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Abstract

Addressing a question of Cameron and Erdős, we show that, for infinitely many
values of n, the number of subsets of {1, 2, . . . , n} that do not contain a k-term arith-
metic progression is at most 2O(rk(n)), where rk(n) is the maximum cardinality of a
subset of {1, 2, . . . , n} without a k-term arithmetic progression. This bound is optimal
up to a constant factor in the exponent. For all values of n, we prove a weaker bound,
which is nevertheless sufficient to transfer the current best upper bound on rk(n) to
the sparse random setting. To achieve these bounds, we establish a new supersatura-
tion result, which roughly states that sets of size Θ(rk(n)) contain superlinearly many
k-term arithmetic progressions.

For integers r and k, Erdős asked whether there is a set of integers S with no (k+1)-
term arithmetic progression, but such that any r-coloring of S yields a monochromatic
k-term arithmetic progression. Nešetřil and Rödl, and independently Spencer, an-
swered this question affirmatively. We show the following density version: for every
k ≥ 3 and δ > 0, there exists a reasonably dense subset of primes S with no (k+1)-term
arithmetic progression, yet every U ⊆ S of size |U | ≥ δ|S| contains a k-term arithmetic
progression.

Our proof uses the hypergraph container method, which has proven to be a very
powerful tool in extremal combinatorics. The idea behind the container method is to
have a small certificate set to describe a large independent set. We give two further
applications in the appendix using this idea.
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1 Introduction

Enumerating discrete objects in a given family with certain properties is one of the most
fundamental problems in extremal combinatorics. In the context of graphs, this was initi-
ated by Erdős, Kleitman and Rothschild [18] who studied the family of triangle-free graphs.
For recent developments, see e.g. [2, 34] and the references therein. In this paper, we in-
vestigate counting problems in the arithmetic setting. In this direction, one of the major
open problems, raised by Cameron and Erdős [11], was to prove that the number of sum-free
sets1 in {1, 2, . . . , n} is O(2n/2). This conjecture was proven independently by Green [24]
and Sapozhenko [41]. See also [3, 4] for the proof of another conjecture of Cameron and
Erdős [12] concerning the family of maximal sum-free sets.

Our main results are given in Section 1.1: the first is on counting subsets of integers
without an arithmetic progression of fixed length (see Theorem 1.2); the second is a new
supersaturation result for arithmetic progressions (see Theorem 1.6). In Section 1.2, we show
the existence of a set of primes without a (k+ 1)-term arithmetic progression which however
is very rich in k-term arithmetic progressions (see Theorem 1.72).

1.1 Enumerating sets with no k-term arithmetic progression

A subset of [n] := {1, 2, . . . , n} is k-AP-free if it does not contain a k-term arithmetic
progression. Denote by rk(n) the maximum size of a k-AP-free subset of [n]. Cameron and
Erdős [11] raised the following question: How many subsets of [n] do not contain a k-term
arithmetic progression? In particular, they asked the following question.

Question 1.1 (Cameron-Erdős). Is it true that the number of k-AP-free subsets of [n] is

2(1+o(1))rk(n)?

Since every subset of a k-AP-free set is also k-AP-free, one can easily obtain 2rk(n) many
k-AP-free subsets of [n]. In fact, Cameron and Erdős [11] slightly improved this obvious
lower bound: writing Rk(n) for the number of k-AP-free subsets of [n], they proved that

lim sup
n→∞

Rk(n)

2rk(n)
=∞. (1)

Until recently, the only progress on the upper bound in the last 30 years was improving
the bounds on rk(n). Then Balogh, Morris and Samotij [5], and independently Saxton and
Thomason [42], proved the following: for any β > 0 and integer k ≥ 3, there exists C > 0
such that for m ≥ Cn1−1/(k−1), the number of k-AP-free m-sets in [n] is at most

(
βn
m

)
. This

deep counting result implies the sparse random analogue of Szemerédi’s theorem [48] which
was proved earlier by Conlon and Gowers [13] and independently by Schacht [43]. However,
this bound is far from settling Question 1.1.

1A set S is sum-free, if for any x, y ∈ S, x+ y /∈ S.
2A similar result is discussed in the Appendix as well as an additional problem about sumsets.
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One of the reasons for the difficulty in finding good upper bounds on Rk(n) is our limited
understanding of rk(n). Indeed, despite much effort, the gap between the current known
lower and upper bounds on r3(n) is still rather large; closing this gap remains one of the most
difficult problems in additive number theory. For the lower bound on r3(n), the celebrated
construction of Behrend [6] shows that

r3(n) = Ω

(
n

22
√

2
√

log2 n · log1/4 n

)
.

This was recently improved by Elkin [15] by a factor of
√

log n, see also Green and Wolf [29].
Roth [39] gave the first non-trivial upper bound on r3(n), followed by the improvements of
Heath-Brown [31], Szemerédi [47], Bourgain [10] and a recent breakthrough of Sanders [40].
The current best bound is due to Bloom [8]:

r3(n) = O

(
n(log log n)4

log n

)
. (2)

For k ≥ 4 there exist ck, c
′
k > 0 such that

n

2ck(logn)1/(k−1)
≤ rk(n) ≤ n

(log log n)c
′
k

, (3)

where the lower bound is due to Rankin [46] and the upper bound is by Gowers [22, 23].
Notice that, using the lower bound in (3), we obtain the following trivial upper bound

for Rk(n):

Rk(n) ≤
rk(n)∑
i=0

(
n

i

)
< 2

(
n

rk(n)

)
< 2

(
en

rk(n)

)rk(n)

= 2
O

(
rk(n)·(logn)

1
k−1

)
.

We show that, for infinitely many n, the (log n)
1

k−1 term in the exponent is not needed,
i.e. our result is optimal up to a constant factor in the exponent.

Theorem 1.2. The number of k-AP-free subsets of [n] is 2O(rk(n)) for infinitely many values
of n.

An immediate corollary of Theorem 1.2 is the following.

Corollary 1.3. For every ε > 0, there exists a constant b > 0 such that the following holds.
Let A(b) ⊆ Z consist of all integers n such that the number of k-AP-free subsets of [n] is at
most 2b·rk(n). Then

lim sup
n→∞

|A(b) ∩ [n]|
n

≥ 1− ε.

