
fa is non-zero and d < p, by Lemma 3.3, there exists z # 0 such that f;(z) # 0, which implies that f7,(¢) is
a non-zero polynomial of degree d. Thus, f7(¢) can have at most d roots on L, implying that the polynomial f
can vanish on at most d points of the line L. How many lines the field should have in same direction z? We
associate with each vector a € F theline Ly = {a+tz : t € F,} indirection z through a. Then Lo N Ly = 0)

as long as b ¢ L. Since z # 0, each line L, contains |L,| = p points. Hence, we can partition F, into
p"
P
of f cannot exceed dp

= p"~ ! lines. Since the number of roots of f on each of the lines L, is at most d, the total number of roots

n—1 a5 claimed.

Remark
o Schwartz—Zippel Lemma says that multivariate low-degree polynomials cannot have too many roots.
o The bound is sharp! (We can consider a example that f depends only on z1).
o It is useful for polynomial identity testing.

o We can also bound the number of roots of f in a finite subset.

The following probabilistic version of Lemma 3.4 bounds the probability that a non-zero multivariate
polynomial will have roots at randomly selected test points.

Suppose that f(x1,...,x,) is a nonzero polynomial of degree d over a field F and S C F is a non-empty
finite subset. Letry, ..., r, be random elements selected uniformly and independently from S. Then
d

Pr(f(ri,...,mn) =0] < —-.
5§ .

Proof Suppose that f is a non-zero polynomial. We use induction on n, the number of variables of f. The
statement is true for n = 1 since the number of roots of f does not exceed its degree. Now let n > 2 and write

f as a polynomial in x1, which means that

d
fz1,...,xn) = Zm’l iz, x).
=0

Since f is a nonzero polynomial, we take max 7, then f; is a nonzero polynomial and deg(f;) < d — . Let

r1,...,T, be random elements selected uniformly and independently from S. We define two events as follows:

A={f(r1,...,mn) =0}, and B ={fi(ra2,...,m) = 0}.
Then we shall upper bound

Pr(A)

Pr(ANB)+Pr(AN B°)

(A | B)Pr(B) + Pr(A | BS) Pr(B°)
(B) + Pr(A | B

—1 7 d

IEIRREE

where the first term is from the induction hypothesis and the second term is from the basic fact that f (z1,72,...,75)

I
r

IN

P
P
d

IN

is a nonzero polynomial of degree 7.
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3.2 Testing polynomial identity & Existence of Perfect Matching

3.2 Testing polynomial identity & Existence of Perfect Matching

In this section, Let’s see how to use the Schwartz—Zippel Lemma.

3.2.1 Polynomial identity testing

Problem 3.1 How do we test whether two given polynomials on F}} are the same, i.e. f = g?

One can check the coefficients of all monomials, but there are too many terms. (The number of monomials
will be n?, if deg(f) = d.)

Schwartz—Zippel Lemma can be used to design efficient Probabilistic Algorithm: Given two polynomial f
and g of degree d on n variables. Suppose that f # g. Then f — g is a nonzero polynomial of degree at most d.
o We pick random numbers in place of the variables and compute the value of the polynomial. That is,

pick r = (r1,...,m,), where every r; is random element selected uniformly and independently from F,,.
Then Lemma 3.5 tells us that

Pr(f —g)(r) =0] <

hSHIRSE

o Repeat the above process & times and we have

k
Pr[(f — g) vanishes on all k choices] < <d> .
p

ed 1 1 a\* 1
So if 5 <3 then we only need k£ = O(log ) to make (5) < =

-
o We only need to test O(log %) to have probability at least 1 — ¢ to test correctly. It means that we have
two outcomes:

% If there exists some outcome # 0, then we get that f # g.
% If all outcomes = 0, then either f = g or f # g. If f # g, the above probability should be at most

E.
3.2.2 Testing existence of Perfect matching

Problem 3.2 How do we test whether a given graph G has a perfect matching?
Idea The graph GG has NO perfect matching <= its corresponding polynomial is O-polynomial.

Let us consider the special case of Problem 3.2 when the graph G is bipartite.

Definition 3.6. Edmonds matrix

Let G=(UUV,E)withU = {uy,...,un} and V.= {vy, ..., v, }. Its Edmonds matrix A is the n X n

matrix with variables entries corresponding to edges of G. That is

Zij, ifuivj S E(G),
A= (aij)nxm a5 =
0, otherwise.

o det(A) is a polynomial with e(G) many variables of degree at most n.

o We can identify the perfect matching of G with permutation 7 € S,:

{(’LLl, Uﬂ'(l))? B (’LLn, vw(n))}
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3.3 Discrete Kakeya Problem

o Note that
det(A) = Z Sgn(ﬂ)al,fr(l) © o Qpp(n) = Z Sgn<7r)x1,7r(l) © o Tpw(n)s

where each term in sum ay (1) - a is nonzero only when 7 is a perfect matching.

n,m(n)

The graph G has no perfect matching <= det(A) is 0-polynomial. O

4 Exercise 3.1 Prove Lemma 3.7. (Hint: (=) is trivial, and (<=) can try to prove contrapositive.)

3.3 Discrete Kakeya Problem

A famous unsolved problem in mathematics is the Kakeya conjecture in geometric measure theory. This
conjecture is descended from the following question asked in 1917 by Japanese mathematician Soichi Kakeya:
What is the smallest set in the plane in which one can rotate a needle around completely?

Obviously, one can rotate a unit needle inside a disk with radius 1/2, which has area %. Note that a
necessary condition for turning a unit-length needle inside a set X is that X must contain a unit-length segment
of every direction. Such set is called a Kakeya set. Besicovitch proved that there exists a Kakeya set of measure

zero. Wolff (1999) proposed a simpler finite field analogue of this problem:

Problem 3.3 How large is a Kakeya set in finite field setting?

Definition 3.8

A set K C F} is a Kakeya set, if K contains a line in every direction, namely for any nonzero vector

z € FZ there exists a vector a € FZ such that the line

{a+tz:teF} CK. Iy

Dvir (2009) used a surprisingly simple and elegant application of the polynomial method to prove the

Kakeya conjecture on finite field.

Theorem 3.9

Let K C F} be a Kakeya set. Then

K| > <n+p—1>'
" 0

Remark
o If we think of n fixed and p — oo, then we get (”+ﬁ _1) ~ %. In contrast to the Euclidean case, we will

see that Kakeya set in finite field is dense.

Let us start with giving a lower bound on the dimension of low degree multivariate polynomial on F.

Given a set A C F} with |A| < (";d), there exists a non-zero polynomial f € Fplx1,...,x,] of degree

at most d vanishing on A. 0
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3.3 Discrete Kakeya Problem

Proof For every f € Fplz1,...,z,], we write its linear combination of monomials of degree at most d in

Z1,...,%pn. Thatis

flxr, ... my) = Z Cox Tt

ar+--+an<d,a; >0
We want to count the number of such monomials parts. Using the fact that the number of ways to distribute

n + d sweets to n children in a fair way is (”Zﬁ;l) = ("+j_l) and we can show that the number of integer

solutions to the equation
1+t =d

under the condition that z; > Oforalli = 1,...,n,is (”+§_1). Then by Pascal Triangle: () = (?71)+ ("),

k k—1 k
d .
=0

Thus, the number of distinct monomials of degree at most d is (”;d). Next, we treat each coefficient c,, as

we have

unkonwns and each € A as constraints. Then the number of unknowns is larger than the number of constraints

(that is, the vector space FILA| of all functions g : A — F, has dimension |A| < (";d)). Thus, there exists a

nonzero solution of this linear systems, meaning that the polynimal f vanishes on A.

Let f € Fplz1,...,zy] be a nonzero polynomial of degree at most d < p vanishing on a Kakeya set
K. Then its degree-d part fq is a nonzero polynomial vanishing everywhere on F. In other words, if f

vanishes on a Kakeya set K, then f is the 0-polynomial.

Q

Proof The argument is similar to that in the proof of Lemma 3.4. Let z € F} \ {0} be an arbitrary direction.
As K is a Kakeya set, K contains a line L = {a +tz : t € F,} for some a € F}. Recall the restriction of f
on L, denoted by f7,(t). The Fact 3.2 implies that f7 (¢) is a univariate polynomial (of ¢) of degree at most d
and leading coefficient f;(z), where f;(z) is the homogeneous degree d part of f. As f vanishes on K, f1,
vanishes on L. But deg(f1) = d < p = |L|. Hence, fr, is 0-polynomial and f;(z) = 0. Obviously, we have
fa(0) = 0. Then f; vanishes on F’, as claimed.

Proof of Theorem 3.9. Take K Kakeya set and suppose that |[K| < ("*P *1). Then, by Lemma 3.10, there

exists a nonzero polynomial f of degree at most p — 1 vanishing on K, which contradicts Lemma 3.11.

Remark
o Dvir [10] proved that every Kakeya set in ) is of size at least %.

o Sarof and Sudan [20] show that there exists a Kakeya set of size 2_”+1p" + Oy (p”_l).
o Dvir, Kopparty, Saraf, and Sudan [11] give a lower bound that |K| > (2 — %)_"“p” ().

o Very recently, Bukh and Chao [5] improve the lower bound () by a factor of 2 — %, thereby closing the

factor-of-two gap in all dimensions.

25



3.3 Discrete Kakeya Problem

Theorem 3.12. [Bukh—Chao]

The size of every Kakeya set K C Fi’, is

1
K| > (2 - =)~ Dpn,
p V)

We begin by presenting a proof of a slightly weaker bound in dimension 3. Though this proof does not
seem to generalize to the n > 3, it illustrates one of the ideas used in the general case.
Recall Dvir’s method: Consider a vector space of polynomials of degree less than p and show that subspace

vanishing on a Kakeya set K must be trivial.

o LetU = {Za1+-~~+an§p,ai20 Cal® : co € Fp}.
o U’ C U vanishes on K = U’ is trivial.

o |K| > codim U’ =dim U = ("™*71).

Theorem 3.13. [Bukh—Chao]

Let K C Fg be a Kakeya set. Then
1
K] > 1(0*+p).

o Let
A={(a1,9,a3) € Zgo foq + oo+ as < 2p, a1, as < pl,

and consider the vector space of polynomials with the monomials indexed by A,

V= {Z Ca® : cq € Fp}.

a€cA

o Considering V' has some similarity to Green’s twist on corner-free set.

o Bukh and Chao do so by considering a larger vector space of polynomila and subspace that vanishes on a
Kakeya set of high order.

Definition 3.14

A polynomial f on Fg’ vanishes at z € Fg’, to order 2, if f(z) = 0 and Vf(z) = 0. (That is,
91 (2) =0, 2L(z) = 0and 2L(2) = 0.)
1 xr3

) Oxo

L)

Lemma 3.15

Let K be a Kakeya set in Fz?;' If a polynomial f € V vanishes to order 2 at every point of K, then f is

the 0-polynomial. v

Proof Suppose that f € V is a nonzero polynomial of degree d < 2p vanishing on K to order 2. Then
fa is nonzero. Let z € Fj \ {0} be an arbitrary direction. As K is a Kakeya set, K contains a line
={a+tz:t € Fy} forsome a € F}. Recall the restriction of f on L, denoted by f(¢). The Fact 3.2
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3.4 Joint Theorem

implies that f7,(t) is a univariate polynomial (of ¢) of degree at most d and leading coefficient f;(z), where
fa(z) is the homogeneous degree d part of f. Since f vanishes at every point of L to order 2, the polynomial
fr vanishes at all points of F,, to order 2. Because deg(fr) = d < 2p = 2|L

, this implies that f7, is the
0-polynomial. So its leading coefficient fy(z) = 0.

Let g(z1,22) = fa(x1,x2,1) be a polynomial of degree less than p in each of 1 and x3. Then g vanishes
on F2. Write g; as g(x1,z2) = P~ #g;(x9) where deg(g;) < p (as ag < p). Since f vanishes identically
on Fg, g vanishes on F,. But deg(g;) < p, this means that g; is 0-polynomial, and this implies that f; is zero

as well, contrary to deg(f) = d.

Proof of Theorem 3.13. Let V' C V be a subspace vanishing to order 2 on K. Then codimV’ < 4|K]|.

Lemma 3.15 implies that V"’ is trival. Thus
p—1
4|K| > codimV’ = dimV = [A] = > (2p— o1 — ag) =p’ +p’.

aq,a2=0

3.4 Joint Theorem

In this section, we will show another important application of the polynomial method in discrete geometry.

Definition 3.16

Given a set of lines in R, a joint formed by these lines is a point that lines on d given lines, whose

directions are linearly independent. &

For example:Suppose that z, y and z are three given lines in R3. The origin is a joint.

Indeed, what we care about is that if we give a set of lines, how many joints are there? Namely, we want
to bound the number of joints formed by a set of lines. The Joint Theorem gives a tight upper bound for any
given a set of lines.

It has long been conjectured that the correct upper bound on the number of joints in R? is O(n3/ 2). Guth
and Katz [Guth_2010] have settled the conjecture in the affirmative, showing that the number of joints in R? is
need O(n®/?). Lately, Kaplan, Sharir and Shustin [Kaplan_2010], and Quilodrin [Ren_2020] independently
extended this result into R%. In 2020, Carbery and Iliopoulou [Anthony_2020] solved this in all filed F¢. In
what follows, <4 (y) is the same as © = Og(y).

Theorem 3.17. [Joint Theorem]

The number of joints formed by N lines in R® is <g N a1,

Remark Take S hyperplanes in R? in general position. Then
o Any d — 1 of them intersect at a line and the number of lines is ( dfl).
o Any d of them intersect at a point (joint) and the number of joints is (2) >, N4/ (d-1),

Idea Suppose a non-zero low-degree polynomial f is heavily incident to given lines. This means that f vanish

on all these lines. Then we will derive some information about 3/ f to get a contradiction.

Proof Let J be the set of joints formed by a set L of lines. This theorem immediately follows from the following
claim. We see that if this claim is true, then take out one such "light" line at a time, each time we remove

<4 |J|M¢ joints. This implies |J| <q N |J|"/%, as required. Therefore, it suffices to show the following claim.
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3.4 Joint Theorem

Claim There exists a line [ € L containing <g |J ]1/ 4 points.
Proof of Claim Suppose not, i.e., for any line [ € L, the number of joints on L is 24 |J \1/ ¢ Let us take a
non-zero polynomial f with minimal degree in R? that vanishes on .J. Then the number of constraint is at most
|.J|. This implies that the degree of F is < |.J|'/*.

For each [ € L, consider the restriction f;. Because

degfy < degf <a|J|Y* < |JNR],

f1 vanishes on the whole line /. This yields that f vanishes on all lines L. Thus, for each p € J, letly,... Iy
be the set of d linearly independent lines going through P. Let v; be the direction of /; (See Figure 7.3).

L]
YQ
L]
Vd Al

—
joint p la
l
1 I,
Figure 3.1

Since f vanishes on I;, we have \/f (p) - v; = 0 (directional derivation). Because {v;};., linearly

of
oy
independent, we get </ f (p) = 0. This implies v/ f = : vanishes on J. In particular, all % vanishes on
of
Ooxy
J. Note that there is at least one % such that it is not a O-polynomial. Otherwise, f is a non-zero constant,
af

which contradicts the fact that f vanished on J. Now, 7~ is a non-zero polynomial with a lower degree than f

and vanishing on J, contradicting the choice of f.

There exists another different proof without taking derivative by Zhang. Before we launch out the proof,
we first give a definition about ordinary or special joints on a line with respect to a polynomial f.

Definition 3.18

Let f be a polynomial. For each joint p in a given line l, take an affine linear map

| — x4-axis
T(): pi—>0
frfoTyt

Then f o TO_1 (0) = f(p) = 0. We say that p is ordinary on l if the lowest homogeneous part of f o TO_1

is independent of x4; Otherwise we say it special. &

This definition is independent of choices of T}, because two such maps Ty = T} o T only differ by another
map 7 that is a scaling when restricted to z4-axis.

#:  Exercise 3.2 Let x, y and z — a be three polynomial in R3, where a is a constant. What is the lowest homogeneous

part? (—zya is independent of z.)

Idea Instead of caring about polynomial vanish at a given point, Zhang rather looks at the Taylor series around
that point.
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3.4 Joint Theorem

Proof Let L be the set of [V given lines and J a set of joints. We first take a non-zero polynomial f with degree
<a|J |1/ ¢ and vanishing on J. Then we shall see the following two statements.

(7) Every point p is special on at least one line passing through it.

(1) There exist at most deg f many special joints on any line [ € L.

Next we use the double-counting method on the number of special joints. On the one had, the number of
special joints is at least |J| by (7). On the other hand, by (i), the number of special joints is at most N - deg f
<a N |J| 1 4 as required. So we just need to prove these two statements.

