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Abstract

Let G be a Ky-free graph, an edge in its complement is a Ky-saturating edge if
the addition of this edge to G creates a copy of Ky. FErdds and Tuza conjectured
that for any n-vertex Ky-free graph G with [n?/4] 4+ 1 edges, one can find at least
(1+ 0(1))?—; K4-saturating edges. We construct a graph with only % K4-saturating
edges. Furtl%ermore, we prove that it is best possible, i.e., one can always find at least
(1+0(1)) % Ky-saturating edges in an n-vertex Ky-free graph with [n?/4] + 1 edges.

1 Introduction

The notation in this paper is standard. For a graph G, denote by G its complement. For
any vertex v € V(G) and vertex subsets U, W C V(G), denote N(v) := {u: ww € E(G)},
NU) :=\,ep N(v) and E(U, W) the set of cross edges between U and W.

Mantel [14] showed that the maximum number of edges in an n-vertex triangle-free
graph is |n?/4|. Rademacher (unpublished) extended this result by showing that any n-
vertex graph with |n?/4| + ¢ edges contains at least ¢|n/2| triangles, for t = 1. Lovdsz
and Simonovits [13], improving Erd6s [6], proved this for every ¢ < n/2. Erdés [7] showed
analogue results for cliques, and Mubayi [15], [16] proved relevant results for color-critical
graphs and some hypergraphs.

In general, we call Erdés-Rademacher-type problem the following: for any extremal ques-
tion, what is the number of forbidden configurations appearing in a graph somewhat denser
than the extremal graph? This type of problems have been studied in various contexts: A
book of size q consists of ¢ triangles sharing a common edge. Khadziivanov and Nikiforov [11],
answering a question of Erdds, showed that any n-vertex graph with [n?/4]+1 edges contains
a book of size at least n/6. In the context of Sperner’s Theorem, Kleitman [12], answering a
question of Erdos and Katona, determined the minimum number of 2-chains in a poset whose
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size is larger than its largest anti-chain. Recently, this theorem was extended to k-chains by
Das, Gan and Sudakov [5].

Let G be an n-vertex K,-free graph, an edge in G is a K4-saturating edge if the addition
of this edge to G creates a copy of K4. Denote by f(G) the number of K -saturating edges
in G and by f(n,e) the maximum integer ¢ such that every n-vertex K,-free graph with e
edges must have at least ¢ Ky -saturating edges. The first extremal result related to clique-
saturating edges was by Bollobés [4] who proved that if every edge in G is a K,-saturating
edge, then e(G) > (g) — (”‘;”) and this bound is best possible. Later it was extended
by Alon [I], Frankl [0] and Kalai [I0] using linear algebraic method. Recently, saturation
problems were phrased in the language of ‘graph bootstrap percolation’; see [2] and [3].

In the case of Ky, Bollobas’ example is the following: let F' be an n-vertex Ky-free
graph with two vertices adjacent to all other vertices which form an independent set. This
graph has only 2n — 3 edges, and yet all edges in F are K -saturating edges. To the other
extreme, K, /9] [n/2) shows that a graph could have up to |n*/4] edges with no Ky-saturating
edge, i.e. f(n,|n?/4]) = 0. Erdés and Tuza [8] conjectured that if a K -free graph G has
[n?/4] + 1 edges, then suddenly there are at least (1 + o(1))n?/16 K,-saturating edges.
They also stated, without giving any specific example, that there is a graph with at most
(1+0(1))n?/16 K,-saturating edges. Our guess is the following: add a new vertex and make
it adjacent to roughly half of vertices in each partite set of K7, 21-1,n/2)- This conjecture
can be considered, as formulated before, an Erdés-Rademacher-type problem concerning the
number of Ky -saturating edges.

Conjecture 1.1 (Erdés-Tuza [§]).

2

f(n, [n?/4] + 1) = (1 + o(1)) =

1_6.
We disprove this conjecture. We give a counterexample with only % K-saturating
edges. Furthermore, we prove that (1 + 0(1))% is best possible, that is, one can always

find at least (1+ 0(1))% K -saturating edges in an n-vertex Ky-free graph with [n?/4] +1
edges.

Theorem 1.2. Forn > 73,

2n? 3n 2n? ™
T om 241 41) < 22 _ T
33 11 S A D) < 5 — g

We shall prove the following theorem, which implies the lower bound in Theorem [1.2]

Theorem 1.3. Let G be an n-vertex Ky-free graph with |n*/4| edges, for n > 73. If G

contains a triangle, then
2n?  3n
>
1@z 33 11

This s best possible when n is divisible by 66.