Enumerating discrete structures with certain local constraints is a central topic in com-
binatorics. Theorem 1.2 is the first such result in which the order of magnitude of the
corresponding extremal function is not known.
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It is also worth mentioning that two other natural conjectures of Erdős are false: it
was conjectured that the number of Sidon sets3 in [n], denoted by S(n), is 2(1+o(1))s(n),
where s(n) denotes the size of a maximum Sidon set. However, it is known that 21.16s(n) ≤
S(n) = 2O(s(n)), where the lower bound is by Saxton and Thomason [42] and the upper
bound is by Kohayakawa, Lee, Rödl and Samotij [33] (see also [42]). Another conjecture
of Erdős states that the number of C6-free4 graphs on vertex set [n], denoted by H(n), is
2(1+o(1))ex(n,C6). However, 21.0007ex(n,C6) ≤ H(n) = 2O(ex(n,C6)), where the lower bound is by
Morris and Saxton [34] and the upper bound is by Kleitman and Wilson [32]. In view of
these examples and (1), it is not inconceivable that the answer to Question 1.1 is no.

For all values of n, we obtain the following weaker counting estimate, which is nevertheless
sufficient to improve previous transference theorems for Szemerédi’s theorem, in particular
implies Corollary 1.5.

Theorem 1.4. If rk(n) ≤ n
h(n)

, where h(n) ≤ (log n)c for some c > 0, then the number

of k-AP-free subsets of [n] is at most 2O(n/h(n)). Furthermore, for any γ > 0, there exists

C = C(k, c, γ) > 0 such that for any m ≥ n1− 1
k−1

+γ, the number of k-AP-free m-subsets of
[n] is at most (

Cn/h(n)

m

)
.

Theorem 1.4 improves the counting result of Balogh-Morris-Samotij [5] and Saxton-
Thomason [42] with a slightly weaker bound on m. We say that a set A ⊆ N is (δ, k)-
Szemerédi if every subset of A of size at least δ|A| contains a k-AP. Denote by [n]p the
p-random subset of [n], where each element of [n] is chosen with probability p independently
of others. As mentioned earlier, the counting result of [5] and [42] implies the following
sparse analogue of Szemerédi’s theorem, which was only recently proved by a breakthrough
transference theorem of Conlon and Gowers [13] and Schacht [43]: For any constant δ > 0
and integer k ≥ 3, there exists C > 0, such that almost surely [n]p is (δ, k)-Szemerédi for

p ≥ Cn−
1

k−1 . As an easy corollary of Theorem 1.4, we obtain the following sharper version,
in which δ could be taken as a function of n. In fact, it transfers the current best bounds on
rk(n) of Bloom [8] and Gowers [22, 23] to the random setting. Proving Corollary 1.5 from
Theorem 1.4 is similar as in [5] and [42], thus we omit the proof here. We remark that the
bound on p is optimal up to the additive error term γ in the exponent.

Corollary 1.5. If rk(n) ≤ n
h(n)

, where h(n) ≤ (log n)c for some constant c > 0, then for any

γ > 0, there exists C = C(k, c, γ) > 0 such that the following holds. If pn ≥ n−
1

k−1
+γ for all

sufficiently large n, then

lim
n→∞

P
(

[n]pn is

(
C

h(n)
, k

)
-Szemerédi

)
= 1.

3A set A ⊆ [n] is a Sidon set if there do not exist distinct a, b, c, d ∈ A such that a+ b = c+ d.
4Denote by Ck the cycle of length k. Given a graph H, a graph G is H-free if G does not contain H as

a subgraph. Denote by ex(n,G) the maximum number of edges a G-free graph can have.
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Combining the upper bounds in (2) and (3) with Corollary 1.5, for some C > 0, we have

that almost surely [n]p is
(
C(log logn)4

logn
, 3
)

-Szemerédi for p ≥ n−
1
2

+o(1); and for k ≥ 4 that

almost surely [n]p is

(
C

(log logn)
c′
k
, k

)
-Szemerédi for p ≥ n−

1
k−1

+o(1).

The proof of Theorem 1.2 uses the hypergraph container method, developed by Balogh,
Morris and Samotij [5], and independently by Saxton and Thomason [42]. In order to
apply the hypergraph container method, we need a supersaturation result. Supersaturation
problems are reasonably well-understood if the extremal family is of positive density. For
example, the largest sum-free subset of [n] has size dn/2e, while any set of size (1

2
+ ε)n has

Ω(n2) triples satisfying x+y = z (see [26]). In the context of graphs, the Erdős-Stone theorem
gives5 ex(n,G) = (1 − 1

χ(G)−1
+ o(1))n

2

2
, while any n-vertex graph with (1 − 1

χ(G)−1
+ ε)n

2

2

edges contains Ω(n|V (G)|) copies of G. However, the degenerate case is significantly harder.
Indeed, a famous unsolved conjecture of Erdős and Simonovits [19] in extremal graph theory
asks whether an n-vertex graph with ex(n,C4) + 1 edges has at least two copies of C4.

For arithmetic progressions, the supersaturation result concerned only sets of size linear
in n, more precisely Varnavides [49] proved that any subset of [n] of size Ω(n) has Ω(n2)
k-APs. (see also [14]). More recently, Croot and Sisask [14] proved a nice formula, which
is unfortunately not helping when |A| ≤ O(rk(n)) and rk(n) � n/f(n) where f(n) is a
polylogarithmic function. Their formula is that for every A ⊂ [n], and every 1 ≤ M ≤ n,
the number of 3-APs in A is at least(

|A|
n
− r3(M) + 1

M

)
· n

2

M4
.

We need a supersaturation for sets of size Θ(rk(n)). Our second main result shows that the
number of k-APs in any set A of size constant factor times greater than rk(n) is superlinear
in n.

Theorem 1.6. Given k ≥ 3, there exists a constant C ′ = C ′(k) > 0 and an infinite sequence
{ni}∞i=1, such that the following holds. For any n ∈ {ni}∞i=1 and any A ⊆ [n] of size C ′rk(n),
the number of k-APs in A is at least

log3k−2 n ·
(

n

rk(n)

)k−1

· n.

1.2 Arithmetic progressions in the primes

The study of arithmetic progressions in the set of primes has witnessed great advances in the
last decade. Extending the seminal result of Szemerédi [48], Green and Tao in their land-
mark paper [28] proved that any subset of the primes with positive relative density contains
arbitrarily long arithmetic progression. In fact, they showed the following supersaturation

5The chromatic number of G, denoted by χ(G), is the minimum number of colors needed to color the
vertices of G such that no two adjacent vertices receive the same color.