Let us first prove (7). For any p € .J, take an affine linear map

p—0
To: <. :
lines through p — z;-axis
(See Figure 3.2). This implies that the lowest homogeneous part of foT{" ! depends on some z;, since otherwise,
itis a constant and f o T}y 1(0) # 0, a contradiction. Hence p is special on the corresponding line.

L)
7
Zq
N N
Figure 3.2
For (i7), we show the following claim.
[ — z4-axi
Claim If p is special on [, for any 7 : *d SXIS, then f o Ty (z) = 3, 2@ f, (x4), where
D
a = (aq,...,0q-1). Further, for any o with |a| = a1 + -+ + a4—1 and f, (z4) not a O-polynomial, then
fa(xq) vanished at z4 = 0.
[ — xg-axis

Let us see how the claim prove (ii). For any map 7T : { , we have f o T !(z) =

p = (0707-~-707PT>
Yoa (@9 f, (x4 — pr). Then for any a with || minimal and f,, # 0, pr is a root of f,. This implies that the
number of special p on [ is at most deg f, < degf <g4 \J\l/d.

Proof of Claim Suppose for a contradiction that f,(0) # 0. Notice that f,(0) is the constant term of f,. By

@0) is in lowest homogeneous part of f o Ty . This implies that other

minimality of c, we get that f,(0)x(
terms in lowest parts are all independent of x4. Otherwise, some of power of x1,...,x4_1 is strict less than

||, contradicting the choice of .
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Chapter 4 Capset problem and Slice rank

Definition 4.1
A capset A C FY is a set with no line {x,x + r,xz + 2r}, where x,r € F} and r # 0. &

The capset problem is to bound the maximum size of a capset in F%.

Remark

o Meshulam extended Roth’s Founer argument < O(%)
o Croot-lev-Path, 34 P-free set in Z}} in exponexily small.

o Ellenberg-Gijwijt independently showed that a variation of C'L P technique = O(2.756™).

Lower bound: Edel showed the lower bound > (2.2174)"
o Tao: a symmetrial variation of C'L P, which treats all 3 variables the same.

4.1 Slice rank

let us start with the basic two variable polynomial. Let X,Y be two finite sets and F a field. Let
f X xY — F be a two-variable function of rank one if there exist two single variable functions v : X — F
and v : Y — F such that f(z,y) = u(z)v(y) for any (z,y) € X x Y. In general, the rank of a two-variable

function is the minimal number of rank one functions whose linear span contains it. i.e.

k
= Z ui(x)vi(y
i=1

Further, if f : X X Y x Z — F is a three variable function,naturally,

(x,y,2 Zuz w;(2).

Instead, f has slice rank one if f(z,y,z) = u(:z;)v( y, z) for each (z,y,z) € X x Y x Z. In general, the

slice rank of f is the minimal number of slice rank one functions needed to write f as a linear combination.

This means . .
2
f(@,y, 2 Zuz z)vi(y, Z ui(y)vi(z, 2) + Z u;(2)vi(2, ).
1=r1+1 1=ro+1

In R2, if we have a diagonal matrix with centry f(z,y), which means f(x,%) # 0 if and only if x = y,
then rank of this function is the number of non-zero diagonal entries.

Frow now on, we use s7( f) to denote the slice rank of f. Let 15 denote indicator function for a set S. This
1 ifxesS

0 otherwise

means 14(x) =

- If S = a, then we write 1, instead of 1,;.

Let X be a finite set and A C X. Let F be field and f : X® — F three variable function such that

f(z,y,2) #0ifand only ifx =y = z and x € A. Then sr(f) = |A|. v




4.1 Slice rank

Proof Since f(x,y,z) # Oifandonlyifz =y = z € A, wehave f(z,y,2) = > o4 La(2)1a(y)1a(2) f(a, a,a).
This implies sr(f) < |A|. Therefore, it is left to show sr(f) > |A|. Suppose sr(f) = r and write
[y, 2) = >0 wilw)vi(y, 2) + 2002, wily)vi(z, 2) + >0, 1 wi(2)vi(x, y), without loss of generality
assume 71 > 0.

We shall construct a two variable function g : Y x Z — F, thatis, g(y, 2) = > cx h(z) f(2.y, 2), where
h : X — F and show the rank of ¢ (i) > |A| — r1; (ii) < r — r1. This yields r > | A|, as desired.
Claim There exists a function & : X — F such that ) h(x)u;(x) = 0 and the number of zero entries in
h is at most 7.

Proof of Claim Consider the rector space of function h : X — F orthogonal to all u; in V. This implies
Ul ..

dimV > |X|—ry. Let M = ( v ) Then Mh = 0 for any h € V. Now, we want to find 4 with at most
r1 zeros. We have Mr1,|z\h\x|,1 : Orl:l.. Then the number of variables is | X | constraint is 71 and freedom is at
most | X' | — r;. This implies that there exists a h € V' with at least | X | — 1 non-zero entries.
Claim g is diagonal with diagonal entry h(a)f(a,a,a) for any a € A, out of which is at least |A| — r;
non-zero.
Proof of Claim Recall f(x,y,2) # 0 < © =y = z = a € A. This yields that g(y, z) = 0 for any y # z,
and g(y,z) =0 foranyy = z ¢ A.

This claim implies (z). For (i),

ro r

= Z h(l‘)f(l’,y, Z) = Z h Zuz Uz y, Z ul(y)vz(x,z) + Z ul(z)vl($7y)]

rxeX reX i=ri1+1 i=ro+1
“4.1)
2

Since i L uy, the first term of the above equality equals 0. The second termequals ) -y h(z) > i2,. | ui(y)vi(z, 2),

that is, > ;2 ui(y) > pex h(x)vi(z, ). This implies the rank of g is at most r — ry.

i= 7"1—1—1

Lemma 4.3. [Rank of diagonal hyper-matrices]

Let X be a finite set, there is A C X. Let F be a field. Let f : X3 — F, where f(x,y, z) # 0 if and only
ifx =y =z € A, then the slice rank of f sr(f) = |A|.

Q

Often we want to (upper) bound the cardinality of a set A, with certain forbidden structure, i.e. s-free.
Define a polynomial f : A> — F, s.t. it is non-vanishing with f(x,y,2) # Oifand only if x = y = z € A.
Then there is slice rank of f sr(f) = |A|. Ellenberg and Gijswijt[12] gave a better upper bound.

Theorem 4.4. [Ellenberg-Gijswijt]

For any capset A € F}, i.e., there is no line {x,x + r,z + 2r} with r # 0,then |A| < O(2.756™). 0 ’

To prove the theorem, we first give an observation for a necessary and sufficient conditiononz =y = z = 0.

Then we define a suitable f with utilizing the opposite direction of the observation.

Observation 4.5
Forz,y,z€ Fy, e +y+z=0ifandonlyif v =y =z =0orz,y, z formaline {x,z +r,x + 2r} "

So for a capset A and for any z,y,2 € A,z +y+ z = 0if and only if z = y = 2z = 0. Recall that
if v € Fp, z # 0, then =1 = 1. Then if z +y + 2 # 0, there exists i € [n] s.t. x; + y; + 2 # 0. And
1—(zi+yi+2)=0.
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4.2 Sunflower

Definition 4.6

Define f : A3 — Fstobe f(x,y,2) = [1ie1(1 — (zi + yi + 2:)?). Iy

Then f(z,y,z) # 0if and only if z = y = 2z € A. According to the rank of diagonal hyper-matrices
Lemma, there is sr(f) = |A|. The last preparation before proof is offering a Claim about contrainting sr( f)
with the number of 0,1,2-vectors.

Claim sr(f) < 3R, where R = ) ﬁ:c, denotes the number of 0,1,2-vectors v of length n, with a, b, ¢ >
0,a+b+c=nandb+2c< st v+ ...+ v, < F
Finally, we finish the proof of the Ellenberg-Gijswijt theorem.
Proof Note that f(z,y,z) = [[1(1— (zi+y;+2)?) is a 3n-variable polynomial with total degree < 2n and the
degree of each Variable (24, Ys, z; is no more than 2. Thus, f is a linear combination of monomials of the form
ryP2Y = | J g H? b I17 =, 7, where a, 3, v are 0,1,2-vectors of length n and |a| + 18] + 7] < 2n.
Then for any such z%y”27, by plgeonhole principle, one of the exponent is no more than ,1.e. either |o| < 2”
or |8 < & or || < &
fi(@,y,2) = 32 <2 Cazgaly, 2),
Besides, we have f = f1 + fo + f3, with { fa(z,y,2) = Zlﬁ CsyPgs(x, 2),. Note that sr(f) =
f3(337y> ) = ZMS%” 07Z gy(w,y).
Z? sr(fi) where sr(f; is no more than the number of 0, 1, 2-vectors of length n with coordinates sum up to

‘:“

%”. Let a, b, ¢ be the number of Os, 1s, 2s in such vectors. Then we have R = )
a,b,c>0,a+b+c=nandb+2c< %” at the same time.

To estimate R, say a = (a + o(1))n, b = (8 + o(1))n, ¢ = (v + o(1))n. Stirling’s formula tells us
that a'b' ;= ef@Banto) with h(a,B,7) = alog 131og %’ylog%. Set N = ¢X+o() where X =
max h(a, B,7), st a,8,7y>0,a+ [ +~v=1,and f+ 2y < % By Lagrange multiplier, the max attains

_ 32
T 3(15+/33)

h(a, B,7v) ~ 1.01345 when ¢ 3 = % . And then we finish the proof.
_ (V331
" 6(154++/33)

ab,c a,blc, , where a, b, ¢ satisfy

4.2 Sunflower

Definition 4.7

Letk € N, sets A1, ..., A form a k—sunflower, if they have common pairwise intersection, that is, 3 a
set C, subject to, ¥ distinct i, j € [k], Ai(VA; =C

&

Conjecture 4.8. [Erdos- Szemerédi sunflower conjecture]

Vk,3e = c(k) < 2, subject to, YA C [n] with no k—sunflower has size | A |< C™, we will see a solution
for 3—sunflower. v

Naslund and Sawin[ 18] prove the following theorem for explicit bounds.

Theorem 4.9. [Naslund- Sawin]

VA C 2", a 3—Sunflower free collection of subsets of [n], then | A |< 3n ZK% (1) < (2%)(1+0(1))n
- Q
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4.2 Sunflower

Figure 4.1

3 ~1.8898 < 2
Proot2 3Identify S € Aisequalto 1, € {0,1}" indicator function. So view A as a set of vectors in {0, 1}".
Need to construct f : A3 — F.
f(z,y,2) # 0isequal to x = y = z € A, then [keylemma] = sr(f) =| A |.
V distinct 3 sets, z,y, z € A, 3 — sunflower — free =Y NZ\X # ©
= Ji, s.t.{x;,vi, 23 = {0,1,1}
#Z—(:L‘i-Fyi-in) =0
Problematic off-diag case:
XX,.Yand X C Y,
= V1, {x;, yi, z; jcan only be {0, 0,0}, {0,0,1}or{1,1,1}
To fix this, partition A = U}’_; A;, where A; consists of all sets of size .
Take [ max | A; |,s0| A|[<n| A4
Now define f : A} — Fhas f(z,y,2) = [[n1(2 — (2 + i + 2))
then f(z,y,2) #0 =y ==z
sosr(f) = A= 1A
f is spanned by monomials. z%y°27, s.t. |a |+ | B |+ || @, B,y € {0,1}"
= one of them < %
group monomials by this smallest degree one.
f= fitfatfz where fr =32 <n caX®Ga(y, 2) f2 = 2 5<n csXPgs(y, 2), f3 = 2p<n X 794(y; 2).
sr(fi) < #{0,1}" vectors with < 5 =37, - ()
= 5 (A) <[ A= sr(f) <3%0cy, ()
In fact, we have a theorem by Alon[4] which is useful for lower bounding.

Theorem 4.10. [Alon, Combinatorial Nullstellensatz]

Let f be a non-zero n-variable polynomial on F. Let 51,53, ...,.Sy be subsets of Fp,. Suppose [ has

k1

a term x mﬁ" with non-zero coefficients and denote the degree of f equals > | k;. For any i € [n],

| S; |> ki, which implies f cannot vanishon S; X ... X Sp.

Q

Proof
To prove the theorem, we induct on degree of f.

o Base case is degree f = 0, which is trivial.

33



“

4.3 Covering cube by affine hyperplanes

o On inductive step, degf > 0, without loss of generality, assume k; > 0. Suppose f vanishes on the
[T} Si, pick an arbitrary a € Sy and use polynomial division to write f(z) = (z1—a)g(x)+h(z2, ..., ).
As f(x) vanishes on {a} x S2 X ... X Sy, h(za, ..., z,) vanishes on Sy X ... X S, then (x1 — a)g(x)
vanishes on S x ... x S, which implies g(x) vanishes on (57 \ {a}) X ... x Sp.

o f has xlfl ..z with non-zero coefficients and g(z) has x]fl_l...a:ﬁ" term with non-zero coefficients and

degree equals deg g. A contradiction.
Combinatorial Nullstellensatz theorem is useful for lower bounding size of some set A. The strategy is to
suppose | A | is too small and that we want to find a low-degree polynomial f " which vanishes on a too large

Cartesian product set, leading to a contradiction.

Definition 4.11

A+B={a+b:a € A be B} denotes the sum set of set A and B. & ’

We have an important inquation[Davenport, H.]
Theorem 4.12. [Cauchy-Davenport]
Let p be a prime and A,B C F,. Then | A+ B |>min{| A |+ | B | —1,p}. @’

Remark

(i) Bestpossible: A=1{0,1,---,a—1},B={0,1,--- ,b—1},A+ B={0,1,--- ,a+b—2}

(i) P being a prime is necessary.
Divisibility barries: Consider Zy,, A= B = evens, A+ B=A=1D
Proof

If| A|+ | B|> P,then A+ B = F, Indeed, Ve € F,,, C —B = {c—b:be B},(C—B)UA # @, then
da € A,b € B, subjecttoc—a=borc=a+b. Assumethen| A |+ | B|< Pthen| A|+|B|—-1<P.
Suppose for contrary that | A+ B |<| A | + | B | =2 < P — 1, and there exists set C' O A + B of size
| A| + | B| —2. Itis thought that we need to find "low- deg’ f vanishing on a large product set and it is natural
product = A x B, i.e., we want to get f(a,b) = 0,then [[ (2 +y —¢).

Let f(z,y) = [[.cc(® +y — c). The degree of f =| C' |=| A | + | B | —2. Then f vanishes on Ax
by definition of f. It is left to check f has term X |AI=1y’IBI=1 with non- zero coefficient. It is true about the
coeflicient (lAmﬂ_Q) # 01in F}, because | A | + | B | —2 < P and P is a prime.

What about restricted sumset A+A = {a+a : a,a’ € A, a # a'}? We conjecture by Erdds-Heilbrown.

Theorem 4.13. [Dasilv- Hamidollne 94]

Let P prime, A C F,, then A+P = F,or| A| +A[>2] A| -3.

Exercise 4.1 Prove the theorem.

4.3 Covering cube by affine hyperplanes

An affine hyperplane is a set of vectors H = {z € R" : (a,x) = b} with a € R” and b € R. How many
affine hyperplanes we need to cover the hypercube (apart from origin: {0,1}" \ {0}, where 0 = {0, ...,0})?
If we have no further restrictions on the covering, then just two hyperplanes Hy = {x € R" : (e;,z) = 0} and
Hy = {z € R": (e1,x) = 1} are enough, where e; = (1,0,...,0) is the first unit vector. So we require that
the all-0 vector 0 remains uncovered?
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4.3 Covering cube by affine hyperplanes

Theorem 4.14. [Alon—Fiiredi, 1993]

Let Hy, ..., H,, be hyperplanes in R™ such that none of them contain 0 and they together cover all other

vertices of the hypercube {0,1}"\ {0}. Then m > n. v

Let us recall that how do we use Theorem 4.10 to lower bound | A|?
Strategy: Suppose |A| is too small. Then we can find a polynomial f with “low degree” (w.r.t some set
S;) such that f vanishes on too large product set [ [, S;.
Thought process:
o Here, the natural product set is {0, 1}", and we take each subset S; = {0, 1}. Note that |.S;| = 2 implies

that z 22 - - - 5, is a high order term and deg f = n. We need to construct a polynomial f to vanish on
{0,1}" =TI, S.
o For each j € [m], we write
Hj:={x:(aj,x) = b;} forsome aj,b; #0. (%)
We know that for every z € {0,1}" \ {0}, there exists some index j € [m] such that z € Hj, i.e.,

bj — {aj,z) = 0. This suggests that the polynomial [}, (b; — (a;,)) vanishes on hypercube apart
from 0.

o Then we need to add to above a polynomial

I, by, ifa=0;

h =
0, elsewhere in hypercube;

and finally g = (= [72, b;) - [i=; (1 — ;) as we desired.