Proof of Theorem[1.4. The upper bound is by the construction described in Section [2 For
the lower bound, let G be a Ky-free graph with [n?/4] + 1 edges. By Mantel’s theorem,
it contains a triangle. Let G’ be a subgraph obtained from G by removing an edge such
that G’ contains a triangle. By Theorem , f(G) > % — 3% The relation f(G) > f(G)
completes the proof. n

Remark: (i) A slight modification of our proof gives the following stability result: Given
any Ky-free graph G with (1 — o(1))n?/4 edges, if G contains a triangle, then f(G) >
(1 —o0(1))2n%/33.

(ii) Unlike the case about the number of triangles in [6] and [13], where every additional edge,
up to n/2, gurantees |n/2| additional triangles, in our problem, even with linear many extra
edges, the number of Kj-saturating edges is still at most (1 + o(1))2n?/33. In particular,

f(n, L”{J—kt) :%qLO(n) for 1 <t < &.

(iii) One might define a K,-saturating edge of a graph G, for r > 5, as we did for Kj.
Denote by ex(n, K,_1) the maximum size of an n-vertex K,_j-free graph. We think that a

similar phenomenon holds: if G is K,-free and e(G) = ex(n, K,_1) + 1, then the number
2(r—3)2
(r—1)(4r2—19r+23)

struction shows that if the conjecture is true, then it is best possible. (The construction is
an appropriate blow-up of the following graph: take a new vertex and make it adjacent to
exactly one vertex in each partite set of a (r — 2)-partite complete graph Ky _5.) Some of
the ideas of our proof works for » > 5 as well, but some does not.

of K,-saturating edges is at least ( - 0(1)) n?. A generalization of our con-

.....

The paper is organized as follows: We give a construction for the upper bound in Theo-
rem [[.2] and an extremal example for Theorem [I.3]in Section 2} The proof for Theorem
is given in Section [3] We will omit floors and ceilings when it is not critical and we make no
effort optimizing some of the constants.

2 Upper bound constructions

Fix an integer n divisible by 66. We present an n-vertex Ky-free graph H with n?/4 + n/66
edges and f(H) = 2n%/33 — 7n/33. Note that from this graph one can easily remove
n/66 — 1 edges without changing the number of Kj-saturating edges. We also give an
extremal example showing the bound in Theorem is best possible.

Construction for Theorem To construct H, start with a Cs on {vy, va, v3, vy, V5 }
with a chord vjvs. Blow up each v; to an independent set V; of the following size: |Vi| =
V3| = 16n/66, |Va| = 4n/66 + 1, [V4] = 15n/66 and |V5| = 15n/66 — 1, see Figure[l] Then
H is K,-free with n?/4 + n/66 edges. The only K,-saturating edges are those in Vi, Vs, Vi,
which gives f(H) = 2n?/33 — Tn/33.

Construction for Theorem Define H' the same way as H, except that V| = 4n/66

and |VJ/| = 15n/66. This graph is Ky-free with n?/4 edges and f(H') = % -3



Figure 1: A Ky-free graph H with e(H) = %2 + g5 and f(H) = % -

3 Proof of Theorem 1.3

Let G be a Ky-free graph with n?/4 edges and containing a triangle. Fix, in G, a maximum
family of vertex-disjoint triangles, say T = {11, 75, ..., T, }, where 0 < t < 1/3. We write
V(T) for U2, V(Ty), E(T) for E(G[V(T)]) and e(T) := |E(T)|. Let G' = G — V(T), since
T is of maximum size, G’ is a K3-free graph with e(G’) < %. Denote by rn? the
number of Kj-saturating edges incident to V(7T), and by ryn? the number of K;-saturating
edges in V(G'). Hence f(G) = (r; + r2)n?. First we give a lower bound on ;.

Lemma 3.1.

2 2

ryn? > (éll —t+ 3%) n? —e(G') — gtn > (% - 3%) n? — ;tn.

Proof. Let t; = e(T;,G \ U;:1 Tj), clearly 3" t; = e(G) — e(G") — 3tn. Since G is Ky-free,

every vertex can have at most two neighbors in each triangle. Thus t; — (n — 3i) is a lower

bound on the number of vertices in G \ U§:1 T; having degree 2 in T;, each of which gives

a Kj-saturating edge. Indeed, say V(11) = {x,y, 2}, and w € N(x) N N(y), then wz is a
K,-saturating edge. Thus,

a2 3t = (0= 30) = (elG) — (@)~ 3tm) — (w372

1 3t? 3 t 3t 3
> — - 2 _ N _ Z > - - 2_ =
(4 t+ 5 )n e(G") 2tn (2 1 )n 2tn,

where the last inequality follows from e(G’) < %. O

Let T, € T be a triangle in 7. Denote by N;(T;) € V(G'), for 0 < j < 3, the set
of vertices in G’ that has exactly j neighbors in 7;. Since G is Ky-free, N3(T;) = 0, for
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every T;’s. Further define po(T;) = ‘NO( ol ) (T3) = |N17(LT1')| and po(T;) = |N2£Ti)|. Thus by
definition, po(T}) + p1(T;) + pa(T3) = 1 - 3t.
The next lemma shows that there is a triangle 7" € T with large |No(T)|.