5



version. Denote by P≤n the set of primes which are at most n. Then the number of k-APs
in any subset U ⊆ P≤n with |U | = Ω(|P≤n|) is Θ(n2/ logk n). We are interested in the
following question: does there exist a subset of primes that is (k+1)-AP-free, yet any subset
of it with positive density contains a k-AP? A priori, it is not even clear whether such a set
exists in Z, since intuitively a (k+ 1)-AP-free set is unlikely to be rich in k-APs. It is worth
mentioning that Erdős [16] asked whether, for every integer r, there is a set of integers with
no (k + 1)-AP, but any r-coloring of it yields a monochromatic k-AP. Spencer [45] proved
the existence of such a set and Nešetřil and Rödl [37] constructed such a set. The question
raised above is a strengthening of Erdős’ in two aspects: it is a density version and asks for
a set of primes. Our next result gives an affirmative answer to this question.

Theorem 1.7. For any δ > 0 and k ≥ 3, there exists a set of primes S ⊆ P≤n of size
n1−1/k−o(1) such that S is (k + 1)-AP-free and (δ, k)-Szemerédi.

One might attempt to find a set of integers with the desired properties and then apply it
to a very long arithmetic progression in the primes guaranteed by the Green-Tao theorem.
However the subset of primes obtained in this way would be extremely sparse in P≤n. To
obtain a fairly dense subset in P≤n with the desired properties given Theorem 1.7, we will
instead do things in the “reverse” order. We first use the supersaturation version of the
Green-Tao theorem and the container method to get the following counting result, which
together with a standard application of the probabilistic method (see for similar and earlier
applications of Nenadov and Steger [35] and of Rödl, Rucinski and Schacht [38]) will establish
Theorem 1.7.

Theorem 1.8. For any β > 0, γ > 0 and k ≥ 3, the number of k-AP-free m-subsets of P≤n
with m ≥ n1− 1

k−1
+γ is at most (

β|P≤n|
m

)
.

Consequently, the number of k-AP-free subsets of P≤n is at most 2o(|P≤n|).

We omit the proof of Theorem 1.8 since it follows along the same line as that of Theo-
rem 1.4. The only difference is that, for the supersaturation, we use the Green-Tao theorem
instead of Lemma 2.4. Similarly to Theorem 1.4, Theorem 1.8 implies the following sparse
random analogue of the Green-Tao theorem.

Corollary 1.9. For any δ > 0 and γ > 0, if pn ≥ n−
1

k−1
+γ for all sufficiently large n and

Sn is a p-random subset of P≤n, then

lim
n→∞

P (Sn is (δ, k) -Szemerédi) = 1.

Organization. The rest of the paper will be organized as follows. In Section 2, we introduce
the hypergraph container method and some lemmas needed for proving supersaturation. In
Section 3, we prove our main result, Theorem 1.2, and also Corollary 1.3, Theorem 1.4,
Theorem 1.6 and Theorem 1.7.
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Notation. We write [a, b] for the interval {a, a + 1, . . . , b} and [n] := [1, n]. Given a set
A ⊆ [n], denote by Γk(A) the number of k-APs in A. Denote by min(A) the smallest element
in A. We write log for logarithm with base 2. Throughout the paper we omit floors and
ceilings where they are not crucial.

2 Preliminaries

In the next subsection, we present the hypergraph container theorem and derive a version
tailored for arithmetic progressions. We then prove some supersaturation results needed for
the proof of Theorem 1.6 in Section 2.2.

To see how they work, we give a quick overview of the proof of Theorem 1.2. We
first apply the hypergraph container theorem (Corollary 2.2) to obtain a small collection of
containers covering all k-AP-free sets in [n], each of these containers having only few copies
of k-APs. Then we apply the supersaturation result (Theorem 1.6) to show that every
container necessarily has to be small in size (O(rk(n))), from which our main result follows.

2.1 The hypergraph container theorem

An r-uniform hypergraph H = (V,E) consists of a vertex set V and an edge set E, in which
every edge is a set of r vertices in V . An independent set in H is a set of vertices inducing no
edge in E. The independence number α(H) is the maximum cardinality of an independent
set in H. Denote by χ(H) the chromatic number of H, i.e., the minimum integer `, such
that V (H) can be colored by ` colors with no monochromatic edge.

Many classical theorems in combinatorics can be phrased as statements about inde-
pendent sets in a certain auxiliary hypergraph. For example, the celebrated theorem of
Szemerédi [48] states that for V (H) = [n] and E(H) consisting of all k-term arithmetic
progressions in [n], α(H) = o(n). The cornerstone result of Erdős and Stone [20] in extremal
graph theory characterizes the structure of all maximum independent sets in H, where V (H)
is the edge set of Kn and E(H) is the edge set of copies of some fixed graph G.

We will use the method of hypergraph containers for the proof of Theorem 1.2. This
powerful method was recently introduced independently by Balogh, Morris and Samotij [5],
and by Saxton and Thomason [42]. Roughly speaking, it says that if a hypergraph H has a
somewhat uniform edge-distribution, then one can find a relatively small collection of sets
covering all independent sets in H. Among others, this method provides an alternative proof
of a recent breakthrough transference theorem of Conlon and Gowers [13] and Schacht [43]
for extremal results in sparse random setting. We refer the readers to [5, 42] for more details
and applications, see also [3, 4] for more recent applications of container-type results in the
arithmetic setting.

Let H be an r-uniform hypergraph with average degree d. For every S ⊆ V (H), its
co-degree, denoted by d(S), is the number of edges in H containing S, i.e.,

d(S) = |{e ∈ E(H) : S ⊆ e}|.
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For every j ∈ [r], denote by ∆j the j-th maximum co-degree of H, i.e.,

∆j = max{d(S) : S ⊆ V (H), |S| = j}.

For any τ ∈ (0, 1), define the following function which controls simultaneously the maximum
co-degrees ∆j’s for all j ∈ {2, . . . , r}:

∆(H, τ) = 2(r
2)−1

r∑
j=2

2−(j−1
2 ) ∆j

dτ j−1
.

Note that we are interested to have small τ , as smaller τ means smaller family of containers.
Here, as the codegrees are relatively small, only the ∆r/(d · τ r−1) part matters.

We need the following version of the hypergraph container theorem (Corollary 3.6 in [42]).

Theorem 2.1. Let H be an r-uniform hypergraph on vertex set [n]. Let 0 < ε, τ < 1/2.
Suppose that τ < 1/(200r!2r) and ∆(H, τ) ≤ ε/(12r!). Then there exists c = c(r) ≤ 1000r!3r
and a collection of vertex subsets C such that

(i) every independent set in H is a subset of some A ∈ C;
(ii) for every A ∈ C, e(H[A]) ≤ εe(H);
(iii) log |C| ≤ cnτ log(1/ε) log(1/τ).

