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Abstract

Given an r-uniform hypergraph H, the multicolor Ramsey number rk(H) is the minimum

n such that every k-coloring of the edges of the complete r-uniform hypergraph Kr
n yields a

monochromatic copy of H. We investigate rk(H) when k grows and H is fixed. For nontrivial

3-uniform hypergraphs H, the function rk(H) ranges from
√

6k(1 + o(1)) to double exponential

in k.

We observe that rk(H) is polynomial in k when H is r-partite and at least single-exponential

in k otherwise. Erdős, Hajnal and Rado gave bounds for large cliques Kr
s with s ≥ s0(r), showing

its correct exponential tower growth. We give a proof for cliques of all sizes, s > r, using a slight

modification of the celebrated stepping-up lemma of Erdős and Hajnal.

For 3-uniform hypergraphs, we give an infinite family with sub-double-exponential upper

bound and show connections between graph and hypergraph Ramsey numbers. Specifically, we

prove that

rk(K3) ≤ r4k(K3
4 − e) ≤ r4k(K3) + 1,

where K3
4 − e is obtained from K3

4 by deleting an edge.

We provide some other bounds, including single-exponential bounds for F5 = {abe, abd, cde}
as well as asymptotic or exact values of rk(H) when H is the bow {abc, ade}, kite {abc, abd},
tight path {abc, bcd, cde} or the windmill {abc, bde, cef, bce}. We also determine many new

“small” Ramsey numbers and show their relations to designs. For example, the lower bound for

r6(kite) = 8 is demonstrated by decomposing the triples of a seven element set into six partial

STS (two of them are Fano planes).

1 Introduction, results

An r-uniform hypergraph H is a pair (V,E) where V is a vertex set and E ⊆
(
V
r

)
is the set of

edges. Let Kr
n be the complete r-uniform hypergraph containing all r-subsets of vertices as edges.
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For an edge {v1, v2, . . . , vr} we often write v1v2 . . . vr. When r = 2, denote Kr
n by Kn. We shall

also use the notation
(
[n]
r

)
or
(
V
r

)
for the edge set of Kr

n. An r-uniform hypergraph H is `-partite

if its vertex set can be partitioned into ` parts (called partite sets) such that each edge contains at

most one vertex from each part; H is a complete r-partite hypergraph if each choice of r vertices

from distinct partite sets forms an edge, and H is balanced if its partite sets differ in size by at

most one. A matching is a hypergraph consisting of disjoint edges. A hypergraph H = (V,E) is a

subhypergraph of F = (V ′, E′) if V ⊆ V ′ and E ⊆ E′. Denote by ex(n,H) the maximum number

of edges in an n-vertex r-uniform hypergraph containing no copy of H as subhypergraph. The

density of an r-uniform hypergraph H = (V,E) on n vertices is d(H) = |E|/
(
n
r

)
.

The multicolor Ramsey number for an r-uniform hypergraph H, denoted by rk(H), is the mini-

mum n such that no matter how the edges of Kr
n are colored with k colors, there is a monochromatic

copy of H.

We shall say that a hypergraph G is H-free if it does not contain a copy of H as subhypergraph

and that a coloring of G is H-free if there is no monochromatic copy of H in G.

While there are a number of results in the literature about rk(H) when k is a small fixed number

(see [6]), the case when H is fixed and k grows appears not to have been extensively studied. An

important exception is the case when H is a matching and the Ramsey number is known exactly

from the chromatic number of Kneser’s graphs and hypergraphs, [25], [1]. Results for certain

r-partite r-uniform H were obtained in [23] and for the loose cycle H = C3
3 in [15].

In this paper we propose and start a systematic investigation of the growth rate of rk(H) for some

fixed H as k grows. We state some general remarks about techniques to get upper bounds (using

Turán numbers, reducing uniformity by taking traces) and lower bounds (using block designs or

their approximations) for rk(H), some of them (Proposition 3, Lemmas 12, 13) are known among

researchers working in this area. We apply them to 3-uniform hypergraphs in Theorems 4 - 11.

To determine the growth rate of rk(H) in general is known to be a very hard problem. For example,

the best known bounds even for the smallest nontrivial graph case are ck < rk(K3) < c′k! for some

positive constants c and c′ (see Chung [7] and Erdős, Szekeres [12]). The only known non-trivial

classical Ramsey number for cliques is r2(K
3
4 ) = 13, due to McKay and Radziszkowski [28]. Define

the tower function as follows: t1(n) = n and ti+1(n) = 2ti(n) for all i ≥ 1. Erdős, Hajnal and Rado

gave an upper bound for all cliques and a lower bound for only large cliques.

Theorem 1 (Erdős and Rado [11], Erdős, Hajnal and Rado [10]). Let s > r ≥ 2. There are

positive integers c = c(s, r) ≤ 3(s− r), s0(r), and c′ = c′(s, r) such that

tr(c
′k) < rk(Kr

s ) < tr(ck log k)

where the lower bound holds for s ≥ s0(r).