Lemma 3.2. There exists a triangle T € T, such that
(i) e(T,G") > (5 2 n, and
(ii) po(T) > L = % 4 py(T).
Proof. (i) The edge set of G can be partitioned into F(G"), E(T,G") and E(T). Notice that
since G is Ky-free, there are at most 6 edges between any pair of triangles in 7. Hence
e(T) < 3tn+6("y) = 3t*n?.

Thus we have e(7,G’) = e(G) —e(G') —e(T) > %2 — % 3t?n? > (3— ﬁ) n?.

2 1
Therefore, there exists a triangle T € T with e(T,G") > e(T,G")/(tn) > (2 — 2 n.

(ii) Let T € T be a triangle satisfying (i). Note that 2po(T) + pi(T) = e(TT’LG/) Using
po(T) +pi(T) +po(T) = 1 = 3t, we have po(T) = po(T) 2 5 = 5F = (1 =3) =, - §. O

From now on, we let T'= {x,y, z} be a triangle in T sending the most edges to G’, hence
it has the two properties of Lemma . For brevity we write p; = p;(T") and N; = N;(T)
for 0 < j < 2. Furthermore, define A = Ng/(zy), B = Ng/(yz) and C = Neg/(xz). Note
that A, B, C are pairwise disjoint independent sets, otherwise T"U AU B U C' contains a copy

of K. Define N, := Nei(x), N, i= Nei(y) and N. := Nei(2). Let a = fgh, b= (g and

c= ||N thus a +b+c=1. For 1 < k < 3, we say that T spans a k-joint-book, if among
A, B, CJ exactly 3 — k of them are empty sets.

Lemma 3.3. If T spans a 3-joint-book, then we have

13 21t7? -
ron? > 6 {5 - T] n? —e(G") — (1 — 3t)n.
Proof. First notice that N, N, and NV, are all independent sets. Indeed, suppose N, contains
an edge, then T"U N, U B contains two vertex-disjoint triangles, contradicting the maximality
of T.

Note that (“g”) + (‘]\;") + (llgz\) < ryn? + e(G"). Indeed, every pair of vertices in N, N,
or N, gives a non-edge in G’ and those Kj-saturating edges in A, B,C are counted twice.
Additionally, |N,| + |N,| + |N.| = e(T,G') > (2 — ) n, and e(T, G') < 2(1 — 3t)n. Thus,

4

ran? + (@) > (“gﬂ) N <|fgyl> . <|ng|> N S(e(T,QG’)/?,)

1 e 1 Lo n?[3 21t ?
I T (} —e(T > e .

We first show that if 7" spans a 3-joint-book, then f(G) > 2n?/33 — 3n/11.

5



: - 2n? 3n
Lemma 3.4. Forn > 73, if T spans a 3-joint-book, then f(G) > Z& — 7.

Proof. Note that e(G') + e(G') = (1_35)2"2 - (1_§’t)”. By Lemmas 3.1| and we have

9 1 32\ N3
f(G) = (m+rn > (-—t+—|n"—elG)—-tn
4 2 2
13 21¢]° _
5142 5t 1\ o, n _ 13n* n _ 2n* 3n
> ([ D) 22> ——> =
- 32 8 8 2 — 204 2~ 33 11
since 5;—52 — % + % > % when 0 < ¢ < 1/3, and the last inequality holds for n > 73. ]

Proof of Theorem[1.3. By Lemma [3.4, we may assume that 7' spans a k-joint-book with
k < 2. Without loss of generality assume that B = (), i.e. b = 0. Then a +c¢ = 1 and
|A| + |C| = pan. Notice that each pair of vertices in A and C'is a K -saturating edge, hence

2
ron? > (|1;1|) + (‘(2)’) > 2(p27;/2> _ %n2 _ ]%n )

Ift> %, then Lemma implies f(G) > rin? > (% — %) n*—1%> % for n > 54. Thus

we may assume that ¢ < % The right hand side in (1)) is minimized when py is at its lower

bound provided by Lemma as % — % > % for n > 20. Hence

1/1 9\’ 1/1 ot
o L (L2 R (U
”n—4<2 4)” 2(2 4)”

Therefore using Lemma [3.1], we have
(@) > ([ 3\ 11 o N, 1 g L9
= (ri+mr)n - — — - === n°— = ———1n
PR = 4\2 4 2 2 4
33t2 t L 1 o 1 (3t . 1 S 2n?  3n 3
= |l——=4+=|n"—-=z|-—4=|n>—-——-—
64 16 16 2\4 2 - 33 11 44’

2 4
where the function on the right hand side is minimized at ¢ = % + %. Since both tn and
f(G) are integers, checking all n modulo 33, we have

2n®>  3n

We remark that the extremal example corresponds to the last case when ¢t < 1/5 and T
spans a 2-joint book with |A| = |C. O
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