Given an integer k ≥ 3, consider the k-uniform hypergraph Hk encoding the set of all
k-APs in [n]: V (Hk) = [n] and the edge set of Hk consists of all k-tuples that form a k-AP.
It is easy to check that the number of k-APs in [n] is n2/(2k) < e(Hk) < n2/k. Note that
∆1 ≤ k · n

k−1
< 2n and

d = d(Hk) ≥
n

2
, ∆k = 1, ∆i ≤ ∆2 ≤

(
k

2

)
< k2 for 2 ≤ i ≤ k − 1. (4)

Using the k-AP-hypergraph Hk, we obtain the following adaption of Theorem 2.1 to the
arithmetic setting.

Corollary 2.2. Fix an arbitrary integer k ≥ 3 and let 0 < ε, τ < 1/2 be such that

τ < 1/(200k2k) and εnτ k−1 > k3k. (5)

Then for sufficiently large n, there exists a collection C of subsets of [n] such that
(i) every k-AP-free subset of [n] is contained in some F ∈ C;
(ii) for every F ∈ C, the number of k-APs in F is at most εn2;
(iii) log |C| ≤ 1000k3knτ log(1/ε) log(1/τ).

Proof. Consider the k-AP hypergraph Hk. Fix any 0 < ε, τ < 1
2

such that τ < 1
200k2k

< 2−3k

and εnτ k−1 > k3k. Define αj := 2−(j−1
2 ) · τ−(j−1) for 2 ≤ j ≤ k. Since τ < 2−3k, we have that

for 2 ≤ j ≤ k − 2,

αj
αj+1

=
2(j

2) · τ j

2(j−1
2 ) · τ j−1

= 2j−1τ < 2kτ < 1 and
k3αk−1

αk
= k32k−2τ < 1. (6)
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Note that for any k ≥ 3, we have that τ < 1/(200k2k) < 1/(200k!2k). We now bound the
function ∆(Hk, τ) from above as follows:

∆(Hk, τ) = 2(k
2)−1

k∑
j=2

αj
∆j

d

(4)

≤ 2(k
2)−1

(
k−1∑
j=2

αj
k2

d
+
αk
d

)
(6)

≤ 2(k
2)−1

(
(k − 2)αk−1

k2

d
+
αk
d

)
(6)

≤ 2(k
2)−1 · 2αk

d
=

2k−1

dτ k−1

(4)

≤ 2k

nτ k−1

(5)

≤ ε

12k!
.

We now apply Theorem 2.1 on Hk to obtain C. Then the conclusions follow from the
observation that every independent set in Hk is a k-AP-free subset of [n].

2.2 Supersaturation

In this subsection, we present the second main ingredient for the proof of Theorem 1.2: a
supersaturation result, Lemma 2.4, which states that many k-APs start to appear in a set
once its size is larger than rk(n).

First notice that for any A ⊆ [n] of size K · rk(n), the following greedy algorithm gives

Γk(A) ≥ (K − 1) · rk(n). (7)

Set B := A. Repeat the following process (K − 1) · rk(n) times: since |B| > rk(n), there is
a k-AP in B; update B by removing an arbitrary element in this k-AP. We use a random
sparsening trick to improve this simple argument.

Lemma 2.3. For every A ⊆ [n] of size K · rk(n) with K ≥ 2, we have

Γk(A) ≥
(
K

2

)k
· rk(n).

Proof. Let T be a set chosen uniformly at random among all subsets of A of size 2rk(n).
Then the expected number of k-APs in T is

E[Γk(T )] =

(|A|−k
|T |−k

)(|A|
|T |

) · Γk(A) ≤
(
|T |
|A|

)k
· Γk(A) =

Γk(A)

(K/2)k
.

Thus, there exists a choice of T such that Γk(T ) ≤ Γk(A)
(K/2)k

. On the other hand, from (7),

Γk(T ) ≥ rk(n), hence Γk(A) ≥
(
K
2

)k · rk(n) as desired.

However, the bound given above is still linear in |A|, which is not sufficient for our
purposes. A superlinear bound is provided in the following lemma, which implies that
Γk(A) ≥ |A|·polylog(n) for infinitely many values of n (as in Theorem 1.6). A key new idea
in our proof is that an averaging argument is carried out only over a set of carefully chosen
arithmetic progressions with prime common differences. To obtain a superlinear bound, we

will apply the following lemma with roughly M ∼ |A| ·
(
|A|
n

)k+1

, and |A| ≥ rk(n).
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Lemma 2.4. For any 1 ≤ M ≤ n and A ⊆ [n], if |A|/M is sufficiently large and |A|/n ≥
8K · rk(M)/M with K ≥ 2, then

Γk(A) ≥ |A|
2

M2
· K

k · rk(M)

2k+4 log2 n
.

Proof. Define x = |A|/(4M), and assume that it is sufficiently large. Then the Prime
Number Theorem (see e.g. [44]) implies that the number of prime numbers less than x is at
least x/ log x and at most 2x/ log x. Denote Bd the set of M -term arithmetic progressions
with common difference d in [n] and set

B :=
⋃

d is prime
d≤x

Bd,

that is, B consists of all M -APs whose common difference is a prime number not larger
than x. We notice first that any k-AP can occur in at most M log n many members of B.
Indeed, fix an arbitrary k-AP, say Q′, with common difference d′. Note that every M -AP Q
containing Q′ can be constructed in two steps:

(i) choose 1 ≤ i ≤M and set the i-th term of Q to min(Q′);
(ii) choose the common difference d for Q.

There are clearly at most M choices for (i). As for (ii), in order to have Q′ ⊆ Q, we need
d|d′. Since Q ∈ B, d must be a prime divisor of d′. Using that the number of prime divisors
of d′ is at most log d′ ≤ log n, the number of such choices is at most log n. As a consequence,
we have that

Γk(A) ≥ 1

M log n

∑
B∈B

Γk(A ∩B). (8)

Let G ⊆ B consists of all B ∈ B such that |A∩B| ≥ K · rk(M). Then by Lemma 2.3, we
have Γk(A ∩B) ≥ (K/2)k · rk(M) for every B ∈ G. Together with (8), this gives that

Γk(A) ≥ 1

M log n

∑
B∈G

Γk(A ∩B) ≥ |G| · K
k · rk(M)

2kM log n
. (9)

Our next goal is to give a lower bound on |G|, to achieve this, we will do a double-counting
on
∑

B∈B |A ∩B|.
For each d ≤ x, define Id := [(M − 1)d+ 1, n− (M − 1)d]. Then every z ∈ Id appears in

exactly M members of Bd. Since x = |A|/(4M),

|A ∩ Id| = |A| − 2(M − 1)d ≥ |A| − 2Mx ≥ |A|
2
.