It is worth noting that the lower bound in [10] was stated for the case when the number of colors,

k, is fixed while r grows and the bound was only for large cliques. But the proof in [10] applies
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naturally to our case as well, when k grows and the other parameters are fixed. A recent result by

Conlon, Fox and Sudakov, [5] implies a lower bound for cliques of smaller sizes, but still only for

s ≥ 2r − 1. Duffus, Lefmann and Rödl [8] took another approach, using shift graphs, and proved

a lower bound for cliques of all sizes s > r, but require k being fixed and r � k. Our first result

is for cliques of all sizes, using a slight modification of the stepping-up lemma, due to Erdős and

Hajnal (see Chapter 4.7 in [14]).

Theorem 2. For any s > r ≥ 2 and k > r2r we have

rk(Kr
s ) > tr

(
k

2r

)
.

An important proposition shows that rk(H) is polynomial in k if and only if H is r-partite.

Proposition 3. Let r ≥ 2 be fixed and H be a connected r-uniform hypergraph. Then rk(H) is

polynomial in k if and only if H is r-partite. In particular, there are positive constants c and c′,

such that

(i) If H is r-partite, then rk(H) = O(kc)

(ii) If H is not r-partite, then rk(H) ≥ 2c
′k.

Our other results are about rk(H) for 3-uniform H. Let K3
4 − e be a hypergraph obtained from

K3
4 by removing one edge. Our next theorem gives bounds on rk(K3

4 − e) in terms of rk(K3),

showing that compared to the double-exponential bounds for K3
4 from Theorems 1 and 2, the

correct order of magnitude for rk(K3
4 − e) is single-exponential. It is known that r2(K

3
4 − e) = 7

and 13 ≤ r3(K(3)
4 − e) ≤ 16 ([31]).

Theorem 4. For any k ≥ 2,

rk(K3) ≤ r4k(K3
4 − e) and rk(K3

4 − e) ≤ rk(K3) + 1.

Denote by F5 the hypergraph with edges {abc, abd, cde}. We show that rk(F5) behaves similarly to

rk(K3).

Theorem 5. There is a positive constant c such that, for k ≥ 4, 2ck ≤ rk(F5) ≤ k!.

The simplest non-trivial triple systems have just two edges. The kite is a 3-uniform hypergraph

with two edges sharing two vertices. The bow is a 3-uniform hypergraph with two edges sharing a

single vertex. Since the Turán number of these hypergraphs and the existence of designs providing

constructions are known, the next two results are rather straightforward, except the statements for

small number of colors which are worked out in Section 7.

Theorem 6. Let rk = rk(bow). Then

rk = (1 + o(1))
√

6k.
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If k =
(n3)
n and n ≡ 4, 8 (mod 12), then rk = n + 1. Moreover, r2 = 5, r3 = r4 = r5 = 6, r6 = 7,

r7 = r8 = r9 = r10 = 9, 9 ≤ r11 ≤ r12 ≤ r13 ≤ r14 ≤ 10, r15 = 11.

Remark. Note that rk(bow) is the smallest multicolor Ramsey number among nontrivial 3-uniform

hypergraphs since rk(H) ≥ min{rk(bow), rk(kite), rk(M)}, where M is a matching with 2 triples.

Indeed, each nontrivial 3 uniform hypergraph contains at least two edges that form one of bow, kite

or M , and by [25], rk(M) = k + 5.

Theorem 7. Let rk = rk(kite). Then

rk =



k + 1, if k ≡ 3 (mod 6)

k + 1 or k + 2, if k ≡ 4 (mod 6)

k + 2, if k ≡ 0, 2 (mod 6)

k + 3, if k ≡ 1, 5 (mod 6), k 6= 5

6 if k = 5,

5 if k = 4

Let a, b be positive integers. Denote by F (a, b) the 3-uniform hypergraph with vertex set V = A∪B,

A ∩ B = ∅, |A| = a, |B| = b and edge set consisting of all triples with one vertex in A and two

vertices in B (for example, F (2, 2) is the kite).

Proposition 8. For any a ≥ 2, we have

k(a− 1) < rk(F (a, 2)) ≤ k(a− 1) + 3.

In general, rk(F (a, b)) grows slower than double exponential in k and possibly faster than expo-

nential in k. (Recall that Theorems 1 and 2 give double-exponential bounds.)

Theorem 9. Given 3 ≤ a ≤ b, we have, for positive constants c = c(a, b) and c′ = c(a, b)

2c
′k < rk(F (a, b)) < rt(Kb) +m < 2ck

a+1 log k,

where m = (a− 1)k + 1, and t = k
(
m
a

)
.

The windmill W with center edge abc is the hypergraph with six vertices and edges abc, abd, bce,

acf . The proof of the lower bound in the next two theorems illustrates how to combine designs

with a result of Pippenger and Spencer [30] about partitioning of hypergraphs into matchings.

Theorem 10.

(1− o(1))3k ≤ rk(W ) ≤ 3k + 3.