Proof We write H; as in (% ). We consider the polynomial

fa) =TT — (@ 2)) = ([T o) L@ — )
i=1 j=1 =1
and S1 = --- =S, = {0,1}. Suppose m < n. Then deg f = max{m,n} = n and the coefficient at z; - - - x,,

is nonzero. But f vanishes on [ [ S;. This is a contradiction because Theorem 4.10 implies that there must be a
point z € {0, 1}" such that f(z) # 0.

Theorem 4.15. [Chevalley—-Warning, 1935]

Let p be a prime, and let f1,. .., fm be polynomials on F}; with Y7 | deg(f;) < n. If there is one

common root, then there is another common root. V)

We remark that the original statement is stronger: if there is one common root, then the number of common
roots of f1,..., fm is divisible by p. In particular, if there is one common root, then there are at least p common
roots.

Thought process:

o Here, the natural product set is F!, and we take each slice S; = F,, for every i € [n].

o Suppose fi, ..., fm have exactly one common root ¢ € F}. Then for every ¢ # c, there exists an index
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4.4 Finding regular subgraphs

J € [m] such that f;(c¢’) # 0in Fp,. Then we can take a polynomial

m

(- fapy={" TEHE

j=1 1, z=c

o To make it vanish also at ¢, we need to add to it — [/, (1 — (z; — ¢;)P71).

Proof Take Sy =---= 5, =F, and

m n
H1— 2P ) =] = (@i =)™,

=1

Then deg f = max{(p —1)>°70 deg fj, (p — l)n} — (p — 1)n and the coefficient at %' ... 257" s
nonzero. But f vanishes on [].S;. This is a contradiction because Theorem 4.10 implies that there must be a
point » € F); such that f(z) # 0.

4.4 Finding regular subgraphs

Theorem 4.16. [Pyber, 1985]

Let k € N and let G be an n-vertex graph with average degree d(G) > 32k? - logn. Then G contains a
k-regular subgraph.

Theorem 4.17. [Pyber—Rodl-Szemerédi, 1995]

Let k € N and let G be an n-vertex graph with average degree d(G) > ci log A(G). Then G contains

a k-regular subgraph. In particulr, there exists an n-vertex graph G with d(G) > c - loglogn with no
3-regular subgraph.

Q

Q

The following sufficient condition for a graph to contain a regular subgraph was derived by Alon, Friedland
and Kalai (1984) using the Combinatorial Nullstellensatz.

Theorem 4.18. [Alon-Friedland—Kalai, 1984]

Let p be a prime and let G be a loopless multigraph with d(G) > 2p — 2 and A(G) < 2p — 1. Then G
contains a p-regular subgraph.

Q

A standard trick to view a graph algebraically is to identify G with its edge set E(G).

o We will often identify E/(G) with elements (vectors) of {0, 1} () by associating a set with its characteristic
vector.

o Also, we treat subgraph of G with elements (vectors) of {0, 1}£(¢),

o (%) There exists a p-regular subgraph < a vector z € {0,1}™ \ {0} (m = e(G)) such that for every

vertex v € V(G), Y, .. Te = 0 mod p.

veEe

Thought process:
o Here, the natural product set is [J.cp gy Se, where Se = {0,1}. Note that [Sc[ = 2 implies that

[Lc B(G) Te 15 @ high order term and deg f = m. We need to construct a polynomial f to vanish on
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4.5 Finding zero-sum multisubset

{0.13" = s Se

o Suppose no such vector of (¥) exists. Then for every = € {0,1}™ \ {0}, there exists a vertex v € V(G)

such that Ze # 0 mod p. Tt suggests that we can take a polynomial

p—1 m -
o) = 1 1_(2336) _fo ze oy

veV(G) e:wee 1, z=0.

ewwee

o To make it vanish also at {0}, we need to add to it

ha)=— [ -z)=1" v € 0,1} {0);

ccE(G) -1, =0

Proof Associate each edge e of G with a variable . and let

f)= ]I 1—(er>p_l - I -=0.

veV(G) ewwee ecE(Q)
We have that deg f = max{n(p—1),m} = mas d(G) = 2% > 2p— 2, and the coefficient at the highest order
term [ [ ¢ () @e is nonzero. Theorem 4.10 implies that there must be a point 2 € {0, 1}™ for which f(z) # 0.

But f vanishes on ] . B(@) Se, a contradiction.

4.5 Finding zero-sum multisubset

Let A = (a; ;) be an n x n matrix over a field F. The permanent per(A) of A is the sum

per(A) = g a14,02,5 - An iy
(il,iz,“.,in)

of n! products, where (i1, 2, ...,1y,) is a permutation of (1,2,...,n).

Lemma 4.19. [Permanent Lemma]
Let A be an n x n matrix over a field F with per(A) # 0. Let b = (by,...,b,) € F"and S1,...,Sy, be
subsets of F with |S;| = 2 for each i € [n]. Then there exists a vector x € [[;_, S; such that Ax — b has

no zero coordinate, i.e., (Ax); # b; for every i € [n].

Q@
Proof Exercise!
Theorem 4.20. [Erdds—Ginzburg—Ziv, 1961]
Let p be a prime and let A be a multiset of Z,, with size 2p — 1. Then there exists a submultiset of size p
whose element sum up to 0 mod p. v

Proof We first order elements of A in non-decreasing order as

0<ar<ax<---<ap<ap1 <---<agp1<p—L
We may assume that for any i € [p — 1], a; # a;4p—1. Otherwise, for some ¢ < p — 1, we have a; = aj1p—1,
then a; = aj41 = - -+ = @j4p—1 Which sum up to pa; = 0in . Let S; = {a;, aj4p—1} forall i € [p — 1] and
J = (1)(p—1)x (p—1) be all-1 matrix. Is is easy to verify that per(.J) = (p — 1)! # 0. Letb = (b1,...,bp-1)
be such that B = {(b1,...,bp—1} = Z, \ {—az,—1}. Then Lemma 4.19 implies that there exists a vector
x € [[Z] S, such that (Jz); # b; for every i € [p — 1]. It means that (Jz); = 21 + - - - + 2p—1 ¢ B. Thus we
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4.5 Finding zero-sum multisubset

have x1 + -+~ + xp—1 + agp—1 = 0. Asx; € S; and all S; is disjoint, we get a multisubset of size p with sum

up to 0.
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Chapter 5 Pseudorandomness

Recall Szemerédi’s regularity lemma, which partitions any (large) graph G into bounded number of parts
such that almost all pairs of parts induces a random-like bipartite graph. We will take a look at the notion of
pseudorandomness, also referred to in other contexts as quasirandomness, regularity, uniformity to describe

objects that are random-like.

5.1 Quasirandom graphs

We will first take a look at quasirandom graphs, introduced in the 80s by Thomason and independently
by Chung—Graham—Wilson. We shall define several properties that at the first glance seems irrelevant of one
another but turns out to be equivalent in the sense of being random-like. One immediate application of this is
that we have many different ways of checking whether a graph is quasirandom, as if a graph satisfies any one of
the equivalent properties, then it satisfies all of them.

We need some notations before stating the equivalent quasirandom properties.

o G is an n-vertex graph with edge density p € (0,1),1i.e. p = e((nG)).

2
o Welet \1,..., A, be the eigenvalues of the adjacency matrix A of G, ordered by
A1l > [Aa] = - > [An].

o Forevery u,v € V(G), we write d(u,v) = |Ng(u) N Ng(v)| for the codegree of u and v.
Subgraph density of H in G:

the number of label copies of H
V(@)

= Pr(a uniform random map f induces a copy of H).

HH,G) =

o Homomorphism density of H in G:

the number of label homomorphisms of H
|V (G)|IVH)

= Pr(a uniform random map f is a homomorphism).

HH,G) =

o Induced subgraph density of H in G:

the number of induced label copies of H
V(G)|IVE)

= Pr(a uniform random map f induces an induced copy of H).

tina(H,G) =

Theorem 5.1

Let p € (0,1) and G be a d-rgular n-vertex graph with d = pn. Then the following properties are
equivalent.

(1) [Induced Subgraph Count] For every graph H,
tina(H, G) = p"™ (1 = p)™) +o(1).
(2) [Subgraph Count] For every graph H,t(H,G) = pf) 4+ o(1).




5.1 Quasirandom graphs

(3) [4-cycle Count] t(Cy,G) < p* + o(1).

(4) [Spectral gap] |A2| = o(n).

(5) [Discrepancy] For any A, B C V(G), e(A, B) = p|A||B| + o(n?).
(6) [Codegree] 3 ., ,cv () ld(u,v) — p*n| = o(n?).

Q

Proof We will prove [Induced Subgraph Count] = [Subgraph Count] = [4-cycle Count] = [Spectral gap] =
[Discrepancy] = [Codegree] = [Induced Subgraph Count].

o (Induced Subgraph Count) = (Subgraph Count): Exercise.

o (Subgraph Count) = (4-cycle Count): By definitions.

o (4-cycle Count) = (Spectral gap):

IDEA: This amounts to write C4-count using trace of A* and the correct count of Cy means the contribution
from the non-trivial eigenvalues \;, 7 > 2, is negligible.

Exercise. For every u,v € V(G) and k € N, (Ak)uﬂ,, the u, v-th entry of the k-th power of the adjacency
matrix A, is the number of u, v-walk of length £ in G.

Then the trace of A*
ARy ="

1€[n]
counts the number of closed walks of length & in G. Among these walks, the non-degenerate ones are C', while

the degenerate ones is easily seen to be negligible, at most O(n*~!). Recall that for d-regular graphs, \; = d.
Splitting out the first term in tr(A%), we see that

pint +o(n?) > t(Cy, G)n* + o(n) = tr(A*) = A} + Z M =pint 4 Z A
i>2
implying that |\;| = o(n) for all i > 2.

5.1.1 (Codegree) = (Induced Subgraph Count)

Proof Let H be a graph with vertex set V (H) := {vy,va,...,vs}. Forr € [s], let H, := H[{vi,...,v,}] be
an induced subgraph of H. Note that I = H. We shall use induction on 1 < r < s, via building H,,; from
H,., to show that (& has the ‘correct’ count of induced copies of H = H;. We use N, to denote the number of
labelled induced copies of H, in G. Our aim is to show that

Ny = (14 o(1)n"p ) (1 — p) ). (5.)
The base case = 1 trivially holds. Now assume that (5.1) holds for 1 < r < s, we will show that it holds for
r 4 1.
Extension function. Let ¢ € {0, 1}" be the vector recording the adjacencies of v,;1 to H, in H,;1. Namely,
for any j € [r], we have ¢; = 1 if and only if vjv, 1 € E(H,41). Let V(") be the set of ordered r-tuples in V
and n, = [V")|. Forany w € V"), define

X(w)={veV(G):v ¢ wand v ~ w;jif and only ife; = 1 forall j € [r]}].
It is convenient to view things probabilistically. Let 2 := V(") and Q* := {w € Q : w = H,.}. Note that
Neji= Y X(w). (5.2)

weN*
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5.1 Quasirandom graphs

Now we endow ) with uniform probabilistic measure and let X be a random variable such that for any w € €,

1
Pr[X = X(w)] = .
(r)
Concentration of random variable X. To complete the proof, we need a concentration equality as follows.
> X(w) = |97 - E[X] + o(n" ). (5.3)

weN*
Assuming (5.3) for now, let us finish the proof first. Recalling the inductive hypothesis and the definition,

we have that
Q] = N, = (1+ o(1))n"p"Hr) (1 — p)et),

Observe that

We count ) X (w) from the perspective of the (r + 1)-tuple. For any u,1, the number of w attaching to

weN
w41 With respect to € is ;0“E | (1— )T_‘E In”, which implies that
> X(w) = (1+0(1)pl (1 — p)Flnrt1,
weN

Thus E[X] = (1 + o(1))pl*l(1 — p)"~I¥In. Finally, combining (5.2) and (5.3), we derive

Nt =Y X(w) =[] BIX] +o(n*")
weN*

(1+0(1)p(1 = p) = Fn - p M) (1 = p) T 4 o™+
= (14 o(1))peHr+1) (1 — pyeHr)pr+1,

The last equality holds as |¢| + e(H,.) = e(H,11) and r — |e| + e(H,.) = e(H,41).
Proof of concentration equality. Use Cauchy-Schwarz inequality to prove the following lemma (Exercise).

Let X be a random variable over finite set ) with uniform measure. Let 2* C §Q, then

S X(w) = 2] - BIX] £ /[ [ Var(X]
weN* Q

By lemma above, it suffices to prove that

VI - Q] Var[X] = o(n™ ). (5.4)
As Var[X] = E[X — E[X]]? = Z (X — E[X])2, (5.4) is equivalent to
VT JVar(X] = \/rm (X~ BIX))?
we
- \/m*r (X2 - (BX))?)
we
_ O(nr—H)
Recall |Q*| = N, = O( ") and it suffices to show
S X (w)? = [QIELX])? + o(n'2) = p2El(1 — p)2r—FDnr+2 4 o(nr+2), (5.5)

we
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5.1 Quasirandom graphs

We shall approximate it by

T=) Xw)(X(w)-1)
we
using double counting. Counting from the perspective of {u, v} where both u and v attach to the same w with

respect to £, we have
T= Zd@(u,v)ls|d§(u, )

To compute 7', we need a claim as follows (Exercise).
Claim For any u # v € V and any integers k, k' > 1, we have
> da(u,v) dgu, )" = (1+0(1)p?(1 - p)? 0k 2,
uUFU

Hint: Let 6, = dg(u,v) —p*n. Codegree condition actually implies that for any k € N, Y [0y, |F = o(n**+2).
uFv
In addition, 6, = dg(u,v) — (1 —p)*nand Y |0us|" = o(n*2).
uFv
This claim implies that

T = (14 o(1))p?Fl(1 — p)20r=lehpr+2,

Finally, we compute the difference and obtain

Z X(w)2 =T+ Z X(w) =T+ O(nrJrl) :p2|z-:|(1 _p)2(r7\s\)nr+2 + O(nr+2)
we we
as desired.

5.1.2 (Spectral gap) = (Discrepancy)

Definition 5.3. [(n, d, \)-graph]

An (n,d, \)-graph is an n-vertex, d-regular graph whose adjacency matrix has eigenvalues d = \y >
oo > Ay satisfying max{|Aa], | An|} < A

)
If we can prove the following lemma, then (Discrepancy) holds.
Lemma 5.4. [Expander mixing lemma]
If G is an (n,d, \)-graph, then for any S,T C V(G),
d
o(5.T) - SISIIT| < /BT
Q@
Proof Consider characteristic vectors 1g and 17. Let A be the adjacency matrix of G and assume that
A1 > .-+ > A, be the eigenvalues of A and vy,...,v, be the corresponding eigenvectors which form an
orthonormal basis. Thus, there exist constants a, .. ., y,, 51, ..., 8, such that
Is = Z vy, Ir = Z Bivi.
1€[n] i€[n]
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5.1 Quasirandom graphs

Note that \; = d and vy = (1/y/n,---,1/y/n)T is a corresponding eigenvector. We have
G(S, T) = 1£A1T = <Z V4, Z ﬁzAUZ>

1€[n] 1€[n]
Z alvl7 Z /BZ)\ U’L
i€[n]
= Z i3 = day By + Z i ;.
i€[n) i=2
To bound the last term, we first compute the values of 1, £1. We have a; = (v1, 1g) = f and 5 = ﬁ'
Thus, we have
d|S||T
o(s,7) — U5 ” | ZAZ iBi-
By Cauchy-Schwarz inequality, we have
d|S||T
(ST) | || | <)‘Z’261|<AZ 1/22621/2
=2 =2
5] |T|
= A\/(ISI —af)(|T| - B7) = A\/IS\(l =TI ===

< AVISIITY,

the first equality holds since [S| = (1, 1g) = (X ;e ¥iVis Doiepn) QiVi) = D icpn] a?, as desired.

5.1.3 (Discrepancy) = (Codegree)

Proof We will prove a stronger statement that every vertex has small codegree deviation: for any w,
> ld(u,v) = p*n| = o(n?).
vIvFEU
To get rid of the absolute value sign, we split V(G) \ {u} = BT UB~ where BT := {v : d(u,v) > p*n},
let A := N(u), so |A| = pn and we have
Z ‘d(ua U) - p2n‘ = Z (d(uvv) - an) + Z (p2n - d(u,v))
vivFAU veBT vEB~™
(e(A, BT) = p*n|B*|) + (p°n|B~| - e(A, B7))
= (e(A, BT) = plAlIBT]) + (p|Al|B™| — (4, B7)).
Now applying (Discrepancy) to the two terms, we finish the proof.