As an immediate consequence of the Prime Number Theorem, the number of primes less
than x, which is the number of choices for d, is at least x/ log x and at most 2x/ log x for

10



sufficiently large x. Therefore,∑
B∈B

|A ∩B| =
∑

d is prime
d≤x

∑
B∈Bd

|A ∩B| ≥M
∑

d is prime
d≤x

|A ∩ Id| ≥M · x

log x
· |A|

2
. (10)

On the other hand, since |Bd| < n, for each d we have |B| ≤ 2x
log x
· n, hence

∑
B∈B

|A ∩B| ≤M |G|+K · rk(M) · |B \ G| ≤M |G|+K · rk(M) · 2xn

log x
. (11)

Combining (10) and (11), we get

|G| ≥ x

log x
· |A|

2
−K · rk(M)

M
· 2xn

log x
=

x

log x

(
|A|
2
− 2K · rk(M)

M
· n
)

≥ x

log n
· |A|

4
=

|A|2

16M log n
,

where the last inequality follows from |A|
n
≥ 8K · rk(M)

M
. Thus, by (9), we have

Γk(A) ≥ |A|2

16M log n
· K

k · rk(M)

2kM log n
=
|A|2

M2
· K

k · rk(M)

2k+4 log2 n
.

3 Proof of Theorem 1.2

Throughout this section, we fix k a positive integer and write r(n) instead of rk(n) and define
f(n) = r(n)/n. We will use the following functions:

M(n) =
n

log3k n

(
r(n)

n

)k+2

, ε(n) =
log3k−2 n

n

(
n

r(n)

)k−1

, τ(n) =
r(n)

n

1

log3 n
. (12)

We first observe a simple fact about the function r(n). Since the property of having no k-AP
is invariant under translation, for any given m < n, if we divide [n] into consecutive intervals
of length m, then any given k-AP-free subset of [n] contains at most r(m) elements from
each interval. Thus,

r(n) ≤
⌈ n
m

⌉
· r(m). (13)

Since 1
n
·
⌈
n
m

⌉
< 2

m
for any m < n, dividing by n on both sides of (13) yields:

Fact 3.1. For every m < n, f(n) < 2f(m).

11



For the proof of Theorem 1.6, we will apply Lemma 2.4 with M defined as in (12). To
do so, it requires that the function r(n) is “smooth”. This is proved in the following lemma.

Lemma 3.2. Given k ≥ 3, there exists C := C(k) > 4 and an infinite sequence {ni}∞i=1,
such that

C
r(ni)

ni
≥ r(M(ni))

M(ni)

for all i ≥ 1, where M(n) is defined as in (12).

Proof. Fix C = C(k) > 4 a sufficiently large constant. From Behrend’s construction,
we know that f(n) > 2−5

√
logn. We need to show that, for infinitely many n, Cf(n) ≥

f(M(n)) = f
(

n
log3k n

f(n)k+2
)

. Suppose to the contrary, that for all but finitely many n,

f(n) ≤ C−1f(M(n)). Let n0 be the largest integer such that f(n) > C−1f(M(n)).
Define a decreasing function g(x) = 2−(5k+11)

√
log x for x ≥ 1. Note that for sufficiently

large n, since f(n) > 2−5
√

logn,

M(n) =
n

log3k n
f(n)k+2 >

n

log3k n
· 2−5(k+2)

√
logn > n · 2−(5k+11)

√
logn = n · g(n).

Then by Fact 3.1, we have f(M(n)) < 2f(n · g(n)). Therefore, by the definition of n0, we
have that for any n > n0,

f(n) ≤ C−1f(M(n)) <

(
C

2

)−1

f(n · g(n)). (14)

Fix an integer n > n2
0 and set t = b1

2

√
logn

5k+11
c. We will show by induction that for every

1 ≤ j ≤ t,

f(n) <

(
C

4

)−j
f(n · g(n)j). (15)

The base case, j = 1, is given by (14). Suppose (15) holds for some 1 ≤ j < t. Define
n′ := n · g(n)j. Then

n′ > n · g(n)t = n · 2−(5k+11)
√

logn·b 1
2

√
logn

5k+11
c ≥ n · 2−

1
2

logn =
√
n > n0.

So by (14), f(n′) <
(
C
2

)−1
f(n′·g(n′)). Since n′ < n and g(x) is decreasing, n′·g(n′) > n′·g(n).

Then by Fact 3.1, f(n′ · g(n′)) < 2f(n′ · g(n)). Hence, f(n′) <
(
C
4

)−1
f(n′ · g(n)). Thus by

the induction hypothesis

f(n) <

(
C

4

)−j
f(n · g(n)j) =

(
C

4

)−j
f(n′)

<

(
C

4

)−j (
C

4

)−1

f(n′ · g(n)) =

(
C

4

)−(j+1)

f(n · g(n)j+1).

12



This proves (15) for j = t and note that f(n) ≤ 1 and that f(n ·g(n)t) < 2f(
√
n) by Fact 3.1,

hence

f(n) <

(
C

4

)−t
f(n · g(n)t) <

(
C

4

)−t
· 2f(
√
n) ≤ 2

(
C

4

)−t
= 2

(
C

4

)−b 1
2

√
logn

5k+11
c

< 2−5
√

logn

for C sufficiently large, a contradiction.

Theorem 1.6 follows immediately from Lemmas 2.4 and 3.2.

Proof of Theorem 1.6. Let K be the constant from Lemma 2.4. Let C be the constant and
{ni}∞i=1 be the sequence from Lemma 3.2. Define C ′ = 8CK. Fix an arbitrary n ∈ {ni}∞i=1

and write M = M(n) as defined in (12). Let A ⊆ [n] be an arbitrary set of size C ′r(n).
Then by Lemma 3.2,

|A|
n

=
8CK · r(n)

n
≥ 8K

r(M(n))

M(n)
.

By Fact 3.1, 2r(M)
M

> r(n)
n

. Thus by Lemma 2.4 and that K ≥ 2, C > 4, we have

Γk(A) >
|A|2

M2
· K

k · r(M)

2k+4 log2 n
=

(8CK)2r(n)2

M2
· K

k · r(M)

2k+4 log2 n
=

r(n)2

M log2 n
· 2r(M)

M
· (8CK)2Kk

2k+5

>
r(n)2

M log2 n
· 2r(M)

M
>

r(n)2

M log2 n
· r(n)

n
= log3k−2 n

(
n

r(n)

)k−1

n.