The ideas giving the asymptotic of rk(W ) can be also used for the tight path P 3
3 = {abc, bcd, cde}.
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Theorem 11. 2k(1− o(1)) ≤ rk(P 3
3 ) ≤ 2k + 3 and the upper bound is sharp when k = 22m−1 − 1.

The rest of the paper will be organized as follows. In Section 2, we give some auxiliary results and

prove Proposition 3. Theorems 2 - 11 will be proved in Sections 3-6. Section 7 gives the arguments

and designs needed for Theorems 6 and 7 for small number of colors, Section 8 contains remarks,

conjectures and problems.

The lower bounds on Ramsey numbers often based on block designs. A t − (v, k, λ) design is a

subset of
([v]
k

)
, called blocks, such that each t element subset of [v] is contained in exactly λ blocks.

2 General bounds and auxiliary results

In this section we prove some general bounds on rk(H) and obtain some consequences including

Proposition 3. Recall that the density of an r-uniform hypergraph F with n vertices and e edges

is d(F ) = e

(nr)
.

Lemma 12. Let H be a fixed r-uniform hypergraph and F be an H-free r-uniform hypergraphs

with n vertices, density d(F ) = d. Then

(i) rk(H) ≤ 1 + max{n : d
(
n
r

)
/ex(n,H)e ≤ k},

(ii) If
(
n
r

)
(1− d)k < 1 then rk(H) ≥ n.

Proof. (i) Consider an H-free coloring of Kr
n with k colors. Then each color class has at most

ex(n,H) edges.

(ii) Consider k copies of hypergraph F obtained by mapping its vertices randomly to a given set

V of n vertices. Here, we choose vertex permutations uniformly. Assign the edges of the ith copy

of F color i, i = 1, . . . , k. If an edge belongs to several copies of F , assign the smallest available

label. We claim that with positive probability, each edge of K =
(
V
r

)
belongs to some copy of F .

Indeed, the probability that a given edge of K uncovered is (1 − d)k. Thus, the probability that

there is an uncovered edge of K is at most
(
n
r

)
(1 − d)k < 1. Therefore, with positive probability,

all edges are covered and the resulting coloring of K contains no monochromatic copy of H.

Proof of Proposition 3. (i) The proposition follows from Lemma 12(i) by using the fact that

ex(n,H) < nr−c for some positive constant c = c(H), when H is r-partite, see [9]. So, k ≥(
n
r

)
/ex(n, F ) ≥ Cnr/nr−c = Cnc, for a constant C = C(r). Thus n ≤ C−1/ck1/c.

(ii) Let H be non-r-partite. Apply Lemma 12(ii) with F being a complete r-uniform r-partite

balanced hypergraph on n = 2c
′k vertices (and r|n). Clearly H is not contained in F as a subgraph.

Moreover, d(F ) ≥ (n/r)r

(nr)
> (n/r)r

(en/r)r = e−r. Hence for k = c log n and c > er(r + 1),(
n

r

)
(1− d)k =

(
n

r

)
(1− d)c logn < nre−cd logn = e(r−cd) logn < 1.
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The trace of a 3-uniform hypergraph H at vertex v is the graph on vertex set V (H)−{v} and with

edge set {e− {v} : e ∈ H, v ∈ e}. A transversal of a hypergraph is a set of vertices non-trivially

intersecting each edge.

Lemma 13. Let H be a 3-uniform hypergraph with a single-vertex transversal {v}. Let G be a

trace of H with respect to v. Then rk(H) ≤ rk(G) + 1.

Proof. Given an H-free k-coloring c of
(
[n]
3

)
, let c′ be the k-coloring of

(
[n−1]

2

)
defined by c′(ij) =

c(ijn). Then c′ has no monochromatic G and consequently rk(G) ≥ rk(H)− 1 as required.

For lower bounds on rk(H) the following decomposition result is a useful tool (we shall use it in

Section 6):

Theorem 14 (Pippenger and Spencer [30]). Let r be fixed and D be sufficiently large. Let H be

an r-uniform hypergraph with d(v) = (1 + o(1))D for every v ∈ V (H) and codegree of o(D) for

every pair {u, v} ⊆ V (H). Then E(H) can be partitioned into (1 + o(1))D matchings.

3 Kr
s for s > r ≥ 2

In this section we prove Theorem 2 using a variant of the stepping-up lemma of Erdős and Hajnal.

Proof of Theorem 2. It suffices to prove the result for s = r + 1 since rk(Kr
s ) ≥ rk(Kr

r+1) for

any s > r. We use induction on r to show that rk(Kr
r+1) ≥ tr(k/2

r−2 − 2r) for all k ≥ r2r. Since

k ≥ r2r, we have k/2r−2 − 2r ≥ k/2r and the result follows.