For sparse graphs, the analogue of (Spectral gap) (A2 = o(d)) implies the analogue of (Discrepancy)
(le(A, B) — p|A||B|| = o(n?))) by Lemma 5.1.2, while the analogue of (Discrepancy) does not necessarily
imply the analogue of (Spectral gap). For example, consider an n-vertex graph G, which is the disjoint union of
a random d-regular graph with n — d — 1 vertices and a K 4,1 where d = o(n). This graph has (Discrepancy)
property, because for any A, B C V(G), le(A, B) — p|A||B|| = o(dn). However, we obtain A\; = Ay = d by
the following claim.

Claim For a d-regular graph G, the multiplicity of the eigenvalue d is exactly the number of components of
G.

Proof Assume that the number of components of G is k, its adjacency matrix A can be block diagonal with k
blocks, denoted by A1, ..., Ay. We have det(zE — A) = det(zE — Ay) - - - det(xE — Ay,), so the multiplicity

of d for A is the sum of the multiplicity of d of each A;, i.e. the number of components of G.
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5.2 Basics on Caylay graphs

Remark In retrospect, it is perhaps not that surprising now that the seemingly weaker property of [4-cycle
Count] is equivalent to [Induced Subgraph Count]. Indeed, we’ve seen that [4-cycle count] = [Codegree]. In
the proof of [Codegree] = [Induced Subgraph Count], we count H-subgraphs by building it up one vertex at
a time, and define Hy, Ho, ..., Hs = H. Let H; | be the graph obtained from H, 1 by adding a new vertex
vy, 1, which is a copy of v,-11. To count H,.;1, we need to control the variance: the number of H, ;, which in

view of the twins v, 1 and vy, 1, is governed by the [Codegree] property.

Consider sparse graphs(d = (n)) and see what still holds. By expanding lemma, the [Eigenvalue](Spectral
gap,|\2| = o(d)) implies the [Discrepancy](|e(A, B) — %\A| | B|| = o(dn)), but the converse implication is no
longer true for sparse graphs. Let us consider an example graph which is union of a d-regular genuinely random
graph on n — d — 1 vertices and a K4, 1. It satisfies the discrepancy property but not the eigenvalue property.

What if we impose more symmetry to exclude such examples? In fact, a theorem that [Discrepancy]
implies [Eigenvalue] for all Caylay graphs was proved by Kohayakawa, Rodl and Schacht.

Definition 5.5. [Disc(d)]

Let 0 < 6 < 1, we say a d-regular graph G satisfies Disc(0) if for any disjoint subset U,V of V(QG), we

have

d
ec(U,V) = (1 £8)-|U|IV].

Definition 5.6. [EIG(¢)]

For a d-regular graph G and its eigenvalues d = A1 > Ay > --- > \,, we say it satisfies EIG(¢) if for
any i > 2, we have | ;| < ed.

&
Definition 5.7. [Caylay graph]
Let T be an abelian group and let A C T'\ {0} be symmetric(i.e. A= —A). The Caylay graph Cay(T', A)
is the graph with vertex set I and edge set {xy : x —y € A}. &

For example, if ' = Z, A = {—1, 1}, then Cay(I", A) = Cy.

Now the previous theorem could be stated more formally as following, and we shall see a proof by Gowers.

Theorem 5.8. [K-R-S/G]

For any € > 0, there exists § > 0 and ng such that the following holds. Let G = Cay(I', A) be a
Caylay graph for some abelian group T with |T'| = n > ng and a symmetric A C T'\ {0}. Then Disc(¢)

= EIG(e). 0

5.2 Basics on Caylay graphs

Let I" be a finite abelian group. A character y of I is a group homomorphism from I to S*, where S is
the multiplicative group of complex numbers. In another word, y : I' — S! has a property that for any a,b € T,
x(a + b) = x(a)x(b). For example, all 1 function is a trivial character. If |I'| = n, then there are n characters
X1, X2, - - - Xn Pairwise orthogonal,i.e.

(i xs) = > xi(9)x;(9).

gel
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5.2 Basics on Caylay graphs

o Consider the space of functions from I' to C, then the characters x1, X2, ..., X» form an orthonormal
basis of this space.

o If {x(g) : g € T'}| = m, then x takes value in m-th root of unity.

o Eigenvalues of Caylay graphs C'ay(I", A) are Fourier coefficient of A.

Theorem 5.9

Let G = Cay(T', A) with T finite abelian and A C T'\ {0} symmetric. Then every character x is an

eigenvector of the adjacency matrix of G with eigenvalue

AQ) = (A, x) =) _x(a).

acA V)

Proof Let M be the adjacency matrix of G, it suffices to show that

M- x=(AXx) x= (Zx(@) "X

acA
Fix a coordinate g € T,

(M-x),= > x(b)

beg+A

=Y xlg+a)

acA

=Y x(9) - x(a) = (Z x(a)> - x(9)-

acA a€EA

Lemma 5.10. [Chernoff type concentration]

Letpi, -+ ,pn € 10,1 and p = % > i pi. Let X; be centered Bernoulli random variables, i.e.

1 —p; with probability p;
X, = & & I and X =% | X;. Then for any a > 0,
—Di with probability 1 — p;

_242
Pr(|X| > a) < 2e = .

Q@
Definition 5.11
Given two functions f and h : I’ — C, let f x h : I' — C be their convolution defined as: for any a € T,
frh(a)=>" fla—g)h(g).
gel &

\

Idea In order to prove Theorem 5.8, it suffices to prove the contraposition. More precisely, we prove that if
A1 = d = |A|, A2 > ed, then we can find two sets X, Y such that e(X,Y") is abnormal. We shall find such
X, Y randomly by choosing elements g € I" with probability depending on Y, a nontrivial character, whose
corresponding eigenvalue is large.
Proof Write y = c+i-s = e, forany g € T, ¢(g) = Re(x(g)) = cos(6y),s(g) = Im(x(g)) = sin (6,).
By the orthogonality of character, we have x L 1, then
0=(1,x)=>_(c(g)+i-s(g)).
gerl’

we can get der c(g) =0, dep s(g) =0.
Since A is symmetric, Va € A,3 —a € A, then s(a) = —s(—a) < s(a) + s(—a) = 0, we can get
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5.2 Basics on Caylay graphs

Z(ZGA S(Q) =0.
<A7 X> - Z X(CL)

a€A
= (c(a)+i-s(a))
acA

= (4,c).

Set probability vector p = % Define — X to be the random set obtained as follows: Vg € I, g is included
in —X with probability p(g) = HTC(Q) independently. Define Y in the same way.
The goal is to bound the deviation |e(X,Y") — %\X| Y|l

Let us first get a hold on sizes of X,Y". Each element g appears independently with probability p(g), thus
T =n,

l+c(g) n
E[Y| =E|X[=)_ =_.
2 2
gel
Since each element is chosen independently and Lemma 5.2, we have

p <|Xy = (5 + 0(1))n> —1—o(1).
P <|Y| _ (% + 0(1))n) —1-0(1).

By linearity of expectation,

EIXNY[=)> p(—g)ply)
gel

By the Lemma 5.2, we have
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5.2 Basics on Caylay graphs

e(X,Y) =YY X(g—a)Y(g)

acA gel
=y (Z(X)(a - g)Y(g))
acA \ gerl
= (-X)*Y(a)
a€A
=> Alg)- (-X)*Y(g)
gel
= (A, (—-X)*xY).

E((e(X,Y)) =E(A, (—X) «Y)
=> N E((-X)(a—g)E(Y(9))

acA gel’
=3 (Z pla— g)p(g)>
acA \ ger
=Y pxpla)
acA
1+c¢ 1+c
= ; 5 * 5 (@)
1+c¢ 1+c¢
- <A’ 2 2 >
= 1St ea—g) - (14 clg))
a€A gerl
— 1SS (14 efa— g)elg))
4 acA gel
1 1
- Zdn + 1<A, c*C).
Claim cx*c(g) = 2clg) m> 2'
ne(g) m=
1 1
E(e(X,Y)) — ydn| > gnl(4.¢)]
1
> gned.

Recall 0 < e(X,Y) < dn = |Aln,n =n(X,Y) = e(X,Y) — %, we can get
1 3
—Zdn <n< Edn.
Write ¢ = Pr(|n| < %),
edn 3dn

1
“edn < < < g— —q)—.
S=dn < [E()| < E(nl) < a5 + (1 - 0)7
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5.3 Quasirandomness for Hypergraphs

we get

dn) < 1—-¢/6 <1 €

16 — /12 12

thus there exist choices of X, Y such that || > 52 and | X|, |Y'| are as expected. That is,

1X| = Y| = (; + 0(1)> n.

q=Pr(|n| <

XY= (2 + 0(1)> n.
XUY]|= (Z + 0(1)> n.

edn
il = le(x,v) - & > 2
Apply Disc(d))on X NY, XUY, X -Y,Y — X, ﬁnally we can get
edn 5ddn
X,Y)—— .
<o, v) - T < 2

By setting § < £, we get a contradiction.

5.3 Quasirandomness for Hypergraphs

We restrict attention to bipartite graphs.

Theorem 5.12

Let G be a bipartite graph with vertex sets X and Y, each of size N. Suppose that G has pN? edges.

Then the following properties of G are equivalent.
(i) [Cy Count] The number of labelled 4-cycles in G is at most p*N* + o(N'4).
(ii) [Discrepancy] Forany X' C X, Y' C Y, |e(X',Y") — p|X'||Y’|| = o(N?).

Q@
Now we define a notion of quasirandomness for subsets of Z .
Theorem 5.13. [Chung and Graham [ ]]
Let A be a subset of Zn of size pN. Then the following properties are equivalent.
(i) The number of quadruples (a,b,c,d) € A* such that a + b = c + d is at most p* N3 + o(N3).
(17) For any arithmetic progression X in Zy, |AN X| = p|X| + o(N). O

4 Connection between quasirandom subsets of Z and quasirandom graphs.
Take A C Zy with |A| = pn. Consider the following Caylay Sum graph. Define a bipartite graph G with
vertex sets X = Y = Zy by letting (z, ) € XY be an edge if and only if = 4+ y € A. Note that e(G) = pN2.
Take a Cy in G, say (x1,x2,y1,¥y2), then x1 + y1, 1 + Y2, T2 + Y1, T2 + y2 all belong to A, and moreover that
(1 +v1) + (z2 +y2) = (x1 +y2) + (x2 + y1). So there is an N-to-one correspondence between the 4-cycles
from Theorem 5.12 (i) and the quadruples from Theorem 5.13 (i). Thus, the set A is quasirandom if and only if
the corresponding graph G is quasirandom.

¢ What about quasirandom hypergraphs, how to define them?
Consider 3-uniform hypergraphs. When a set is is quasirandom, the number of 3-AP (arithmetic progression) is
as expected. But there are quasirandom set whose 4-AP count deviates a lot from expected. To detect whether
a set has abnormal count of 4-AP. Gowers introduced a high order quasirandomness.
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5.3 Quasirandomness for Hypergraphs

Definition 5.14. (quadratic uniformity)

Let A C Zy of size pN. We say A is quadratically uniform if the number of octuples (x,x + a,x +

br+c,x+a+br+atc,z+btcx+a+bc)inAisat most p*N* + o(N?). Iy

Remark Since quadruples (a, b, ¢,d) with a + b = ¢ + d are in one-to-one correspondence with quadruples of

the form (z,z + a,x + b, z + a + b), this definition is a natural generalization of property (i) of Theorem 5.13.

To define quasirandom properties for 3-uniform hypergraphs, we consider Caylay Sum hypergraph H with
vertex sets X =Y = Z = Zy. The triple (z,y,2),z € X,y € Y,z € Z forms an edge of H if and only if
r+y—+z€ A where A C Zy.

It turns out a counterpart of C4 in 3-uniform hypergraphs is octahedron, where an octahedron is a set of
eight 3-edges of the form (xz;,y;, 2x) : @, 7,k € {1,2}, with x1, 29 € X, y1,92 € Y, 21, 20 € Z. Equivalently,
an octahedron is K. 5?2)72, a complete tripartite subhypergraph with two vertices from each vertex set of H.

Another way to look at it is that the dual of 2-dimensional cube (4-cycle) is 4-cycle and the dual of

3-dimensional cube is octahedron (see Figure 5.1).

Figure 5.1: the dual of 3-dimensional cube

Definition 5.15. (Octahedron count)
Let H be a tripartite 3-uniform hypergraph with N vertices in each partite sets and pN?> edges. Then H

is quasirandom if it contains at most pP N® + o(N®) octahedra.

&

Remark A subset A of Zy gives rise to an quasirandom 3-graph H (Calay Sum hypergraph) if and only if A is
quadratically uniform.

4 What about Discrepancy for 3-uniform hypergraphs?

A natural way is the following.

Definition 5.16. (vertex-uniformity)

Let H be a 3-uniform hypergraph with partite sets X,Y, Z each of size N and suppose that H has pN3
edges. Then H is vertex-uniform if, forany X' C X, Y' CY, 7' C Z,

le(X",Y", 2') = p|X'|[Y"]|Z']] = o(N?). Iy

A quasirandom 3-graph must be vertex-uniform, but the reverse is not true. Here is a simple example. Let
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5.3 Quasirandomness for Hypergraphs

X, Y, Z be three sets of size /N and let G be a random tripartite graph with vertex sets X, Y and Z and density
1/2. Let H be the hypergraph consisting of all triangles in G. Then the edge density of H is 1/8, but the number
of octahedra in H is about 2712 N'° rather than 8 8 N as it should have if H is quasirandom.

Definition 5.17. (edge-uniformity)

Let H be a 3-uniform hypergraph with partite sets X,Y, Z each of size N and suppose that H has pN?3
edges. Then H is edge-uniform if, for every t € [0, 1] and every tripartite graph G with vertex sets

X,Y, Z and t N3 triangles, the number of triangles in G are edges in H is pt N> &+ o( N?). &

o The discrepancy property says that a bipartite graph does not significantly correlate with graphs induced
by sets of vertices (that is, complete bipartite graphs on subsets of the vertex sets).
o Edge-uniformity says that a 3-uniform hypergraph does not correlate with 3-uniform hypergraphs induced

by sets of edges.
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Chapter 6 The Spectral method

6.1 Spectral theorem and Hoffman’s bound

Spectral methods use linear algebra to derive information about graphs, usually via studying certain real
matrices (often symmetric) associated to graphs. For example there are adjacency matrix, Laplacian matrix and
transition matrix.

Let G = (V, E)) be an n-vertex graph. We can view every set of vertex X C V as an {0, 1}"-vector. Edge
sets correspond to quadratic forms defined by some matrices. For example, in the Expander Mixing Lemma,

we have seen that if there are two sets X and Y, then we can take the adjacency matrix and compute

XTAY =e(X,Y)
u,veV
When dealing with matrix M, we usually use it in two ways. The first way is to view them as linear operator
x + M, for x € R and M, € RY. The second way is to define a quadratic form z +— 27 Mz € R.

Theorem 6.1. [Spectral theorem]

Let M € R™™ be a real symmetric n X n matrix. Then it has n real eigenvalues(not necessary distinct)

A1, A2, ..., A\ } and n orthonormal real eigenvectors {x1, ..., 2, } € R™ where x; is eigenvector of \;.
M ) ) g b ) g

Q

We will prove the theorem later.

Equipped with this theorem, we can already prove something meaningful. Let’s try to prove one of the
basic results on Hoffman’s bound on independence number. Before getting into it, let’s introduce the first matrix
which is the most natural one which is the adjacency matrix.

Let A be the adjacency matrix of G. A, , = 1 if and only if u is adjacent to v. The following are some

basics.

Theorem 6.2

If G is an n-vertex and d-regular graph, then

o 1 is an eigenvector for adjacency matrix A with eigenvalue d;
o d=X2>..2> X\,

o A\, <Oy
o trac(A)=0= > A;
i€[n]
o the multiplicity of A1 = d is the number of connected components in G. v

For adjacency matrix A as an operator, take some =z € R,

ailr ... Qin Loy
Ax = T : . Let’s take a look at a specific example
anl Ann Lo,
Ty
(Ax), = (%1 o am) | = > =z, where (Ax), is the sum of weights at N (v).

ueN (v)
Ly
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6.1 Spectral theorem and Hoffman’s bound

Clearly, 27 Az = e(X, X) = 2¢(X). Next, let’s take a look at an easy example. K, is a complete graph.
It is easy to check that the eigenvalues of K, is {n — 1, —1, ..., —1} and the multiplicity of A\; is 1.
4 Exercise 6.1 The d-regular graph has d as eigenvalue.