Proof of Theorem 1.2. Let {ni}∞i=1 be the infinite sequence guaranteed by Lemma 3.2. We
will show that the conclusion holds for this sequence of values of n. Let M = M(n), ε = ε(n)
and τ = τ(n) be as defined in (12). For sufficiently large n, we have that τ < 1

200k2k
and

εnτ k−1 =
log3k−2 n

n

(
n

r(n)

)k−1

· n ·
(
r(n)

n

1

log3 n

)k−1

= log n > k3k.

Thus by Corollary 2.2, there is a family C of containers such that every k-AP-free subset of
[n] is a subset of some container in C. By (12), log 1

ε
log 1

τ
< log2 n, thus

log |C| ≤ 1000k3knτ log
1

ε
log

1

τ
< 1000k3kn · r(n)

n

1

log3 n
· log2 n = o(r(n)).

Since for every container A ∈ C, the number of k-APs in A is at most εn2, then by
Theorem 1.6, |A| < C ′r(n) for every A ∈ C. Recall that every k-AP-free subset is contained
in some member of C. Hence, the number of k-AP-free subsets of [n] is at most∑

A∈C

2|A| ≤ |C| ·max
A∈C

2|A| < 2o(r(n)) · 2C′r(n) = 2O(r(n)).
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Proof of Corollary 1.3. Let {ni}∞i=1 be a sequence of integers for which the conclusion of
Theorem 1.2 holds. Fix an arbitrary ε > 0 and ni. From Theorem 1.2, we know that the
number of k-AP-free subsets of [ni] is at most 2c·r(ni) for some absolute constant c > 0. For
any εni ≤ m < ni, by (13), we have that r(ni) ≤

⌈
1
ε

⌉
· r(m) < 2

ε
· r(m). Therefore, by setting

b = 2c/ε, we have that the number of k-AP-free subsets of [m] is at most 2c·r(ni) ≤ 2b·r(m).
It then follows that m ∈ A(b) for any εni ≤ m < ni and that |A(b) ∩ [ni]|/ni ≥ 1 − ε as
desired.

The proof of Theorem 1.4 is along the same line as of the proof of Theorem 1.2, hence
we provide here only a sketch of it. The difference is that to prove this weaker bound, we
only need supersaturation results for sets of size n/polylog n. For sets of this size, we do not
need the technical condition in Lemma 3.2 and we can invoke Lemma 2.4 with M = no(1)

for all values of n instead of M = n1−o(1) as in proof of Theorem 1.2.

Proof of Theorem 1.4. Fix an arbitrary 0 < γ < 1. We apply Corollary 2.2 with ε = n−γ/2,

τ = n−
1

k−1
+γ/2 and let C be the family of containers of size log |C| = o(n1− 1

k−1
+γ). Each

container contains at most εn2 = n2−γ/2 many k-APs. It follows that for every A ∈ C,
|A| ≤ C′n

h(n)
for some C ′ = C ′(k, c, γ), since otherwise applying Lemma 2.4 on A with M = nγ/4

would imply Γk(A) > n2−γ/3 > εn2, a contradiction. Thus, the number of k-AP-free subsets
of [n] is at most |C| · 2C′n/h(n) = 22C′n/h(n), as desired. Similarly, the number of k-AP-free
m-subsets of [n] is at most |C| ·

(
C′n/h(n)

m

)
≤ 2m ·

(
C′n/h(n)

m

)
≤
(

2C′n/h(n)
m

)
, where the first

inequality follows from m ≥ n1− 1
k−1

+γ ≥ log |C|.

Proof of Theorem 1.7. Fix an arbitrary δ > 0 and an integer k ≥ 3. Let S ⊆ P≤n be a
random subset of P≤n, in which each element is chosen with probability p = n−1/k inde-
pendently of others. A standard application of Chernoff bound implies that |S| ≥ p|P≤n|/2
with probability 1− o(1).

Set β = δ/50, γ = 1/(10k2) and m = δp|P≤n|/5. Then by the Prime Number Theorem,
we have

m = Ω

(
n1−1/k

log n

)
> n1− 1

k−1
+γ.

Thus by Theorem 1.8 the number of k-AP-free m-subsets in P≤n is at most
(
βP≤n

m

)
.

Let X be the number of k-AP-free m-subsets in S, and Y be the number of (k + 1)-APs
in S. Then,

E[X] ≤
(
β|P≤n|
m

)
pm ≤

(
e · β|P≤n|

m
· p
)m

=

(
e · (δ/50)|P≤n| · p

δp|P≤n|/5

)m
=
( e

10

)m
= o(1).

Thus by Markov’s inequality, X = 0 with probability at least 2/3.

By the Green-Tao theorem, the number of (k + 1)-APs in P≤n is Θ
(

n2

(logn)k+1

)
. Thus,

E[Y ] ≤ n2

logk n
· pk+1 =

n1−1/k

logk n
.

14



We have, by Markov’s inequality, that Y ≤ 3n1−1/k

logk n
with probability at least 2/3. Therefore,

with positive probability, there is a choice of S such that |S| ≥ p|P≤n|/2, X = 0 and

Y ≤ 3n1−1/k

logk n
. Let S ′ be the set obtained from S by deleting one element from every (k + 1)-

AP in S. Then

|S ′| = |S| − Y ≥ p|P≤n|
2
− 3n1−1/k

logk n
≥ n1−1/k

3 log n
− 3n1−1/k

logk n
≥ n1−1/k

4 log n
.

We claim that S ′ has the desired property. Indeed, clearly S ′ is (k+ 1)-AP-free. Suppose S ′

is not (δ, k)-Szemerédi, then there exists a k-AP-free subset U ⊆ S ′ of size

|U | ≥ δ|S ′| ≥ δ · n
1−1/k

4 log n
>
δp|P≤n|

5
= m.

However, this contradicts that X = 0.
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[20] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc.,
(52) 1946, 1087–1091.

[21] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring,
SIAM J. Appl. Math., (18) 1970, 19–24.
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[36] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete
subgraphs, J. Combinatorial Theory Ser. B, (20) 1976, 243–249.
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4 Appendix

The idea behind the container method is to have a small certificate set to describe a large
independent set. We give two further applications using this idea.

4.1 A variation of van der Waerden’s theorem

Van der Waerden’s theorem [50], a classical result in Ramsey theory, says that the set of
integers is rich in arithmetic progressions: for any positive integers k and r, there exists n0 >
0 such that every r-coloring of [n] with n > n0 yields a monochromatic k-term arithmetic
progression. Denote by W (k; r) the r-colored van der Waerden number, i.e., the minimum
integer n such that every r-coloring of [n] contains a monochromatic k-AP. The best known

upper bound on W (k; r) is due to Gowers [23]: W (k; r) ≤ 22r
22

k+9

. For two colors, the best
lower bound is due to Berlekamp [7]: W (p+ 1; 2) ≥ p2p, where p is a prime number.
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By setting δ = 1/r in Theorem 1.7, we immediately obtain the following extension of
results of Spencer [45], Nešetřil and Rödl [37] in primes on restricted van der Waerden’s
theorem.