The base case r = 2 is given by rk(K3) > 2k > 2k−4 = t2(k − 4). Assume the result holds for

some r ≥ 2 and let n = rk(Kr
r+1)− 1. By the inductive hypothesis n ≥ tr(k/2r−2 − 2r)− 1. In the

next paragraph, we will construct a Kr+1
r+2 -free coloring ψ :

(
[2n]
r+1

)
→ [2k + 2r − 4]. This shows that

r2k+2r−4(K
r+1
r+2 ) ≥ 1 + 2n ≥ 1

2 tr+1(k/2
r−2 − 2r). Now suppose we are given k′ ≥ (r + 1)2r+1. Let

k = b(k′ − 2r + 4)/2c. Then k ≥ k′/2− r + 1 ≥ r2r and k′ ≥ 2k + 2r − 4. Therefore rk′(K
r+1
r+2 ) is

at least

r2k+2r−4(K
r+1
r+2 ) ≥ 1

2
tr+1

(
k

2r−2
− 2r

)
≥ 1

2
tr+1

(
k′

2r−1
+

1− r
2r−2

− 2r

)
> tr+1

(
k′

2r−1
− 2(r + 1)

)
.

Now we shall construct a Kr+1
r+2 -free coloring ψ of

(
[2n]
r+1

)
using the Kr

r+1-free coloring φ of
(
[n]
r

)
.

Represent the elements of [2n] with 0-1-sequences on n coordinates. For a vertex u and integer

i, we denote u(i) the ith coordinate of u in this representation. Given two vertices u, v ∈ [2n],

say that u < v if u(i) < v(i) and u(j) = v(j) for j < i. Denote such an i by f(uv). Given any

u1 < · · · < ur+1, let fi := f(uiui+1), for every 1 ≤ i ≤ r. Observe crucially that fi 6= fi+1, for every

1 ≤ i ≤ r − 1.
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We define coloring ψ as follows:

ψ(u1...ur+1) =


(φ(f1, ..., fr), 1) if (f1, ..., fr) is an increasing sequence,

(φ(f1, ..., fr), 2) if (f1, ..., fr) is a decreasing sequence,

(i, 3) if f1 < f2 < · · · < fi > fi+1, 2 ≤ i ≤ r − 1, for r ≥ 3,

(i, 4) if f1 > f2 > · · · > fi < fi+1, 2 ≤ i ≤ r − 1, for r ≥ 3.

Suppose to the contrary that there is a monochromatic copy of Kr+1
r+2 under ψ on vertex set U =

{u1, ..., ur+2} with u1 < · · · < ur+2. Without loss of generality, we distinguish two cases.

Case 1: The second coordinate of ψ on each (r + 1)-tuple of U is 1.

Considering ψ on u1, ..., ur+1 and u2, ..., ur+2, this implies that f1 < f2 < · · · < fr < fr+1. Let

F := {f1, ..., fr+1} and U = {u1, . . . , ur+2}. We see that all r-element subsets of F have the same

color. Thus a monochromatic Kr+1
r+2 on U under ψ yields a monochromatics Kr

r+1 on F under φ, a

contradiction.

Case 2: Each (r + 1)-tuple of U has color (i, 3) for some i with 2 ≤ i ≤ r − 1.

Then ψ(u1, ..., ur+1) = (i, 3) implies fi > fi+1. On the other hand, ψ(u2, ..., ur+2) = (i, 3) implies

fi < fi+1, a contradiction.

If the second coordinate is 2 or 4 the arguments are almost identical to those in Case 1 or 2.

4 K3
4 − e and F5

Notice that in contrast to the double-exponential growth for K3
4 , rk(K3

4 −e) is single-exponential in

the number of colors k. Indeed, since K3
4 −e is not 3-partite, Proposition 3 yields rk(K3

4 −e) > 2ck.

For the upper bound, one can use a variation of the classical Erdős-Rado pigeonhole argument to

obtain rk(K3
4 −e) < 2(k+1) log k. We will, however, use a different approach to prove this fact, which

also shows some connection between the multicolor Ramsey number of K3
4 − e and the multicolor

Ramsey number of a triangle.

Proof of Theorem 4. For the lower bound, let n = rk(K3)−1 and φ :
(
[n]
2

)
→ k be a triangle-free

k-coloring of
(
[n]
2

)
. We will construct a K3

4 − e-free coloring ψ of
(
[n]
3

)
with 4k colors. This then

would imply that r4k(K3
4 − e) ≥ n+ 1 = rk(K3) as desired. Let ψ be the following coloring of the

triples i < j < k. If P is a path with vertices i, j, k, denote by φ′(P ) the color under φ of the edge

in {i, j, k} that is not in P . For such a path P , let the type of P , t(P ) = 1, 2, or 3 if i, j or k is its

center, respectively. If {i, j, k} is a rainbow triangle, let ψ(ijk) = (0, φ(jk)). If {i, j, k} induces a

monochromatic path P , let ψ(ijk) = (t(P ), φ′(P )).

Suppose there is a monochromatic copy K = {abc, abd, acd} of K3
4 −e, we will show a contradiction

when the first coordinate is 0, namely all three triples {abc, abd, acd} span rainbow triangles under
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φ. The cases when the first coordinate is 1, 2 or 3, can be proved using a similar argument. Notice

that when the first coordinate is 0, by the definition of ψ, the color of a triple depends on the

color, under φ, of the edge spanned by the two largest elements in that triple. Since b, c, d play a

symmetric role, we can assume that b < c < d. If a is the smallest, then ψ(abc) = ψ(abd) = ψ(acd)

implies φ(bc) = φ(bd) = φ(cd), i.e. bcd is monochromatic under φ. Thus b is the smallest. But

then ψ(abc) = ψ(abd) implies φ(ac) = φ(ad), which means acd is not a rainbow triangle under φ,

a contradiction.