Theorem 6.3. [Hoffman’s bound]

For every n-vertex d-regular graph G, let \y > ... > X, be the eigenvalues of its adjacency matrix. Then
a(G) < (d_—)S\nn )n.

Q

Remark The Hoffman’s bound is tight. K, 4 is an example of the tightness. Since in the adjacency matrix of
K4, wehave \; =d, A\, = —dand a(K,4) = d.
Before the proof of Hoffman’s bound, we need some facts. By Theorem 6.1, we have orthonormal

eigenvectors {v1,...,v,} for the adjacency matrix A of n-vertex and d-regular graph G. For any set of

vertices X C V, X = > a;v;. Here we want to know the meaning of coefficient a;. Some coefficients
eV
have special meaning. For example, a; has a special meaning. Let G be an n-vertex and d-regular graph.
1
Then vy = ﬁ :|. We can obtain a; by taking (x,v1) = (> aiv;,v1) = aj;. On the other hand,
1

(x,v1) = (x, ﬁl) = ﬁ |X|. So the meaning of the coefficient is the size of the set. Next, we want to know
the meaning of Y a?. Note that | X| = (X, X) = (3 av;, > av;) = Y a?.
Proof Take an independent set / in G. We have I = ) av;, a3 = ﬁ|[ | and >~ a? = |I|. Given by the

adjacency matrix,

>d-a?+ Z)\na?
1>2

n
= (d=An)ad + (3 aD)A,
i=1
|17
n
Now, we have 0 > (d — )\n)¥ + [I|\, and |I| < (d_—/\/\nn)”'

> (d— ) + I An-

Corollary 6.4

Let G be an n-vertex and d-regular graph G with \y > ... > \,. Then x(G) > —f= > @
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6.1 Spectral theorem and Hoffman’s bound

Remark x(G) > % also holds for irregular graph.

Definition 6.5

The Rayleigh quotient of x with respect to M is z;q{\ix = Rys(x).

)
If x is an eigenvector of M with eigenvalue A, then the Rayleigh quotient R/ (x) = xz%‘i L= xxTT)f =A
o The variational characterisation of eigenvalues.
Theorem 6.6. (Courant-Fisher)
et M be a real n x n symmetric matrix with eigenvalues A1 < --- < X,.  Then N\, =
min  max M2 — min  max Ry ().
k—dim,V x€V,a#0 ¥ T k—dim,V z€V,2#£0 V)

Proof By Theorem 6.1, we can take orthonormal eigenvectors {v1,...,v,} and denote the corresponding
eigenvalues as {A1, ..., A, }. We divide the proof into following two cases.

o Ay > min max Ry(x);
k= k—dim,V zeV,z#£0 ( )

o A\ < min  max Ry(x).
k= k—dim,V zeV,z#£0 ( )

Case 1: We need to find some k-dimensional space V' such that A\, > n‘}m; . Ryr(x). We consider V' as
xeV,x
k
a space which spans from {vy, ..., v} and take non-zero x € V and x = ) a,;v;. We have
i=1

k
2T Mz = xTM(Z a;v;)
i=1

k k
= <E a;v;, § a;Aiv;)

i1 i=1

k

and

k
T T
Hence, we have 272 = 5~ a? > e Mz and N\, > &Mz,
= ? Ak xlx
1=

Case 2: We need to show that, for every k-dimensional V, there exists a non-zero z € V with Rys(x) > Ag.
Fix an arbitrary k-dimensional V, let U be a space which spans from {vy, ..., v,} and dim(U) = n — k + 1.
n

As dim(U)+dim(V) > n, there exists non-zero x € UNV. Since z € U, z = ) a;v;. We also have
i=k

n
xlz =3 a?. Now,
i=k
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6.2 Laplacian matrix

Hence, we have 7 Mz > A\pzlx and A, < %

We will see that the Courant-Fisher theorem has lots of quick applications. For example, we can extend
Hoffman’s bound on independence number to irregular graphs. Previously, we only deal with d-regular graphs.
Remark Courant-Fisher theorem means that we can view eigenvalues as optima of min-max optimisation
problem in which the cost function is the Rayleigh quotient.

Usually, the important eigenvalues that we care about are A, As and A, where A\ < Ay < ... < \,. For
An, we have already seen in Hoffman’s bound that A, has link to the independence number. For A; and A2, they
are both important in Expander Mixing Lemma where we use to derive some equivalence on the quasirandom
properties.

By the Courant-Fisher theorem, we have the following corollary.

Corollary 6.7

T
xt Mx
Al =min R = mi .
L= R =
T
" Mx
Ap = R = .
0 TR ) = Ty
T
- Mx
Ay = in R = i ,
2 w;ér()l}givl M(x) x#%}givl T
where v1 is the eigenvector of \1. v
6.2 Laplacian matrix
Definition 6.8. (Laplacian matrix)
Given an n-vertex d-regular graph G, we define
d
d
L=dl-A=
-1
d
as the Laplacian matrix of G, where 1 is the identity matrix, A is the adjacency matrix and L., = —1 if
u and v are adjacent. &
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6.3 Hoffman’s bound for irregular graphs

o L-1=0;
o Ifv; is an eigenvector of A with eigenvalue v, then v; is also an eigenvector of L with eigenvalue

d—Ozi. @

Definition 6.10. (Normalised Laplacian matrix)

Given an n-vertex d-regular graph G, we define N = % -L=1-— é - A as the normalised Laplacian

matrix of G. &
Note that this definition makes that the spectral radius is independent of d.
d(’Ul) 0
. - d(v2)
For a general graph, the Laplacian matrix is . = D — A, where D =
0 d(vy)

Convention:
A denotes the adjacency matrix with eigenvalues av; > ag > -+ - > .
L denotes the Laplacian matrix with eigenvalues A\; < Ay < --- < A,

N denotes the normalised Laplacian matrix with eigenvalues 1 < vp < --- < 1.

6.3 Hoffman’s bound for irregular graphs

Theorem 6.11. [Godsil-Newman]

Let I be an indpendent set in G and let d(I) be the average degree of vertices in I, then |I| < )‘";—ja) “n,
where A1 < Ay < ... < A\, are eigenvalues of Laplacian of G. v

Remark If GG is d-regular, then it implies Hoffman’s bound. This is because A, = d — «, by Fact 6.2

(a1 > ag > ... > «ay are eigenvalues of adjacency matrix A) and then
An —d -«
<%=

d— oy d— oy

n

. T T
Proof By the Courant-Fisher theorem, we have \,, = Iil;%( Rp(x) = 1;17%( xxTLf- Hence, \,, > Ry (z) = %

]

n

I I
o' Le = (1 — Ciy )TL(1; - iy 1)
n n

for arbitrary = # 0. Let x = 17 — &+ - 1, where 17 is the indicator vector of I. So x 1 1. We have

— I?L]_[
= 1?(D - A)]-I
= Z(l[)u(D — A)u,v(ll)v

= d(v) —2¢()

vel
= [1]-d(1),
where the second equation holds as L - 1 = 0 and the last equation comes from e(I/) = 0. Moreover,

ole = (17 - % Ty - % 1) = |I](1 - %) by the following exercise. Then \,, > —L40)_

> .- Hence,
HI(1=5)
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“

6.4 Why this definition of Laplacian?

1)< 2570
Remark The reason to choose centered characteristic function of I instead of 1; is because 2! Lz remain the

%‘ - 1 minimises the norm 27 x.
Exercise 6.2 Let S C V be a set of size s|V| and let f; = 15 — ¢ - 1. Then || f;||? is minimised when ¢ = s,

i.e. when f; L 1and ||15 —s-1]|> = s(1 — s)|V].

same, shifting by

6.4 Why this definition of Laplacian?

Motivation: Given a graph G, one type of problem we care about is to find a cut between X and X¢ =V \ X,
and then see how many edges between them. Sometimes we want to find a sparse cut, sometimes we want to
find a dense one. For example, one of the basic theorem says that you can always find a cut with at least half of
the number of edges of the graph G, which can be proved by probability method and take a random bi-partition.
In that problem, our aim is to try to cut many edges, i.e. find a dense cut. Meanwhile, people are also interested
in sparse cuts. For example, theoretical computer scientists care about finding sparse cuts. Why do they care
about this? Because sometimes we can use divide-conquer idea to solve a problem. If there is too much work to
run the algorithm on the whole graph, then we want to find a sparse cut and cut the graph into two parts. Then
we repeatedly try to find sparse cuts, and finally find very small components. Then we just run the algorithm
on each small component. Not only improve the running time, but we also don’t need much space to store the
information. Because the cut is very sparse, sometime we can place them together, and the solution will be ok.
These are some big motivations.

Now, we represent a cut in terms of linear algebra, using the following homogeneous quadratic polynomial.
We define a degree-2 homogeneous polynomial for graph G = (V, E):

Z (xu - -7311)27

weE
which measures smoothness of x. The value of this polynomial is small when no big jump over edges. When

z € {0,1}V is a Boolean vector and let X be a subset of V' with indicator vector z, then e(X, X¢) =

3 (24 — )2, i.e. the cut value. Note that every homogeneous quadratic polynomial can be written as x7 Mx
wel
for some matrix M. For d-regular graph, . (zy — 2,,)? = 27 (dI — A)x = xT Lz, whose both sides equal
uvelE
to > dr2 -2 Y x,x,. From this, we immediately get the following.
veV uvel

Proposition 6.12

The Laplacian L is singular and positive semidefinite. o

Note that this proposition is true for all graphs.

At the end, let’s conclude what does Laplacian matrix do? Both as operator and as quadratic form. Recall

d
d

that for d-regular graph G = (V, E), the Laplacian L = , where L, = —1 if v and v are

S

d

adjacent. Take z € RV, then (Lx), = dz, — Y. x4 = d(xy — é > x). Moreover, the quadratic form

ueN (v) u€N (v)
v'Lr = > (x, — x,)? represents the cut value when z € {0,1}". When 2 € RV, optimising 27 Lz can be

. weE .
viewed as a relaxation of the cut problem.
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6.5 Spectrum of the normalised Laplician

6.5 Spectrum of the normalised Laplician

In this section, we study spectrum of the normalised Laplician. We start with regular graphs and prove
that the spectrum of normalised Laplician for regular graphs is between O and 2. Later, we will see how we can
normalise the Laplician for irregular graphs and they also have spectrum from 0 and 2.

Consider an n-vertex d-regular graph G = (V, E') with normalised Laplician N = I — % - A. Recall that
the quadratic form " Nz = > 22 — 1 3 22,2, = 2(Y da? — Y 2zum) = 3 Y (24 — 2,)? and

veV

veV weE uwwer uwer
> (zu—w0)?
the Rayleigh quotient of x is Ry () = %.
veV

Theorem 6.13

Let G = (V, E) be an n-vertex d-regular graph and let N = [ — éA be its normalised Laplician with
eigenvalues vy < vo < --- < vy, Then
(Z) vV = 0.
(1) vy = 0 if and only if G has at least k connected components. In particular, the number of
components in G equals the multiplicity of the eigenvalue 0.

(#i) vy, < 2. The equality holds if and only if G has a bipartite component.

Q
Proof
X (wu—w0)?
(i) By the Courant-Fisher theorem, »; = min Ry (z) = min “*>~~—— > 0. Onthe other hand, N-1 = 0.
x#0 x#£0 u%:\/ Ty

Hence, 11 = 0.

(73) (=) Suppose v, = 0. We want to show the number of components is at least k. By the Courant-Fisher

> (zu—av)?
theorem, vy = min  max Ry(r) = min max 1”65372 = 0. Thus, there exists a k-
dim U=k 2€U,z40 dim U=Fk €U,20 gv 3
> (zu—av)?
. . uveE :
dimension space U such that for any € U,z # 0, we have Ry (x) = Dy 0. This means
veV

that if v and v are adjacent, then x,, = x,. This further implies that x is constant over any connected
component. Hence, the dimension of U (= k) is at most the number of components of G.
(<) Suppose the number of component is at least k. Consider the subspace U spanned by vectors that
are constant on each component, then the dimension of U equals the number of components (> k). For
every x € U and x # 0, Ry (x) = 0. Then by the Courant-Fisher theorem, v, = 0.

(7i7) By the Courant-Fisher theorem,

x#£0
TNz

= Imax T

z#£0 Tt T

2
> (T — )
— max uveElR
veV
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6.6 Examples about eigenvalues of Laplacian

Moreover,
1
T _ - 2
T Nm—d Z(wu Ty)
wweFE
2
= Z Q’/’Z —_ = .quv
veV weFE
2
_T._ =
=x T p Z Ty Ty
weE
2
T T
=2 ZL'—g quxv ' x
wveFE
=2 e — = Z (24 + 70)?
weFE
Z (w’u+xv)2
wveE
So Ry(xz) =2 — edzizg < 2. Hence, v,, < 2.
veV

If v, = 2, then we must have

Z (24 + )% = 0,

uwekl

6.1)

which means that if v and v are adjacent, then z,, = —x,,. Define S = {v : z, > 0}, T = {v : 2, < 0}.

Then SUT sends no edge to V' \ (SUT), for otherwise such edge contributes positively to > (z,,+,)?%,
uvel
contradict (6.1). Also, N(S) € T and N(T') C S by (6.1). Thus, S U T induces union of bipartite

component in G.
6.6 Examples about eigenvalues of Laplacian

Example 1: Complete graph K,,.
#1  Exercise 6.3 For complete graph K, the Laplacian of K, has

Example 2: Star 5,,.

Consider a star S,, with core vertex v; and its neighbours vy, - - -

eigenvalue | eigenvector | multiplicity
0 1 1
n Ve:x L1 n—1

eigenvalue eigenvector multiplicity
0 1 1
1 Oy, = Oy <0< —1) n—2
—(n—1)
1
n . 1
1

where d,, = 1, is the indicator vector for a single vertex v.
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6.6 Examples about eigenvalues of Laplacian

Lemma 6.14

Let G be an n-vertex graph with two degree-1 vertices a and b both adjacent to another vertex c, then

x = §, — Op is an eigenvector of G with eigenvalue 1.

Q

Exercise 6.4 Prove the above lemma. Check (Lx), = z,.
We can apply the above lemma to all adjacent pairs of star S,. S0 vo — v3,v3 — vy, ..., Up—1 — Uy are all

eigenvectors with eigenvalue 1 and they are all linearly independent. Now consider the largest eigenvalue A, of
n—1 -1

n
Laplacian L of S,,. Recall that L. = ‘ sthentr(L)=2n—-2=> A\=n—-24+0+ ),
- i=1

—(n—=1)

1
Hence \,, = n. Moreover, y = ) is the eigenvector with eigenvalue n. It is easy to check that y is

1
orthogonal to 1 and 6,;, — dy,,, (2 <3 <n—1).

Example 3: Hypercube Q).

Definition 6.15

Given two graphs G1 = (V1, E1) and Gy = (Va, Es), G1 X Gy is a graph with
V(G1 X Gz) = ‘/1 X ‘/2,
E(G1 x Ga) = {(z,y) ~ (2, y), where xz’ € E1} U {(x,y) ~ (x,y'), where yy' € Es}.

&
Theorem 6.16
Let G1 = (V1, E1) be a graph with Laplician eigenvalues )\gl) << )\S) and eignevectors x1, - - - , Tn.
Let Gy = (Va, Es) be a graph with Laplician eigenvalues )\52) < <L )\7(7%) and eignevectors yi, - , Ym.

Then G1 x Go has eigenvalues )\gl) + AEZ), forany i € [n] and j € [m], with eigenvectors z; j, where
(2i5) (uw) = (Ti)u - (Y))o-

Q

Let ()4 be a d-dimension hypercube. Consider Laplacian L¢g,. When d = 1, (1 has

eigenvalue | eigenvector
1
o | ()
1
> | ()

If Q41 has eigenvalue A with eigenvector z, then Qg = Q1 X QQ4_1 has

eigenvalue | eigenvector

Q)

A+ 2 v

—XT
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6.7 Isoperimetry and the second eiginvalue

Hence, ()4 has eigenvalues 2 for each 0 < 7 < d with multiplicity (f) . We can identify eigenvectors of L),
with V(Qq): take v € V(Qq) = {0,1}% and the corresponding eigenvector (%) is for any u € V(Qy), 2 =

T

(-1

6.7 Isoperimetry and the second eiginvalue

Definition 6.17

The boundary of a set S C V is 0(S) = Eq(S,V \ S) = Eq(S, 5°). Iy

Definition 6.18
The isoperimetric number of S C V is 0(S) = %, basically the average degree out of S. a

Note that 6(S) = % = R (1g), where 1g is the characteristic function of the set S.