Corollary 4.1. For any r ≥ 2 and k ≥ 3, there exists a set of primes S ⊆ P≤n such that S
is (k + 1)-AP-free and any r-coloring of S yields a monochromatic k-AP.

This type of question was first raised by Erdős and Hajnal [17]: They asked whether
there exists a Kk+1-free graph such that every r-edge-coloring of it induces a monochromatic
Kk. This was answered in the affirmative by Folkman [21] for r = 2, and by Nešetřil and
Rödl [36] for arbitrary r, see also Rödl-Ruciński-Schacht [38] for recent developments.

We will use the hypergraph container method to give an alternative proof of Corollary 4.1
without invoking Theorem 1.7. This proof draws on ideas from Nenadov-Steger [35] and
Rödl-Ruciński-Schacht [38].

If we work in the set of all integers instead of just the primes, we are able to get the
following quantitative result, Proposition 4.2.6 A set S ⊆ [n] is (k; r)-Folkman if S is (k+1)-
AP-free and every r-coloring of S contains a monochromatic k-AP. Define

g(k; r) := min{n : ∃S ⊆ [n], S is (k; r)-Folkman}.

Clearly g(k; r) ≥ W (k; r). To see this, simply notice that if n = W (k; r) − 1, then there
exists an r-coloring of [n] with no monochromatic k-AP and any (k + 1)-AP-free subset of
it inherits this property, implying that g(k; r) > n.

Proposition 4.2. For any r ≥ 2 and k ≥ 40,

g(k; r) ≤ k4k3W (k; r)5k2 .

The proof of Proposition 4.2 follows along the same line as Corollary 4.1. We omit its
proof.

For the proof of Corollary 4.1, we need the following supersaturation lemma. Given a
coloring φ, denote by φ(i) := φ−1(i) the i-th color class. We write W := W (k; r).

Lemma 4.3. Given any coloring φ : P≤n → [r+1] with n sufficiently large, if
∑

i≤r Γk(φ
(i)) ≤

n2/(log n)W+1, then |φ(r+1)| ≥ n/(log n)W+1.

Proof. Fix an arbitrary (r + 1)-coloring φ of P≤n such that
∑

i≤r Γk(φ
(i)) ≤ n2/(log n)W+1.

Recall that the number of W -term arithmetic progressions in [n] is at least cWn
2/(log n)W for

some constant cW > 0. Let x · cWn2/(log n)W be the number of W -APs colored completely
by one of the first r colors. Then by the definition of W (k; r), each of these W -APs induces a
monochromatic k-AP in the first r colors. We claim that every k-AP is contained in at most
W 2 many W -APs. Indeed, given any k-AP {a1, . . . , ak}, a W -AP {b1, . . . , bW} containing it
will be uniquely determined once we fix a1 = bi, a2 = bj for 1 ≤ i 6= j ≤ W . The number of

6We remark that a very recent paper [30] achieves essentially the same quantitative bound, but with a
stronger “large girth” property.
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choices of the two indices i and j is at most W 2. Therefore, the number of monochromatic
k-APs in the first r colors is at least (xcWn

2/(log n)W )/W 2. On the other hand, this number
is at most n2/(log n)W+1, thus for sufficiently large n we have

xcWn
2

(log n)WW 2
≤ n2

(log n)W+1
⇒ x ≤ W 2

cW log n
≤ 1

2
.

So the number ofW -APs containing at least one element from φ(r+1) is at least cWn
2/2(log n)W .

Note that each element in [n] is in at most W · n
W−1

< 2n many W -APs. Indeed, there are at
most W choices to decide which term in a W -AP an element in [n] will be and at most n

W−1

many choices to choose the common difference. Therefore, |φ(r+1)| ≥ (cWn
2/2(log n)W )/2n ≥

n/(log n)W+1, as desired.

Proof of Corollary 4.1. We set the parameters as follows:

p =
1

n1/k(log n)W
, ε =

1

(log n)2W
, τ =

1

n1/k(log n)3W
. (16)

For any k ≥ 3, and p, ε, τ defined in (16), and sufficiently large n, we have that

1000rk3k log
1

τ
log

1

ε
= 1000rk3k ·

(
log n

k
+ 3W log log n

)
· 2W log log n ≤ log2 n.

Thus, we have

np

10(log n)W+1
=

n1−1/k

10(log n)2W+1
≥ n1−1/k

(log n)3W−2
= nτ · log2 n ≥ 1000rk3knτ log

1

τ
log

1

ε
. (17)

We also need the following inequality.

np

10(log n)W+1
=

n1−1/k

10(log n)2W+1
≥ n1−1/k

(log n)k+(k+1)W
= pk+1 n2

(log n)k
. (18)

Let S ⊆ P≤n be a random subset of P≤n, in which every element is chosen with probability
p as defined in (16), independently of each other. Denote by B1 the event that every r-
coloring of S contains a monochromatic k-AP and by B2 the event that S is (k+ 1)-AP-free.
We will show that P[B1] +P[B2] > 1, which then implies that with positive probability there
is a choice of S ⊆ P≤n with the desired properties.

To estimate P[B2], we apply the FKG inequality (see e.g. [9]). Note that the number of
(k+ 1)-APs in P≤n is at most Cn2/(log n)k+1 for some constant C > 0 depending only on k.

P[B2] ≥
(
1− pk+1

)Cn2/(logn)k+1

> exp

{
−pk+1 · n2

(log n)k

}
. (19)

Let ε, τ be as defined in (16). We claim that ε, τ satisfy (5). It follows immediately from
the definition of τ that τ < 1

200k2k
. For the other inequality,

εnτ k−1 =
n

(log n)2W
· 1

n
k−1
k (log n)3(k−1)W

=
n1/k

(log n)(3k−1)W
≥ k3k.
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Thus we can apply Corollary 2.2 with ε, τ to obtain C, the set of containers.
We now bound P[B1] from above. Note that B1 implies that there is an r-coloring of

S with no monochromatic k-AP. The idea is that if such a coloring exists, then necessarily
there is a fairly dense set disjoint from the random set S, which is highly unlikely. Fix
one such coloring σ : S → [r] with color classes X1, . . . , Xr. Since every Xi is k-AP-free,
Xi ⊆ Fi for some container Fi ∈ C. Define T = P≤n \

⋃
i Fi, so S ∩ T = ∅. Notice that T is

independent of the initial coloring σ, and the number of choices for T is at most |C|r.
We claim that the set T obtained above is large: |T | ≥ n/(log n)W−1. To see this, define

an auxiliary (r+ 1)-coloring φ : P≤n → [r+ 1] as follows: ∀x ∈ T , φ(x) = r+ 1, and ∀x 6∈ T ,
φ(x) = min{i : x ∈ Fi}. By Corollary 2.2 (ii), the number of monochromatic k-APs in the
first r colors of φ is at most r · εn2 = rn2/(log n)2W ≤ n2/(log n)W+1. Then by Lemma 4.3,
|T | ≥ n/(log n)W−1 as desired.