For the upper bound, simply notice that K3
4 − e = {abc, abd, acd} has a single vertex transversal

{a}, and the trace of a is a triangle on {b, c, d}. Thus the upper bound follows from Lemma 13.

The case with 2 colors is treated in Section 7.

Proof of Theorem 5. The lower bound follows from Proposition 3(ii), since F5 is not 3-partite.

The upper bound comes by induction with basis k = 4. Suppose that the edges of K3
24 with

vertex set V can be 4-colored so that there is no monochromatic F5. There are 22 triples uvx

containing a fixed pair uv. Assume that uvx1, uvx2 are red triangles. Then x1x2y cannot be red

for y ∈ Y = V − {u, v, x1, x2}. Thus we have a set S, S ⊆ Y , |S| ≥ d(|V | − 4)/3e = 7 and x1x2y

are blue triples for all y ∈ S. Therefore, no triple in S is colored blue, and thus
(
S
3

)
uses k − 1 = 3

colors. But r3(F5) = 7 (and r2(F5) = 6), see Section 10.

The inductive step is simply repeating the argument above in general. Suppose we already know

rk(F5) ≤ k! for some k ≥ 4 and we have a K3
n with a F5-free (k + 1)-coloring. Selecting u, v, x1, x2

as above and applying the same argument, we get n − 4 ≤ k(k! − 1) < (k + 1)! − k, thus n ≤
(k + 1)!− k + 4 ≤ (k + 1)!. This implies rk+1(F5) ≤ (k + 1)!.

Remark. The above results slightly suggests that rk(F5) ≤ rk(K3) might hold. Although the

bound rk(F5) ≤ k! in Theorem 5 can be improved slightly, this improvement still does not show

that rk(F5) ≤ rk(K3).

5 Bow, Kite, F (a, b)

Lower bounds of rk(bow) follow from the existence of resolvable designs. A 3− (n, 4, 1) design is a

set of 4-element subsets (blocks) of an n-element set V such that each 3-element subset of V is in

precisely one block. A 3 − (n, 4, 1) design is called resolvable if its blocks can be grouped so that

each group (parallel class) gives a partition of V .

Proof of Theorem 6. When n ≡ 4, 8 (mod 12), k =
(n3)
n , ex(n, bow) = n, thus Lemma 12 (i)

gives rk ≤ n + 1. This is sharp, since resolvable 3 − (n, 4, 1) designs exist if n ≡ 4, 8 (mod 12),

see [18, 19], and [21]. The statement rk(bow) ≈
√

6k follows from considering that design for the

largest n, n ≡ 4, 8 (mod 12), k ≥ (n3)
n (for the lower bound) and applying the Lemma 12(i) for the

upper bound. The statements about the small values are proved in Section 7.
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Proof of Theorem 7. Let H = F (2, 2) be the kite. Then ex(n,H) corresponds to the maximum

number of triples on n elements such that any two triples intersect in at most one element, i.e. the

maximum number of edges in a linear 3-uniform hypergraph. A well-known result of Schönheim

[32] and others (the cases n ≡ 0, 1, 2, 3 (mod 6) go back even to Kirkman [22]) is ex(n,H) =⌊
n
3

⌊
n−1
2

⌋⌋
− ε, where ε = 1 for n ≡ 5 (mod 6), otherwise ε = 0. Lemma 12(i) gives, after some

calculations, the upper bounds.

The lower bound for the cases k ≡ 3, 4 (mod 6) is easy. Given K3
n = (V,E), consider V = Zn and

color triple ijk with color i + j + k (mod n). Clearly this coloring yields no monochromatic H,

hence rk(H) > k.

For the cases k ≡ 0, 1, 2, 5 (mod 6) the (difficult) constructions of J. X. Lu [26, 27] finished by

Teirlinck [33] are needed: for n > 7, n ≡ 1, 3 (mod 6), K3
n can be partitioned into n − 2 Steiner

triple systems (called a large set of STS).

Indeed, for k ≡ 0, 2 (mod 6) we need a kite-free k-coloring of K3
k+1 i.e. (n−1)-coloring of K3

n when

n ≡ 1, 3 (mod 6). This can be done even with n − 2 colors according to the cited result of Lu.

However, the case k = 6 is exceptional because Lu’s theorem does not hold for n = 7. Nevertheless,

there is a kite-free 6-coloring of K3
7 as shown in Proposition 15. Similarly, for k ≡ 1, 5 (mod 6)

we need a kite-free k-coloring of K3
k+2 i.e. (n − 2)-coloring of K3

n when n ≡ 3, 1 (mod 6). This

is provided by Lu’s theorem, apart from the case k ≡ 5 (n = 7) which is indeed exceptional, in

Proposition 15 we prove that r5(kite) = 6 (together with the case k = 4).