Definition 6.19
The isoperimetric number, or Cheeger constant of a graph G with |G| = n is

oS
h(G) = min 6(S)= min 195] :SCcV(G),0< |5 < e
0<|S|<n/2 |S| 2 Iy

Trivially,2(G) > 0 if and only if G is connected. The Cheeger constant 2(G) measures how small the
“bottleneck” in G is. If "bottleneck" is large, then it is difficult to cut off the graph, then the graph is an expansion

graph.
Theorem 6.20
For any graph G with0 < \; < Ay < --- < A\, of Laplacian, we have
A
hG) > 72

Proof 1 Tt suffices to show that for any S C V(G) of size sn, where 0 < s < §,n = [V(G)|, we have
0(S) > (1—s)Aa.

By Courant-Fischer,we have that

T

x' Lx

Aoy = mi = mi .

2= @) =0l
xl1 xl1

Then
I La
Ve L 1,z #£0, —7 = A (6.2)

zlx

We shall use the characteristic function of the set S(1g), but first we center it to be orthogonal to 1.
So we will use
x=1g—s1,(z,1) =0

ineq.(6.2). AsL-1=0,
wTe =1L 015 = e(S, 5°) = |0S].
So we have
27 L |0S] |0S|
= = > A2
2T IS|1—3s) s(1—s)n
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6.7 Isoperimetry and the second eiginvalue

Proof 2 We want to show that for any S with || < 2, we have §(S) > 22. By Courant-Fischer we have

Ao = min n}ggﬂ: Ry (z) (6.3)

We'll take U = Span of 1g and 1gc. Since 1g L 1gc, we have dimU = 2.
Suppose z # 0, z € U such that
max Ry (z) = Rp(2).

z#0
zelU

We have then eq. (6.3) is saying Ao < Ry (z).

Let M be a positive semidefinite matrix and x, y be two orthogoral vectors. Then

Ryr(z+y) <2max{Ry(z), Rpm(y)}- O

Assuming this lemma holds and L is positive semidefinite matrix. Write z = ax + Sy where o, 3 € R

and z = 1g,y = 1gc, then we have
Mo < Rp(2) = Rp(az + By)
< 2max {Rp(az), RL(By)}

As multiplying by a scalar does not change Rayleigh quotient, i.e. Ry (ax) = Rp(z). And we also have
Rr(xz) = Rr(1g) = 0(S). We can get

Ay < 2max {Ry(ax), Rp(By)}
= 2max {RL(.%'), RL(y)}

= 20(9).
Proof of Lemma 6.21 Let \; < X\ < ... < )\, be eidenvalues of M with corresponding eig-vectors
v1, V2, - , U, Which are basis.
We write x = i AV, Y = i b;v;, then
i=1 i=1 § §
(32 (@i + bi)vi) " M (3 (a; + bi)vy)
Rag(o +y) == =

|2 + vl
Ai(a; + b;)?
=1

(2

4 yl]?
i/\i'2(a?+b?)
<i:1
=]+ wl?
_ 2Ry (@)||=]]* + 2Rum (y)l Iyl
]2 + []y[|?

<2max{Ry(z), Ry (y)}-

Cheeger constant h(G) is often useful when dealing with vertex subsets. For edge expansion, it’s more
convenient to work with a notion called conductance. For this, we need to define normalized Laplacian for
general graphs.
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6.7 Isoperimetry and the second eiginvalue

Recall for d-regular graphs, L=dl —A=D - A/ N=1— fA It turns out for general graphs,
N =D:LD2
=Dz (D — A)D?
—T - D3AD:3.

Definition 6.22

For a d-regular graph G = (V, E), the conductance (or edge expansion) of a set S C 'V is

85 u — dv 2
ve v

i.e. ¢(S) is the average fraction of neighbours (of vertices of S) lying outside S.

The conductance (edge expansion) of a cut is
¢(S,5°) = max{¢(S5), p(5°)}-
The conductance (edge expansion) of G is

¢(G) = min ¢(S) =ming(5,5).

1<|S|<2

&

If there exists a polynomial time approximation with constant-factor,then there is an approximation ratio.
Find sparse cut has many applications. The first is clustering problem and image segmentation. The second is
divide and conquer algorithm.

Fiedler’s algorithm (1970s) is particularly useful when applied to x=eigenvectors of the second eigenvalue
of normalized Laplacian vs.

First step is sorting vertices so that z,, < x,, < --+ < x,, . This step runs in O(|V [log|V]).

Second step is finding k£ make ¢({v1, - ,vg}, {vks1,- -+ ,vn}) minimize. Next we only need to check
the how long it takes. Let ey, = e({v1, - , vk}, {vgs1, - s on})s €1 = e({v1, -+ s o1}, {Vka2, - s on}),
b = |N(vgs1) N {vps2, -+ ,vn}|. Thus the k"
step of finding requires d(vg1), the total time of finding is ) d(vg+1) = O(|E|).

So Fiedler algorithm runs in O(|E| + |V |log|V]).

S0 ep41 = e —a+ b, where a = |N(vg41) N {vr,- -+,

Theorem 6.23. (Cheeger’s inequality)

Let G = (V, E) be a regular graph and v; be eigenvalues of its normalized Laplacian N. Then

% < ¢(G) < V23 = /2RN(z .

In Theorem 6.20, we have h(G) > % So for d-regular graph and normalized Laplacian N, we have
P(G) > .

For the other part, we shall see an analysis of Fiedler’s algorithm by Trevisan and show that Fiedler’s
algorithm produce the cut ¢(S, S¢) < /2vs.

Trevisan’s idea Define a clever distribution to cut randomly and show in expection (w.r.t. this distribution),
the cut is sparse (in terms of v5).

Forrandom ¢ € [0, 1], #? is uniformly distributed in [0, 1], i.e. the probability density functionis f(z) = 2.
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6.7 Isoperimetry and the second eiginvalue

Theorem 6.24. (robust version)

Let © 1 1 and let the cut (S, S¢) be the minimizer in Fiedler’s algorithm. Then

8(S,5°) < v/2Rx(2). .

Remark This robust version can be used on approximate eigenvectors (i.e. verctors with small Rayleigh
quotient) and produce a sparse cut.
Consider the first non-negative vector, we have the following lemma:

Lety € R‘z/o’ 0<wyp, <--- <1y, =1 Then 3t > 0 such that

6(51) = 6({v : 9o > 1)) < V2Rn(0). .

Proof As multiplying by a scalar does not change Rayleigh quotient, i.e. Ry(cy) = Ry(y), we may assume
Y, = 1. Lett € [0, 1] be a random variety with probability density function f(x) = 2, so that * is uniformly

distributed in [0, 1]. It suffices to prove
E¢|0S|
E(d[S:])

< V2Rn(y) (6.4)
Indeed,
eq. (6.4) <E|0S,| < /2Ry (y)E(d|S,))
SE(|8S:] — v/2Rn(y)d|S|) < 0.

Then we can get: 3 a choice of ¢ € [0, 1] such that
0S5t — V/2RN(y)d|Se| <0

0S|
a5~ o(St) < V2Rn(y)

as desired.
Then let’s see the denominator:

E(d|St]) =d Z P(v € St)

veV

=d Z P(t < yv)

veV

=d) P(t* <y;)

veV

:dZyg.

veV
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6.7 Isoperimetry and the second eiginvalue

Next we analyse the numerator.

E|0S:| = ) P(uv € 05))

= Z [Yu = Yol (Y + Yo)

wekl

Z (Yu — Z Yu + yv)? (Cauchy — Schwarz inequality)
uwveFE uvelR

Z (yu - yv)Q\/deyg'

IN

IN

uwwek veV

Therefore, we have

E|6‘S’t \/ZuUGE — Yo 2\/2d Z’UGV y12) _ 2 ZquE(yu - yv)2
E(d|5t|) dd vev Yo > vev Yo

Lemma 6.26

Let © 1 1. Then there exists y € Rgo such that
(i) {y: > 0} < 5,
(ii) RN(y) < RN(a:);

(iii) Cuts considered in Fiedler’s algorithm with input y are the same as those with input x.

2RN(y).

Q

Proof of Theorem 6.24. : Let 2z | 1 and let the cut (.S, .S¢) be the minimizer in Fiedler’s algorithm. Take y

from Lemma 6.26 and let .S; be the set returned from Lemma 6.25. We have
lem6 26(141)

o(St) = o({v iy > t} \/2 ~N(Y) V2

lem6.26(1) lem6.26(zm)
=" o(5:57) 2 #(S, S¢). (as (S, S) is the minimizer.) Combines the

On the other hand, ¢(.S;)
above inequalities, we have done.

It reminds to show that Lemma 6.26.
Proof of Lemma 6.26. : First, we use the standard trick so-called “shifting”: for every ¢ € R, we just take the

shifting « + c1, and observe the change of the Rayleigh quotient of x. Note that for every ¢ € R, we claim that

Ry(x + 1) < Ry(x).

z' Nz
T . . = lall3
the all-1 vector is a eigenvector of its normalised Laplician operator, /N - 1 = 0, so both numerator are same

) = ||z||?> + ||¢||?, as xL1. Thus

In order to see it, just analyze the formula of the Rayleigh quotient Ry (z) = . For every regular graph,

denominator is increasing.

Let m = median value of entries of x. We define z = 2 — m1, so Ry(z) < Ry(x) . Note that z has at
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6.8 Application for isoperimetry in hypercube

most 3 positive entries and at most 7 negative entries. Write z = 2t — 27,

4 Ty, positivev, —,, negative u,
Zy =: 2z, =:
0, otherwise. 0, otherwise.

It is easy to check that cuts in Fiedler’s algorithm with input 2™ or 2~ same as those with input .
Left to show Ry(z) > min{Ry(z"), Ry(z7)}.
X (u—=)® X & -2 - (- )P

R 2) = wekl _ wvekl
v(z) EE R

Claim [(zf —z}) — (2, — 2P > (5F = 25)* + (2, — 2,)%
With this claim,

o T2 27— 27)2
RN(Z) N m%E[ u v) +( u v) ] _ RN(Z+)||Z+||2+RN(Z_)HZ_”2

[Ean Bl I & 1z -+l

> min{Ry(z"), Rx(z7)}.

6.8 Application for isoperimetry in hypercube

Recall.
e (4: d-dim hypercube.
L denotes the Laplacian matrix with eigenvalues Ay < Ay < ... < A,
N denotes the normalised Laplacian matrix with eigenvalues v; < vy < --- < v,

eigenvalue(0 < ¢ < d) | multiplicity
2 ()
i
()
d i

Theorem 6.27. (Harper, 1976)

The isoperimetric number of Qg is

0(Qq) > 1. O

Proof We know that \» = 2 and §(Q) > 2 = 1.
The lower bound is tight: consider a copy of ()41 inside.
e Conductance:

1%} 1
(/’(Qd) > E = E

Using multicommodity flow method,

Theorem 6.28. (Babai-Szegedy, 1992)

If G is connected, edge-transitive with diameter D, then

1
$(G) 2 5

65



6.9 Normalised Laplacian for general graph

Note that diam(Q);)=d, thus [Babai-Szegedy] implies that ¢(Q4) > é.

6.9 Normalised Laplacian for general graph

d(vl) 0
. . . d(v2)
e Fora general graph GG, the Laplacian matrix of Gis L = D—Ag, where D =
0 d(vp)
e Normalised Laplacian for general graph G is N = D :LD 2 =D"3 (D— A)D_% = I-D :AD 3,

1
d(v1) 0

where D = V(v2)

0
Recalling that for a d-regular graph G,
o N=1-14;

v; € [0, 2] for all eigenvalues v; of the normalised Laplacian matrix of G}

1
d(vn)

Multiplications with eigenvalues equal to 0 are equal to the number of connected components;
e 1, = 2 & there exists a bipartite component.
For irregular graph, the above “nice” properties still holds. Let us mention some details in previous proof
of regular graph. For d-regular graph,

3o (T + 1p)?

R (x):ﬂﬂzg_g

N 2Tz d> z2
veV

If the concerned graph is irregular, the above formula suggests that

> (zut xv)2 > (Tu — JJv)2

9 _ wek _ weE _ =T Lx _ 2T L
sawt T e bk
ve ve

As for numerator, we need
2T Lz = (x7D2)D"2LD"3(D2z).

Then
2T La 1 2T La

(a7 D¥)(Dig) DD

Some properties.
e The point is that the map x +— Dz is bijective. Note that 1y < --- <y, for N = D :LD 3.

in max Ry(x) = mwin max Ry(Da) o Lx
vy = min max = a == .
BT gmuek v N T gty wet N . T Dz
x#0 z#0
d(vr)
1 d(v2) | .
o d2 = ) is an eigenvector for 0.
d(vn)
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6.9 Normalised Laplacian for general graph

Check: N -d~2 = D"2L(D 2 -d2) = D :L-1=0.

e [C-F]
- 2Nz . yTN Y
V9 = Imin = min .
-1 2Tz yld yT' Dy
xéioz y#0

vES

Theorem 6.29. (Cheeger’s inequality)

Let G = (V, E) be a graph and v; be eigenvalues of its normalized Laplacian N. Then

22 < ¢(6) < Vo
2 V)

e Recall Spectral theorem: Let M € R™*™ be areal symmetric n X n matrix. Then M has n real eigenvalues
(not necessary distinct) {\1, A2, ..., A\, } and n orthonormal real eigenvectors {v1,...,v,} € R™ where

v; is the eigenvector of \;.

Corollary 6.30. (Eigenvalue decomposition)

Let M € R™"™ be a real symmetric n X n matrix with eigenvalues {\1, A\a, ..., \n}. Then

A1 0

M:VAVT:ZAkkaE, where V. = (v1,...,0p),A = .
h=1 0 A

Q

Proof Note that MV = M(vy,...,v,) = (Mv1,...,(Avn) = VA. Then M = VAVT. (Note that
v-i=vT)
Perron—Frobenius theorem: If A = (a;;) is an n X n real matrix with non-negative entries a;; > 0 and

irreducible, then there is a real eigenvalue r of A such that
min a;; <r < max Qg5
in >0y < < max Y a
J J

and any other eigenvalue ) satisfies |A\| < 7. A matrix is reducible if there is a subset I C [n] such that a;; = 0
foralli € I and j ¢ I. In particular, an adjacency matrix of a graph is irreducible if and only if the graph is

connected.

Theorem 6.31. (Perron-Frobenius symmetric version)

Let G = (V, E) be a connected graph with adjacency matrix A and eigenvalues oy > - -+ > «,. Then

(i) The largest eigenvalue o1 has a strictly positive eigenvector.
(ii) Foreveryi € [n], a; € [—aq, ).

(iii) a1 > ao. v

Lemma 6.32

Let G = (V, E) be a connected graph with adjacency matrix A. If x is a non-negative eigenvector, then

x has to be a positive vector.

Q
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6.10 Random Walk

Proof Suppose that the conclusion is not true. Then there exists uv € E such that z(v) = 0 and x(u) > 0.
Note that 0 < >, ey, 2(u) = (Az)y = (o), = 0, contradict!

Proof of Theorem 6.31 :
e For (i). Let A be areal n xn adjacency matrix with eigenvalues aq, . . . , v, and corresponding eigenvectors
Z1,...,Tpn. Lety € R‘Z/O such that y(v) = |21 (v)| (Thus y*'y = 2¥x1). We claim that y is an eigenvector

of o;. Then by Lemma 6.32, y € RV is a positive eigenvector.

o =] Azy = Zml(u) u,v)z1(v) < Z 21 (w)|A(u, v)|z1(v)| = yT Ay = Raly) < .

That tells us that all of “the equal” above hold. Then y is an eigenvector of «;.
e Tor (ii). It suffices to show that a,, > —ay. Let 2 € RY, 2 such that z(v) = |z, (v)].
| = ok Azn| <D 2n(0)] <Y |z (u)|A(u, v)| 2, (v)] = 27 Az < ay.
u,v

e For (iii). Letw € RY, % such that w(u) = |z (u)|. Similar analysis in (ii), we have
a9 = :CgAxg < wlAw < a;.

If &g = ay, then the above equality holds. Thus w is a non-negative vector of o1, by Lemma 6.32, w is a
positive vector. Then xo has no zero entry. As G is connected and xo |z (assume that x; is positive by
Part (i)), there exists uv € E such that xo(u) > 0 and z2(v) < 0. Then such u, v contributes negative to
:chxg. So xQTA:UQ < w!l' Aw. Tt means that ay < .

Corollary 6.33

For every connected G with adjacency matrix A, if a positive vector x is an eigenvector of A, then the

corresponding eigenvalue is o. v

Proof Let Az = a;z for some i € [n]. By Theorem 6.31, there exists yRY ) which is a eigenvector of 1. As

A is a symmetric martrix, then
aiz’y = (Az,y) = (z, Ay) = 112" y.