Applying the union bound over all possible choices of T , we obtain that

P[B1] ≤ P[∪TS ∩ T = ∅] ≤ |C|r · (1− p)n/(logn)W+1

≤ exp

{
r · 1000k3knτ log

1

τ
log

1

ε
− np

(log n)W+1

}
(17)

≤ exp

{
− np

2(log n)W+1

}
(18)

≤ exp

{
−pk+1 n2

(log n)k

}
< P[B2].

Thus we have P[B1] + P[B2] = 1− P[B1] + P[B2] > 1 as desired.

4.2 d-fold sumset

Denote by dA the d-fold sumset of A: dA = A + . . . + A, where A ⊆ Zp. How large does a
set in Zp have to be so that it is a d-fold sumset? Define fd(p) to be the maximum integer
` such that for any set F of size `, Zp − F = dA for some A ⊆ Zp. Green and Gowers [25],

using the discrete Fourier method, showed that Ω(log p) = f2(p) = O(p2/3 log1/3 p). It was
later improved by Alon [1] using eigenvalues of the Cayley sum-graphs:

Ω

( √
p

√
log p

)
= f2(p) = O

(
p2/3

log1/3 p

)
.

It remains a difficult open question to close the gap above. In this section, we investigate
this function for the d-fold sumset for every d ≥ 2. Green and Gowers’ proof in fact works
for all d ≥ 2, giving an upper bound7

fd(p) = O(p2/3 log1/3 p).

Our next result gives an improvement when d ≥ 3.

7Perhaps a more involved argument using the Fourier technique can give improvement on this bound
obtained directly from their argument.
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Theorem 4.4. For any d ≥ 2,

fd(p) = O(p
d

2d−1
+o(1)).

Here, to prove Theorem 4.4, we use Proposition 4.6 instead to find such a small certificate.
Though our bound for d = 2 is weaker than the previous bounds by a polylog factor, it easily
works for any d ≥ 2. We think that the bound above is far from best possible. We conjecture
that fd(p) = pcd+o(1), where cd → 0 as d→∞.

First, we need to define an auxiliary hypergraph, from which the upper bound on fd(p)
can be derived. Given a set T ⊆ Zp, we define the d-uniform Cayley sum-hypergraph
G(Zp, T ) generated by T as follows: V (G(Zp, T )) = Zp and its edge set consists of all d-
tuples {x1, . . . , xd} such that x1 + . . . + xd = t for some t ∈ T . The following claim, due
to Green [25] and Alon [1], gives a way to obtain upper bound, we repeat here their short
proof.

Claim 4.5. If there exists a set T of size t such that t > 2α(G(Zp, T )), then fd(p) ≤ 2t.

Proof. If we have a set F ⊆ Zp such that Zp − F is not a sumset, then fd(p) ≤ |F |. We will
find such a set F = T ∪ T ′ in two steps with |T | = |T ′| = t, where T is the set guaranteed
by the hypothesis, i.e., t > 2α(G(Zp, T )). Notice that if any set S ⊆ Zp − T is a d-fold
sumset for some set A ⊆ Zp, then A has to be an independent set in G(Zp, T ). Note also
that the number of d-fold sumsets S cannot be larger than the number of sets A that we
generate S = dA from. We then choose another set T ′ of size t, there are

(
p−t
t

)
many choices.

Suppose that for each of these choices, S = Zp − T − T ′ is a d-fold sumset dA, then from
the observation above we have that the number of choices for A is at least(

p− t
t

)
>

(
p

α(G(Zp, T ))

)
.

This is impossible since A is an independent set in G(Zp, T ). Thus there exists a T ′ such
that F = T ∪ T ′ is the desired set.

We use the following slight variation of Proposition 19 in [27].

Proposition 4.6. For any d ≥ 2, there exists c := c(d) such that the following holds. For
any set S ⊆ Zp of size m with m sufficiently large, there exists a set R ⊆ S with |R| ≤ m1/d/c

and |d̂R| ≥ cm, where d̂R := {x : x = a1 + . . .+ ad with distinct ai ∈ R}.

Proof of Theorem 4.4. Let T be a random t-set of Zp for t = 2
c2

(p log p)d/(2d−1). Let G :=
G(Zp, T ). We will show that with high probability α(G) < t/2, then the bound on fd(p)
follows from Claim 4.5.

For every set S ⊆ G of size m = t/2, by Proposition 4.6, S contains a set R of size at

most m1/d/c and |d̂R| ≥ cm. Clearly, d̂R ⊆ dS. It then follows that if every R of size at

most m1/d/c with |d̂R| ≥ cm is not an independent set, then α(G) < m. Fix such a choice

of R, then R is an independent set only when d̂R ∩ T = ∅. Thus the probability that R is
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independent is at most (1− cm
p

)t ≤ e−cmt/p. Applying the union bound, we obtain that the
probability that there exists an R that is independent is at most

m1/d/c∑
i=1

(
p

i

)
· e−cmt/p ≤ exp

{
1

c
t1/d log p− ct2

2p

}
= o(1),

where the last equality follows from t = 2
c2

(p log p)d/(2d−1). Thus α(G) < t/2 as desired.

Here is a related conjecture of Alon [1].

Conjecture 4.7. There exist constants c1, c2 so that the following holds. Let Γ be an abelian
group of odd order n. Then for every 1 ≤ t ≤ n, there is a subset T ⊆ Γ of size t so that for
G := G(Γ, T ),

α(G) ≤ c1
n

t
(log n)c2 .

The conjecture was known to be true for t = Ω(n). Alon [1] gave a bound α(G) ≤
n
t1/2

log n. Using the idea in the proof of Theorem 4.4, we can establish the following bound:

α(G) ≤
(n
t

)2

(log n)2,

which implies Conjecture 4.7 for t ≥ n/(log n)O(1).
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