Proof of Proposition 8. In an F (a, 2)-free coloring of K3
n any pair of vertices is in at most a− 1

edges of the same color. Thus n ≤ 2 + k(a − 1), proving the upper bound. (One can also use

Lemma 13 and the multicolor Ramsey number for stars (see [3]): rk(K1,a) ≤ k(a− 1) + 2.)

For the lower bound, set n = k(a− 1) and consider K3
n = (V,E) with V = Zn. Color a each edge

with the sum of its vertices mod k. Then a monochromatic copy of F (a, 2) would require that for

some y, z ∈ V , y + z + x1, ..., y + z + xa are all equal (mod k) i.e. we have a different positive xs,

all equal (mod k), which is impossible. Hence rk(F (a, 2)) > k(a− 1).

Proof of Theorem 9. For the upper bound, let N = rt(Kb) +m. Consider a k-coloring φ of the

triples of KN . Fix a set S of m vertices and define a t-coloring c on the pairs of the remaining

N −m vertices as follows. Let c(xy) = (φ(xysi), s1, s2, ..., sa), where φ(xysi) is the majority color

on triples containing x and y, and s1, s2, ..., sa ∈ S is the lexicographically first a-tuple in S such

that φ(xysi) = φ(xysj) for every 1 ≤ j ≤ a (by the choice of m there is such an a-tuple). Since c

is a t-coloring of a complete graph on N −m = rt(Kb) vertices, there is monochromatic Kb in c,

which gives a monochromatic F (a, b) in φ.

A lower bound for rk(F (a, b)) is obtained from Proposition 3 (i) since F (a, b) is not 3-partite, for

b ≥ 3.
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6 Windmill and tight path

Proof of Theorem 10. To prove the lower bound, let S be a 3− (n, 5, 1) design. The existence

of such designs are known for infinitely many n, for example for n = 4s + 1, s ≥ 2 [20], see also [29].

Construct an auxiliary 10-uniform hypergraph H where V (H) is the set of
(
n
2

)
pairs in V (S), and

ten of these pairs form an edge of H if and only if they are the ten pairs in a block of S. Since

every pair in V (S) is in exactly (n − 2)/3 blocks of S, H is an (n − 2)/3-regular hypergraph. On

the other hand, the codegree of any two vertices in H is at most one. Indeed, any two vertices in H

(two pairs in V (S)) contain at least three vertices in V (S), and they can be in at most one block of

S. With large enough n, and with r = 10, D = n/3, the conditions of Theorem 14 hold so we can

decompose E(H) into m = (1 + o(1))n/3 matchings Mi, i = 1, 2, . . . ,m. Each Mi corresponds to a

subset of blocks Si of S and any two blocks in Si share at most one element in V (S). The set of

triples covered by the blocks of any Si form a W -free triple system (the center edge of a windmill

W in a block B ∈ Si would force the other three edges of W to B). Thus K3
n is decomposed into

m = (1 + o(1))n/3 W -free triple systems, showing rk(W ) ≥ (1− o(1))3k.

The upper bound follows from Lemma 12(i), applying a special case of a theorem of Frankl and

Füredi ([13], Theorem 3.8): ex(n,W ) ≤
(
n
2

)
. (In fact, this is sharp for every n ≡ 1, 5 (mod 20). To

see that, consider a 2− (n, 5, 1) design, its existence is proved by Hanani [16, 17]. The number of

blocks is
(
n
2

)
/10, place 10 triples inside each block of S. The resulting triple system, H, has

(
n
2

)
triples and is W -free.)

Proof of Theorem 11. Observe that the trace of P 3
3 at its transversal vertex is P4, the path on

four vertices. Apply Lemma 13, rk(P 3
3 ) ≤ rk(P4) + 1 ≤ 2k + 3 ([31]).

For the lower bound we start with a 3− (n, 4, 1) design F (already used in the proof of Theorem 6)

and follow the construction in the proof of Theorem 10. Consider the 6-uniform hypergraph H with

vertex set being the set of pairs of vertices of F and edges formed by the sets of pairs within the

blocks of F . The degree of any vertex in H is d = (n− 2)/2, the codegree of any pair of vertices is

at most one, so the conditions for Pippenger-Spencer Theorem are satisfied, giving a decomposition

of H into (1 + o(1))d = (1 + o(1))n/2 matchings, Mi. Each Mi corresponds to a set Fi of blocks of

F , intersecting each other in at most one element. Let Ti be the set of triples covered by the blocks

of Fi. The Ti-s provide the required P 3
3 -free coloring of K3

n with (1 + o(1))n/2 colors. To see that

the upper bound is sharp when k = 22m−1 − 1, i.e 2k+ 2 = 22m, one can use a result of R.D.Baker

[2]: there exists a 3−(2k+2, 4, 1) design which can be partitioned into k 2−(2k+2, 4, 1) designs.