Note that xTy > 0, and we have a; = .

6.10 Random Walk

e A random walk on a graph G is a random process that starts at a vertex in (7, and in each step, a neighbor
is uniformly and randomly selected to move.

e Let (P);; = p(i, j) be a transition matrix of arandom walk on an undirected connected graph G = (V, E)
with n vertices V. = {1,...,n}. Thatis, p(i,5) = 1/d(i) if {i,j} € E, and p(i,j) = 0 otherwise (in
other words, p(i, j) = Pr[i — j]).

e For every d-regular graph GG with adjacency matrix A, P = éA.

e For each general graph GG with adjacency matrix A,

d(v v
(.1) d(.l) d(v1) 0
) ) d(v
P=D"'"A=D= | - L | where D= (v2)
) ) 0 d(vy)
dva) 7 d(vn)
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6.10 Random Walk

po(v)

e Consider an initial distribution py = ( ) , where po(v) = Pr[A random walk starting at v] and write

p; for the distribution at time ¢. We will see that
pi =po - P' e (P)'-po=pr.

It suffices to show that pf, ;| = p{ - P. We often write (ps41)y = pi41(v)

pry1(v) = Prfarrive at v at time t + 1] = Z Pr[arrive at u at time t] - Prfu — v]
ueN (v)
= Z pt(U)P(U,U) = (pf ’ P)U = (PT 'pt)v'
ueN (v)

e p'(i,7) = Pr(start at i and arrive at j at time t) = 6] - Pt = p].

Definition 6.34

Stationary distribution m for a random walk with transition matrix P is

Pt =, &
#)  Exercise 6.5 Let
d(v1)
d(v
T=— d = le 7 where d = (2)
> d(v;) -
=1 d(?}n)

It means that at stationary distribution, every vertex is visited with probability proportional to its degree.
If G is regular, then 7 = % -1.

Here, the question we care about is that: does random walk converge to stationary distribution? If yes,
how fast? We shall see a connection between this and spectral gap of the transition matrix P. So let us first
look at the spectral of P.

Recall that P = D~'A in general is not symmetry, so we don’t have orthogonal eigenvectors for P.
However, P is similar to the symmetry matrix A = DY/2AD'/2. (Define X tobe similar with Y if X = Q1Y Q.

Similar matrices have the same set of eigenvalues.) Here, we can write P = DY/2AD'Y/2 or A = DY/2pPD'/2.

Given a connected graph G, let A be the normalised adjacency matrix and P be the transition matrix,
then the vector x is the eigenvector of A with corresponding eigenvalue o if and only if y = D12y js

the eigenvector of P with corresponding eigenvalue c.

Q

Proof The proof is simple. So we only give the proof of the necessity, and the sufficiency is left to the reader.
Since P = DY/2AD'/2, we obtain Py = DY2ADY2D=12g = D120y = ay, and we are done.

Lemma 6.36

The degree vector d is a Perron vector of PT with eigenvalue 1.

Proof d'P=d"'D1A=1TA=d".
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6.10 Random Walk

Corollary 6.37

The spectral of P is in [—1, 1].

Definition 6.38

A lazy random walk is a normal random walk with 1/2 of the time staying put and 1/2 of the time doing

the same as random walk. &

The transition matrix of a lazy random walk is P = P/2 + I /2, and the spectral of P is in [0, 1].
Remark
o Lazy random walk converges on all graphs.
o All eigenvalue non-negative, convergence (of the random walk) only depends on a9 or the spectral gap

1—&2.

Next we shall prove that for any non-bipartite connected graph G, the random walk (with any initial
distribution Fy) converges to the stationary distribution 7.
Remark
o Not true for bipartite graphs because of the parity issue.
o Can consider instead lazy random walk for bipartite graph.

We shall see that in fact the rate of convergence is exponential when having spectral gap.

Definition 6.39

Mixing matrix of a random walk is ju = limy_seosup max; ;| Pt(i, 7) — m(5)|"/*. Iy
Theorem 6.40
Let G be a graph with transition matrix P and eigenvalues oy > --- > «au,. Then any starting vertex i

and any other vertex j, we have |P'(i, j) — n(j)| < \/:((Z)) - ut, where t > 0 and p = max{|as|, |ay|}.

start at i 7(5)
P —(8)] < /=Dt
(end in S at time t> (&)l < @ H

More generally, for any S C V(G),

Q
If G is connected, then as < a1, if G is non-bipartite, then oy, > —1.
Corollary 6.41
For every connected and non-bipartite G, mixing rate is pn < max{|az|, |an|}. O

Proof of Theorem 6.40 : Recall P = D~'A = D=Y2ADY? where A = D~Y2AD~1/2. As A is symmetry,
—~ n
we can write itas A = ) akvkv,{, where v1, ..., vy are orthogonal with eigenvalue a; > - -+ > a,,. Now
k=1
n
Pt — (D—I/QAVDI/Q)t — D—I/QAVtDl/Q — ZOZZ»D_I/2/U]§U]€;D1/2~
k=1
So

n n
. _ d(v;
P'(i,j) = e] Plej = E atel' D l/kangl/er =4/ divj')) E ok el vl e;.
Y k=1

k=1
Let us look at the first term in sum. That is, afelvivle; = /m(i)\/7(j). This implies the first term
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6.10 Random Walk

- n
of above equality is (), and then |P(4, j) — 7 (j)] < \/%] > atelvgvle;.|. What is left is to show
=2

n
| 3 alelvgvle;| < pt, where g = max{|as|, |, |}. Then

k=2
n n n n
1> akelvviegl < ut Yy lel ol - lofesl < it | D el ol | D loFes? = wlleilllles ) =
k=2 k=1 k=1 k=1
where the second inequality holds by Cauchy Schwartz inequality, and the last equality holds, as vy, ..., vy are

orthogonal. This completes the proof.
Remark Usually by considering the lazy random walk (so P= P/2 + /2, and the spectral of Pisin [0, 1)),
the mixing rate is only related to as or the spectral gap 1 — as.

1/2 1/2

Exercise 6.6 In the above proof, show v; = 7'/%, vy (i) = /7 (i), i.e., 7'/ is a Perron eigenvector of P.

e A more quantitative version,mixing time, measures how many steps needed to get close to stationary
distribution? What is a good measure of distance between distributions?

e Natural condidate: Enclideam lo— norm,it means ||z, = (3 gv%)%.But it is not ideal here: Consider

S=[2le=21y=2 1e. |z—y|,= Z(%)Q:%ﬁo,n%oo.

But z, y as distribution are very different.
e Better one: a scaled /;— norm.

Definition 6.42
The total variation distance between .,y is ||z — y||py = maz 1Y pes @ (v) =X ,cq v (v)|. Which is
the maximal difference of probabilities of events with respect to x and y). &

Exercise 6.7 ||z — y|l; = 7|l — yll; Intheaboveezample,||z — y||;y, = 1 In general distributions with

disjoint support have distance 1.

Definition 6.43

A random walk mixes at time t if

1P = gy < 7 ()

Call such t the mixing time. &

Remark The constant i is not that important. Any small constant will do.

It means that:for most of i € V,Héi) < P (i) < 2I1(7)
It has an useful equivalent form: Vi € V| P, (i) — 1 (¢)| < @

Consider the simpler d— regular G = (V, E) case do lazy random walk, no need to worry about a, .
RecalllZalzong...zan<:g
L=N=I-A=I1-D2AD"z
Yo=1—ay >0

IN
U
I~
<
=
~

Assume there exists spectral gap ‘Pt (i,5) —II(j )’
We want to show | P* (i, j) — I (j)|

So we want to show | P* (i, j) — I1 (j)| < d9) .t < D)
Letp=as=1—1,

e (1= m9) < 9B et < I and ST d (6) = 26 (G)
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6.10 Random Walk

_ 4e(G
cere \/(#L(jz)! G 4e(G
If G is d—regular, \/ﬁ = 2n. Then ¢t > %2 : log\/ﬁ = ,%2 -log (2n) .
Remark Sometimes,the logn term can be avoided as we use a9 to bound all «;,7 > 2.
If there is eigenvalue decay, then we can take advantage to improve the bound.
Example.
Qq is a d—regular graph,where n > 2%, vy = %, the above bound on mixing time yields

t:O(l(fyg”> —0(d).

2

But the mixing time for hypercuse is known to be O (dlogd).

Then I want to mention that conductance and mixing time

1 <t < logn
(I)(G)_ mm_q)(G)Q
Where @ (G) = min 051 Gis a d— regular graph.

jsi<2 481
The second inequality was proved by Lovasz — Simonwvits.

The first inequality is nature.

1 1
E (# steps to cross) ~ B (cross) =3 @

This offers a probabilistic way to define an expander :if the random walk on it is fast mixing.

Application.
Make use of the following fact:
"Random walk on expanders resembles independent sampling."
From computational aspect ,it is used in error reduction for probabilistic algorithm.

Suppose we have a probabilistic algorithm A,

right answer with probability 2
A:uses K random bits — g . b . .y °
wrong answer with probability 3

To boost the probability, we can run it ¢ times and take the majority answer.
P (we get the wrong answer) < (1 —¢)',¢ >0

The cost is ¢ - K random bits.

More economic: K + O (t)

We can consider G = (V, E),with constant degree expander and V = {0, 1} .
We need initial K random bits, and do ¢ steps random walk.

Then ¢ random vertices(¢ strings of random k— bit).
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Chapter 7 Applications of Concentration of measure

7.1 Concentration of measure

Let’s see some basic inequalities:

e (Markov) Let X be a non-negative random variable. Then
EX
Va>0,P(X >a) < —.
a
e (Chebyshev) Let X be a random variable with finite EX = pu, VarX = o2. Then

1
vk > 0,P(|1X — pl 2 ko) < 5.

Let’s start with the simplest setup. Consider sum of Rademacher random variable X;:
Sn=X1+...+ X,,

where X; is independent of random variable .

Trivially: —n < S, < n.

Typically: We shall see that S concentrates sharply within a window of width O (S,,).

Intuition: It is very rare that all independent random variable. X; team up to go in the same direction.

For instance:P (S, = n) = P (all X; = 1) = 27" exponentially unlikely.

General phenomenon: Assuming boundedness and sufficient independence.Then we get concentration of

measure. Usually of subgausiam nature
. _ 2
i.e.P (Ao away from mean p) < ¢y - e~
Simple scenario:

Sn=X1 4+ Xy, X, i4.d ro.

1,  with probability i:
<8, <n, X = P 72
—1, with probability 3.

But typicllay the value of .S, is sharply concentrated in a small window with width O(S),).

Theorem 7.1. [Chernoff]

et X1,..., Xy be i.i.d, Rademacher random variables and S, = X1 + - - - + X,. Then for any a > 0,

a2

The idea to prove it is applying Markov inequality to exponential moment.
a2
Proof By symmetry, it suffices to show P(S,, > a) < e2n» . Consider the exponential moment of each X;. For
any A > 0,

A - 2
% = cosh()\) < e%,

where the least inequality is obtained by comparing Taylor series. Note that independence of X;’s implies that

n ) n 5
E(eASn) _ E(eAZi:l XZ) _ E(H e)\Xi) md:ep. HEe)\Xi < e)\Tn_
i=1 i=1

E(eM) =

Then

P(S, > a) = P(eMn > M) < o )



7.1 Concentration of measure

where the first inequality holds as Markov inequality. It is optimised when A = .

There are many extensions. For example, we can replace each X; with some bounded random variable.
Another direction is that we can replace “sum” with other functions f(X7i,..., X,,) under some restrictions
like Lipshitz condition.

Theorem 7.2. [Hoeffding’s inequality]

n
et X1,...,X, be independent random variables, where X; € [a;,b;] and let S,, = 5. X; and 0® =
i=1

n
S |bi — a;|% Then
=1

P(|S, — ESp| > Ao) < Ce™V.

Remark Note that that is equal to P(|S,, — ES,,| > a) < C'exp ——<® | (leta = Ao).
> [bi—ail?
i=1

Definition 7.3. [Martingale]

A sequence of random variables X1, . . ., X,, is a martingale ifE| X,,| < 0o, and E(X 41| X, ..., X1) =
Xn.

Example.
1. Random walk on Z where X,, denotes the position at time n.
2. Gambler’s fortune where X,, denotes the total fortune at time n.

Theorem 7.4. [Azuma—Hoeffding’s inequality]

et Xo,X1,..., X, be martingales with | X; — X;_1| < ¢;. Then for any a > 0,

e

> o
i=1

P(| X, — Xo| > a) < 2exp

Using Azuma-Hoeftding’s inequality, we can get the large deviation for Lipschitz functions.

Definition 7.5. [bounded difference]
function f : Qq X --- X Q, — R has bounded difference with parameter c1,...,c, € R" if for any

i € [n], and any x;, x}; € Q;, we have |f(x1, ..., &i—1, i, Tit1,- -, Tn) — [, 2k, .. )] < ¢

&

\

Theorem 7.6. (McDiarmid’s inequality)

Letxq,--- ,xy, be independent random variables with x; taking values in w; and let f : w1 X+ - Xwy, — R
with bounded difference (ci,- - , c,), then we have, Va > 0, P(| f(z1, -+ ,xn) — Ef(z1,--+ ,2,) |>

_ 242

a) <2 %

Q

We shall see some variation. A common product space is 2; = {0,1} = {0, 1}". The following is a large

deviation inequality for Lipschitz functions on a slice of Boolean Cube.



7.1 Concentration of measure

Lemma 7.7. [Kwan,Sudakov,Tran]

Suppose g : {0,1}" — R satisfies the bounded difference condition with parameter (ci,--- ,c,) and
£ e {02, 1}" is a random variable uniformly distributed in ([Z]). Then ¥t > 0,P(] g(§) —Eg(&) > t) <
t
2¢ 8%, Q@
Proof We may assume without loss of generality that ¢; > ¢co > --- > ¢,. Consider the Doob martingale
Z; = Elg(&)|&1, -+ ,&i], s0o Zyg = Eg(§) and Z,, = Z,,—1 = g(&). Let L(z1,...,x;) be the conditional
distribution of £ given &1 = z1,...,& = z;.

We claims that
| E(g(L(z1, -, 2i-1,0))) — E(g(L(21, -+ ,2i — 1)) < 20,
for any feasible choice of 1, -+ ,x;—1 € {0,1}. The claim implies that | Z; — Z;_;| < 2¢; and the conclusion
follows from Azuma—Hoeftding bound.
If ¢ ~ L(xy,- -+ ,x;-1,0) changes &; to 1 and then randomly choose one of the ones among &; 11, -+ , &,
and change it to 0. We thereby obtain the distribution L(x1,...,2;-1,1). This provides a coupling between
L(zy,...,2i-1,0) and L(x1,...,2;—1, 1) that differs in only two coordinates ¢ and j > i, as ¢; < ¢; this

implies the desired bound.

Lemma 7.8. [Kim, Liu, Tran]

Suppose f : {0,1,...,q—1}" — Rsatisfies the bounded difference condition with parameter (cy, . . . , ¢,)

and m is drawn uniformly at random from {0, 1, ..., q — 1}" subject to wt(n) = k ((wt(n) =the number

of non-zero coordinates). Then

2
P(f(m) — Ef ()] = £) < 2exp (—68’5—202) forallt > 0,
! Q

Next, we shall use Lemma 7.7 and the following standard fact about subgaussian random variables to prove

Lemma 7.8.

Lemma 7.9. Subgaussian properties

Let X be a random variable with mean 0. Then the following properties are equivalent:
(i) There exists K1 > 0 such that the tails of X satisfy

P(IX| > t) <2 %/K1 vt > 0.

(ii) There exists Ko > 0 such that the moment generating function of X satisfies
EeMX < 52Xy > 0.

In particular, for (i) = (ii), we can take Ko = 2K and for (ii) = (i), we can take K1 = 4Kos.

Q

Proof of Lemma 7.8 Let { € {0,1}" be a random vector uniformly distributed in ([z]) and u be drawn
uniformly from [¢ — 1]” = {1,...,¢ — 1}", independent from &. Then the conclusion is that the distribution of
7 coincides with the distribution of u * & = (u,1 &1, ..., up&n)-
By Lemma 7.9, it suffices to show that
EEce?V/ (146 —Buef(ux0)) < e17llel?A*

Fix an instance of u. Note that the function f(u * -) has the bounded different condition with parameter
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¢=(c1,...,¢p). Then by Lemma 7.7 with f(u * -) playing the role of g(-) and Lemma 7.9, we get
Eeer/(wO)—Ef(us)) < e16llell?2?.
Thus,
EyEeM (W)= (ux) _ =ABuef(us))E o AB(S (W) E, S (urt)—Eef (ust))

6PN, NEef (i) ~Ey e f (i),

As g(-) := E¢ f(- x £) has the bounded different condition with parameter ¢, by McDiarmid’s inequality,
P(lg(u) — Eug(u)| > t) < 2e720°/llell,

By Lemma 7.9, we have Eue’\(g(“)_Eg(“)) < ellell?A?,

7.2 Applications.

We shall see a geometric application of the large deviation inequality over a slice. The question to consider
is that given a metric space (X, d), how can we bound the volume of intersection of two balls. We will prove
a result providing natural sufficient condition on the metric space (X, d) guaranteeing exponential decay on

intersection volume.