7 Ramsey numbers of bow and kite for small number of colors

The following proposition determines the small undecided cases from Theorem 7. A hypergraph is

linear if every two edges share at most one vertex.
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Proposition 15. r4(kite) = 5, r5(kite) = 6, r6(kite) = 8.

Proof. It is obvious that r4(kite) > 4. The fact that r4(kite) ≤ 5 follows by observing that any

4-coloring of the edges of K3
5 contains three edges of the same color.

Coloring the triple ijk, 1 ≤ i < j < k ≤ 5 by color i + j + k (mod 5) gives r5(kite) > 5. To

show that r5(kite) ≤ 6, we need the result of Cayley [4], stating that the maximum number of

pairwise disjoint Fano planes in K3
7 is 2. Suppose K3

6 on vertex set V is 5-colored so that each color

class i is a linear hypergraph Pi. Since the average number of edges in a color class is four and no

linear hypergraphs on 6 vertices can have more than four edges, it follows that each Pi must be a

Pasch configuration. Therefore the pairs uncovered by the triples of Pi form a matching Mi in the

complete graph on V . The Mi-s must form a factorization on V otherwise some pair in V would

be covered by at most three Pi-s instead of the required four. These Pi-s can be extended by a

new vertex to a decomposition of K3
7 into five Fano planes, contradicting Cayley’s theorem stated

above.

The upper bound r6(kite) ≤ 8 is already proved (see the proof of Theorem 7). For the lower bound

we need a partition of K3
7 into six linear hypergraphs F1, . . . , F4, F6, F7 on a vertex set V = [7], see

Figure 1. Let F1, F2 be the two Fano planes generated by shifts of 124, 134 (mod 7). The next

two sets F3 and F4 are isomorphic to a Fano plane from which one line is deleted:

F3 = {135, 167, 236, 257, 347, 456}, F4 = {123, 146, 247, 256, 345, 367},

F6 is a Fano plane from which two lines are deleted:

F6 = {127, 136, 145, 246, 567},

and F7 is a Pasch configuration:

F7 = {125, 147, 234, 357}.

Proposition 16. Set rk = rk(bow), then r1 = r2 = 5, r3 = r4 = r5 = 6, r6 = 7, r7 = r8 = r9 =

r10 = 9, 9 ≤ r11 ≤ r12 ≤ r13 ≤ r14 ≤ 10, r15 = 11.

Proof. All upper bounds but one are obtained from Lemma 12(i). The exceptional case is when

Lemma 12(i) gives r5(bow) ≤ 7. Here we improve it as follows. Suppose K3
6 is 5-colored without

monochromatic bow. One can easily see that each color class is either a K3
4 (type A) or four triples

pairwise intersecting in the same base pair (type B). There are at most three type A colors. The

base pairs for different type B colors must be vertex disjoint. Thus there are at least two type A

color classes, w.l.o.g. abcd, cdef . But then only the base pairs ae, af, be, bf are available for type

B colors. Therefore we have two type B and three type A colors, the third is the K3
4 spanned by

abef . Now there is no base pair available for type B color classes since every pair of vertices is

covered by a type A K3
4 .
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1
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2

7
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4
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26

1
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2

5

4

37

1

(f)

Figure 1: Partition of K3
7 into two Fano, two Fano−e, Fano−2e, Pasch

Lower bounds should be exhibited for r1, r3, r6, r7, r15 only. Coloring all triples of K3
4 with the

same color, r1 > 4 follows. Coloring the triples of {1, 2, 3, 4} with color 1, the triples 125, 135, 235

with color 2, the triples 145, 245, 345 with color 3, r3 > 5 follows. Then r6 > 6 comes from the

following 6-coloring with color classes
({1,2,3,4}

3

)
,
({3,4,5,6}

3

)
,
({1,4,5,6}

3

)
−{4, 5, 6},

({2,4,5,6}
3

)
−{4, 5, 6},({1,2,3,5}

3

)
−{1, 2, 3},

({1,2,3,6}
3

)
−{1, 2, 3}. The 7-coloring of K3

8 is the 7 parallel classes of the unique

3− (8, 4, 1) design. Finally, the 15-coloring of K3
10 comes from the unique 3− (10, 4, 1) design whose

30 blocks can be partitioned into 15 disjoint pairs.

8 Concluding remarks

We determined, for 3-uniform hypergraphs, rk ranges from
√
k to double exponential in k, and

showed a jump in rk when H changes from r-partite to non-r-partite. This leads to the following

question.

Problem 17. For which 3-uniform hypergraphs F , is rk(F ) double exponential? Are there other

jumps that the Ramsey function rk exhibits?

The ramsey-numbers rk(bow), rk(kite) are closely connected to block designs. In case of the kite
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the only uncertainty is whether rk(kite) is k + 1 or k + 2 when k ≡ 4 (mod 6). This leads to the

following problem.

Problem 18. Suppose n ≡ 5 (mod 6). Is it possible to partition the triples of an n-element set

into n − 1 partial triple systems, i.e. into parts so that distinct triples in each part intersect in

at most one vertex? By Theorem 7, this is not possible for n = 5 but perhaps for large enough n

(possibly for n ≥ 11) such partitions exist.

In case of the bow, the problems related to sharper bounds of rk(bow) are not purely design

theoretic, since color classes can be star components as well. We state just one of those problems.

Problem 19. Suppose n ≡ 6, 10 (mod 12). Is it possible to partition the triples of an n-element

set into n(n−1)
2 classes so that each class is the union of some disjoint K3

4 -s and at most one star

component? (Any color class has n− 2 triples.) For n = 6 there is no solution.

Concerning rk(K3 − e) the most challenging (perhaps difficult) problem is to decrease the upper

bound of Theorem 4 by one.

Problem 20. rk(K3
4 − e) < rk(K3) + 1 for every k ≥ 3?

A challenging open problem is to improve the estimates of rk(P ) (and/or ex(n, P )) where P is the

Pasch configuration with edges {abc, bde, cef, adf}. (It can be obtained from the Fano plane by

deleting a vertex.) Presently only the following is known.

Proposition 21. For positive constants c, c′, c
(

k
log k

)2
< rk(P ) < c′k4.

Proof. The lower bound is based on the following P -free hypergraph, showing that ex(n, P ) =

Ω(n5/2), [24]. Take an incidence graph G of a projective plane with n points and n lines. It has

Ω(n3/2) edges. Add n new vertices x1, ..., xn and add all triples of the form xi ∪ e, where e is an

edge of G. The resulting 3-uniform hypergraph, call it H, has 3n vertices and Ω(n5/2) edges.

Notice that the edge-density of H is d(H) = cn−1/2 for some constant c > 0. From Lemma 12(ii)

we see that there is a coloring of K3
n with (c′n1/2 log n) colors and no monochromatic P . Thus

rk(P ) > n with k = c′n1/2 log n. Expressing n in terms of k gives the desired lower bound.

The upper bound follows from Lemma 12(i) and the fact that ex(n, P ) = O(n11/4) [24]. This is

based on the claim that ex(n,K(2, 2, 2)) = O(n11/4) proved by Erdős [9], where K(2, 2, 2) is the

complete 3-partite 3-uniform hypergraph with two vertices in each part.

9 Acknowledgments
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10 Appendix - for arXiv and for referees

Proposition 22. r2(F5) = 6.

Proof. The lower bound is obvious, color triples of K3
5 containing a fixed vertex with color 1 and

other triples by color 2. For the upper bound, consider a 2-colored K3
6 on vertex set {1, 2, 3, 4, 5, 6}

and its 2-colored trace K = K2
5 with respect to vertex 6. There is a monochromatic, say red odd

cycle C in V (K)− {6}. If C = 1, 2, 3, 1 then either there is a red triple in K with two vertices on

C and one vertex not in C or all such triples are blue. The former gives a red, the latter a blue

F5. If C = 1, 2, 3, 4, 5, 1 then either there is a red triple with vertices non-consecutive on C or all

the five such triples are blue. Again, the former gives a red, the latter a blue F5.

Theorem 23. r3(F5) = 7.

Proof. For the lower bound, color the triples of K3
6 containing v with color 1, color uncolored

triples containing vertex w 6= v with color 2 and color all other edges with color 3.

To prove the upper bound, call a graph G nice if for every triple T = {v1, v2, v3} of vertices at least

one of the following holds:

1. There are two vertex disjoint edges of G, such that one of them is in T and the other meets T .

2. There is a path of length two in G connecting two vertices of T with midpoint not in T .

Observation 24. If H is an F5-free 3-uniform hypergraph, such that the trace of v for a vertex v

is a nice graph, then all edges of H within V (G) ∪ {v} contain v.

Indeed, otherwise from the definition of a nice graph we find F5 in H. Thus finding a large nice

subgraph in a trace one can reduce the number of colors. More generally, a graph is i-nice if the

property holds for all but at most i triples of vertices.

We need a lemma on 6-vertex graphs. Since its proof is routine but lengthy, we state it without

proof.

Lemma 25. Suppose G has six vertices. If |E(G)| ≥ 9 then G is nice. If |E(G)| = 8 then G is

1-nice, if |E(G)| = 7 then G is 2-nice. If |E(G)| = 6 then G is 5-nice, except in one case, when G

is K2,3 plus an isolated vertex (in this case it is 6-nice).

With these preparations we are ready to prove the upper bound. The majority color, say red in a

3-colored K3
7 , has at least 12 edges. Some vertex v has red degree at least 6. Let G be the trace of
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a red hypergraph at v. We get a contradiction from Lemma 25 (and from the fact that we have 12

edges) except when G has exactly six edges and the trace is K2,3 + w. This case implies that the

red color class has 12 edges forming K2,2,3, a complete 3-partite hypergraph with parts of sizes 2,

2, and 3. However, among the 35− 12 = 23 edges of other colors, one color, say blue, has at least

12 edges. Repeating the argument for the blue hypergraph, we conclude that the blue hypergraph

is also a K2,2,3. However, as one can easily check, there is no way to place two edge disjoint K2,2,3-s

on 7 vertices.
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