Definition 7.10

A metric space (X, d) has exponential growth at radius r with rate c. If Va € X and V't < r,

vol(B(a,r —t)) et
vol(B(a,r)) = 2

which B(a,r — t) is a ball centered at a with radius r — t.

&
Fora,bec X, letl,;: X — Rbe
ga,b(x) = d(l‘, b) - d(l‘v (L). &

Given 7,k € N and o > 0, we say that the metric space (X,d) is (r, k)-dispersed with constant « if
Va,b € X with d(a,b) = k and any 0 < i < ak,

EmwS(a,r—i) [Ea,b(x)] > 2ak
which S(a,r — i) are all points of distance r — ¢ from a.
Recall a real-valued random variable X is K -subgaussian if
vt > 0,P(|z| > t) < 2 /K.

Theorem 7.12. (Kim, Liu,Tran)

Let (X, d) be a finite metric space with d taking values in N U {0} and let k,r € N. Suppose

(A1) (X, d) has exponential growth at radius r with rate ¢ > 0.

(A2) (X,d) is (r, k)-dispersed with a constant o« > 0

(A3) Va,b € X with d(a,b) = k and V0 < i < ok, £,p(x) — Ely () is K-subgaussian, where x is
drawn uniformly from S(a,r — i). Then VYa,b € X with d(a,b) = k,

vol(B(a,r) N B(b,r)) < 9o—ea(krk?/K)
vol(B(a,r)) - '
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7.3 Intersection volume

Proof LetT = B(a,r) N B(b,r) and n ~ B(a,r). Then
vol(B(a,r) N B(b,r))

vol(B(a,r))
By (A1), we have P(d(n,a) <r — ak) < 2¢— k) Thus,

PneT)<P(npeTldn,a) >r—ak) P(dna)>r—ak)+P(dn,a) <r—ak)

=PneT)=P(d(n,b) <r).

ak
< STP((n,b) < rld(n,a) = r — )P(d(n,a) = r — i) + 2¢O
=0

< < —r—j —Q(k),
Ogg};kp(d( b) <rld(n,a) =r —1i)+2e

Fix an ¢ € [0,ak] and let x ~ S(a,r — 7). Note that, conditioning on d(n,a) = r — i, n and x are
identically distributed, we can get that
P(d(n,b) < rld(n,a) = r —i) =P(d(n,b) —d(n,a) < ild(n,a) = r —1i)
= P(d(z,b) — d(x,a) < 1)
= P(lap(z) <1).
By (A2), we have E/, () > 2ak. Consequently, we have i — E/, j(x) < i — 20k < —ok.
Since by (A3) which show that ¢, ;(x) — E{, ;(x) is K-subgaussian, then we have
Plap(x) <) = P(lap(z) — Elop(x) <i—Elop(a))
<Plap(x) — Elyp(x) < —ak)
< 9e~UK*/K),

7.3 Intersection volume

We first consider intersection of two balls in R3. Take £ > 0 sufficiently small and consider two unit balls
A and B whose centers are of distance ¢ apart, then vol(A N B) > 99%wol(A). But this is not longer true in

high dimension.

Proposition 7.13

Let € > 0. Then there exists ny = ng(g) such that the following holds for all n > ny.

Let A and B be two unit balls whose centers are of distance ¢ apart, then

l(ANB
%(14)) < 1%.
[ )
Before the proof of Proposition 7.13, we need the following basic fact.
The volume of radius-r ball in R™ is
1 (2me\™?
UOln(T) ~ \/ﬁ <T) r". .

Proof of Proposition 7.13
It is easy to see that ' < r — £/10. Then vol ) <w ), and then we are done because

vol(AN B) voly, ( n
vol(A) vol < ) 107“) — 0




7.3 Intersection volume

as n — o0.

Figure 7.1

o This idea of using a ball of smaller radius to bound the intersection in the continuous R” setting fails in

many discrete settings.

Example. Take the discrete cube {0, 1}" endowed with the Hamming metric and let &, 7 € N with 2k < r.
Consider the two radius-r Hamming balls A and B centered at a = 0" and b = 12¥0"~2 respectively. Take a
mid-point ¢ of a and b, say by symmetry ¢ = 1¥0”~%. Then the point z = 0¥170"~"~* lies in the intersection
AN B, but it is of Hamming distance r + k from the chosen mid-point c.

Figure 7.2

Recall the result Theorem 7.12 from last time. It gives natural sufficient condition for (X, d) to guarantee
intersection volume is small.

The Hamming space satisfies the conditions of Theorem 7.12 as follows.

Theorem 7.15

Let 0 < p < q;ql and let k € N. Consider X = {0,1,--- ,q — 1}" endowed with the Hamming metric
A. Then (X, A) satisfies the conditions (A1) — (A3) of Theorem 7.12 as follows.
(A1) (X, A) has exponential growth at radius pn with rate ¢ = §p, 4(1).
(A2) (X, A) is (pn, k)-dispersed with constant o = % ( - q]i—ql > 0.
(A3) For any a,b € X with A(a,b) = kand any 0 < i < ak, £y (x) — El, p(x) is 400k-subgaussian,
where Ug,(x) = A(x,a) — A(x,b) and x is drawn uniformly from S(a,pn — 1).
Consequently, for every a,b € X,

vol(B(a,r) N B(b,7)) _, —a,.(ab)

vol(B(a,T))

Q

e The conditions (A1) — (A3) can be easily verified. In particular, (A3) follows from the concentration of

78



7.3 Intersection volume

measure on a slice.

This exponential decay on intersection volume for balls in Hamming space has applications on, for example,
list-decodability of random codes, and improvements on Gilbert-Varshamov type bounds.

Next we give a unified proof of improvements on Gilbert-Varshamov type bounds on various models of
error correction codes, which we now discuss in details.

An error correcting code (ECC) is an encoding scheme that transmits messages as binary numbers, in such
a way that the message can be recovered even if some bits are erroneously flipped. They are used in practically
all cases of message transmission, especially in data storage where ECCs defend against data corruption.

By encoding messages with codewords that are pairwise far apart, we can recover the message even if some
bits are corrupted by noise. For example, suppose there are two persons, Alice and Bob. Bob is asking Alice a
question, and is waiting Alice’s answer “YES” or “NO”. Suppose there is some noise that could corrupt up to
2 bits of the binary strings. We denote the encode “YES” by, say “000100”, and “No” by “111111”. Suppose
the code that Bob receive is  := 011100. So how do we know what Alice says, YES or NO? It is very simple,
we can look at their Hamming distances. It is easy to see that A(z, Y ES) = 2 and A(z, NO) = 3. So we can
know that Alice said “YES”. In general, if the noise could corrupt up to ¢ bits, then as long as all messages are
encoded by strings with distance at least 2¢ + 1.

Definition 7.16

Given positive integers n and d, we denote by A(n, d) the maximum number of messages (or codewords)
in {0, 1}" with minimum distance d. &

Theorem 7.17. (Gilbert-Varshamov bound)

271
An,d+1) > ———
(n,d+1) 2 vol(n,d)’
d
where vol(n,d) = Y (7!) is the volume of radius-d ball.
=0 O

We can prove Gilbert-Varshamov bound by the follwing Turdn’s theorem.

Theorem 7.18. (Turan)
Let G be an N-vertex D-regular graph. Then o(G) > DLH. o

The bound is tight. (consider Kpy1)
Exercise 7.1 Prove Gilbert-Varshamov bound using Turdn’s theorem.

We can improve Gilbert-Varshamov bound, if we get a better bound on independence number. Ajtai-
Koml6s-Szemerédi [1] proved that if G is K3-free or locally sparse, then o(G) > c% log D.

Theorem 7.19

Let G be an N-vertex graph with maximum degree D and minimum degree at least D /2. Let K € [D]

and let I' C G be a subgraph induced by the neighborhood of an arbitrary vertex. Suppose there is a
partition V(T') = B U I such that
(1) For any w € B, degp(u) < D/k; and
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7.4 Johnson-Lindenstrauss Lemma

(2) |I| < D/k.

Then a(G) > (1 — ok(l))%log k, and the number of the independents sets in G is at least
1 N 2

o(5+or(1)) F log® k.

Q

To apply the above theorem to improve Gilbert-Varshamov bound, we use Theorem 7.15 to check that

certain auxiliary graph is locally sparse.

7.4 Johnson-Lindenstrauss Lemma

Motivation. In this digital era, lots of data are transmitted as we speak. Many data (such as images, videos)
can be represented by high dimensional vectors. To speed up computation, it is of greet practical importance to
try to reduce the dimension.

Applications.

e Clustering.
e Regression analysis.
° -
The basic task we want to do is to tell distinct vectors apart. Using points in R? to represent data and the

Euclidean distance between points measures their “similarity”.
d
: d : — — 2
Given z € R%, we write ||z|| := ||z]]2 = z%xi.(ég-norm)
1=

Euclidean distance between x and y is ||z — y/|.

The Johnson-Lindenstrauss Lemma was first introduced in the paper “Extensions of Lipschitz mappings
into a Hilbert Space” by William B. Johnson and Joram Lindenstrauss published 1984 in Contemporary
Mathematics. The Lemma is as follows.

Lemma 7.20. [Johnson, Lindenstrauss]

Given 0 < ¢ < 1 and a set X of n points in R%. Then there exists a linear map f : R® — R™, where
m = O(IOE#) such that for every u,v € X,

1f(w) = f()| = (T £ &)[ju —vl. O

The Lemma states that after fixing an error level, one can map a collection of points from one Euclidean
space (no matter how high it’s dimension m is) to a smaller Euclidean space while only changing the distance
between any two points by a factor of 1 +¢. The dimension of the image space is only dependent on the error and
the number of points. Given that the dimension is very large, one can achieve significant dimension reduction,
which has applications in data analysis and computer science.

Idea. Project points randomly to a low dimensional subspace. (Random projection trick is a powerful
technique behind compressive sensing and matrix completion.)

Note that there is a naive way to choose m coordinates out of d uniformly at random. We can easily see this
way failing by a simple example. Just take u = (1,0,...,0) € R*and v = (0,1,0,...,0) € R% To preserve
distance between v and v, there m random coordinates need to include the first one or the second coordinate,

which is quite unlikely if d > n.
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7.4 Johnson-Lindenstrauss Lemma

Lemma 7.21. [Distribution Johnson—-Lindenstrauss Lemmal]

Given 0 < €,0 < 1, there exists a constant C such that the following holds. Let A be an m x d random
matrix, in which each entry is a normal random variable ~ \/—%N (0,1) independent of others, where

m < C-e 2log %. Then for every x € RY,

P(lAzl| = (1 £ e)[|lz[) = 1 - 0. .

To get the original Johnson—Lindenstrauss Lemma, we use Lemma 7.21to all ( ) pairwise distances in X:
let A= f, f(u) — f(v) = Au — Av = A(u — v). Choose § = ( ) where m = O(e72log $) = O(c2logn).

Proof of Lemma 7.21 Fix 2 € R?, we want to show that with high probability, || Az|| =~ ||z]|.

First we show that
El|Az|* = ||=|>.

Indeed, let g = (g1, ..., 94) € R%, where g; ~ ﬁN(O, 1) ~ N(0,1), and let
g

Amxd = )
4

where ¢V € RY. Note that || Az|?> = Z (g, > = m (g, )?, then

d
x) = EZgiwi = inEgi =0.
i=1 i=1
Thus

E (g,z)? = Var (g,z ZévQVargz —*||$||2-

We have done as E||Az||? = E(m (g, z)?) = ||z||%.
m . .
In particular, ||Az|? = <g(’),x>2, where (g, z) ~ —H:J;HN(O 1). So ||Az|? is a x*-random
i=1
variable with m degree of freedom. By concentration of y-squared distribution (better than Chernoff bound),

we have
P(|IX —EX| > ¢EX) < 2e <"™/8 < 5,

where the last inequality holds by taking m = O(log % /2).

7.4.1 Applications to regression analysis

Setup. Given many data points a1, as, . . ., a, € R%.
a, Y1
G OT: Y2
Machine
an Yn

Figure 7.3
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7.4 Johnson-Lindenstrauss Lemma

We want to figure out the relation between the data and the outcome y1, Y2, . . ., yn € R™. We write
ap - v
o oee a2 e y2
Anxd = . . . , . € R™.
Qn Yn

Whether 3z € R?s.t. Az ~ y?
Goal. (Least square regression)

min ||Az — y||%.
min 142 ]

Denote an optimal solution of the above original problem by x*. Instead, we only need to solve the following
sketched problem.

min ||[ITAz — y|%.

z€R4

Let z* be an optimal solution of the above sketched problem.
Claim If for any vector of the form Az — y, we have ||[TAx — IIy||? = (1 4+ ¢)|| Az —

2 then Z* gives a
good approximate for z*
Proof Our goal is to obtain ||AZ* — y[|? < (1 +¢)||Az* — y|%.

Note that for any 2 € R?, we have ||[TTAZ* — ITy||? < ||ITAz — IIy||%. Ttis easy to see that

IAZ* — y|* < (1 +¢)|[TTAZ" — TIy||* < (1 +¢)|[TAz" — IIy||* < (1 +¢)?[| Az” — y]*.

The first and last inequalities hold since the property of 11, while the second holds since the optimality of Z*.

Next, we want to obtain the condition of the above claim. Lemma 7.21 can preserve a single vector’s
length, but there are infinitely many vectors of the form Ax — y, the union bound cannot work. Thus, we use
another tool.

Idea: We construct an e-net for the subspace spanned by col™ of A and y, apply union bound over the

e-net.

Let U C R™ be a d-dimension linear subspace of R™ and let TI € R™*™ be the matrix from Lemma 7.21,
1 1
%). Then with probability at least 1 — 9, for any v € U, we have

where m = O( =
Mo||* = (1 £ ) o]l

Q

We want to show how Theorem 7.22 implies Least square regression. Theorem 7.22 implies that we
. . dlog L +log +
can find a projection II € R™*™ with m = O(w

|TLAz —TIy||? = (1+¢)||Az — y||?. Take U to be a space spanned by col™ of A and y. Note that the dimension
of U is d + 1, we can use Theorem 7.22, as desired.

) such that for any vector of the form Az — y,

To prove Theorem 7.22, first observe that as II is linear, it suffices to consider unit vectors v € U. Write
Sy for the unit sphere Syy = {v € U : |[v||? = 1}, we shall find an e-net N for Sy, that is, for any v € Sy,
there exists z € N, such that ||v — z|? < e.

For 0 < e < 1, there exists an e-net N C Sy with |N.| < (£)? such that for any v € Sy, we have

min ||z — v||2 <e.
N,

xENe Q>

Proof Sketch. Iteratively pick x1,z9,... such that x;’s pairwise distance is at least €. Let N, be the
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7.4 Johnson-Lindenstrauss Lemma

maximal set of such x;. Note that for distinct x; and x;, we have B(z;,¢/2) is disjoint with B(x;,c/2) and
B(x;,e/2) € B(0,1 +¢/2). Thus, |N:| - volg(¢/2) < volg(1 + /2). Recall that voly(r) = c - r?, we have
Vo < (5820 < (4)e
Proof of Theorem 7.22 Let N, be an e-net for S;;. By Lemma 7.21 and union bound for m = O(W) =
O(dbg%sijbg%), there is a linear projection IT € R™*"™ such that with probability at least 1 — ¢, for any = € N,
|TIz||? = (1 £ ¢)||z||>. We need to show for any v € Sy7, we have ||TIv||? = (1 & €)]|v||*.
Claim For any v € Sy, there exists a sequence of points xg, x1,zs,... € N such that v = zg + c1x1 +
cowg + - -+ for|c;| < €'
Thus, we have
|TTv|| = ||THxo 4+ c1llzy + collzg + - - - ||

< Mol + e [Tz || + co[ T 4 - --

<(+e)+e(l+e)+2A+e)+- -

<1+ 0(e).
The first equality holds by the triangle inequality and the second equality holds since the choice of II and
|lz;]|? = 1 for any 4. Similarly, |TTv||> > 1 — O(g). We obtain that ||ITv||? = (1 + ¢)||v||? since ||v||* = 1.
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