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Abstract

The blow-up of a graph H is the graph obtained from replacing each edge in H by
a clique of the same size where the new vertices of the cliques are all different. Erdős
et al. and Chen et al. determined the extremal number of blow-ups of stars. Glebov
determined the extremal number and found all extremal graphs for blow-ups of paths.
We determined the extremal number and found the extremal graphs for the blow-ups
of cycles and a large class of trees, when n is sufficiently large. This generalizes their
results. The additional aim of our note is to draw attention to a powerful tool, a
classical decomposition theorem of Simonovits.

1 Introduction

Notation in this note is standard. We consider undirected graphs without loops and multi-
edges. For a graph G, denote by E(G) the set of edges and V (G) the set of vertices of G.
The order of a graph is the number of its vertices. The number of edges of G is denoted by
e(G) = |E(G)|. For U ⊆ V (G), let G[U ] be the subgraph of G induced by U . A path on
k vertices is denoted by Pk, a star with k + 1 vertices is denoted by Sk and a cycle with k
edges is denoted by Ck. A matching in G is a set of vertex disjoint edges from E(G), denote
by Mk a matching of size k. Denote by Tn,p the p-class Turán graph, namely the complete
p-partite graph on n vertices with the size of each partite set as equal as possible.

The extremal number, ex(n,H), of a graph H is the maximum number of edges in a
graph on n vertices which does not contain H as a subgraph. An H-free n-vertex graph with
ex(n,H) edges is called an extremal graph for H, or H-extremal. Turán [13, 14] showed that
Tn,p is the unique extremal graph for Kp+1. The Erdős-Stone-Simonovits Theorem [4, 6]
states that asymptotically Turán’s construction is best-possible for any (p + 1)-chromatic

graph H (as long as p ≥ 2). More precisely ex(n,H) =
(

1− 1
p

)
n2

2
+ o(n2).

Given a graph H, the blow-up of H, denoted as Hp+1, is the graph obtained from replacing
each edge in H by a clique of size p+ 1 where the new vertices of the cliques are all different
(see Figure 1(a)).
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Erdős, Füredi, Gould and Gunderson [3] determined, for sufficiently large n, the extremal
number for triangles intersecting in exactly one common vertex. One can think of this graph
as blowing up edges of a star to triangles. More generally, k cliques of size p+ 1 intersecting
in exactly one common vertex is Sp+1

k , Chen, Gould, Pfender and Wei [2] generalized the
main result of [3] to Sp+1

k :

Theorem 1. [2] For any p ≥ 2 and k ≥ 1, and for any n ≥ 16k3(p+ 1)8, we have

ex(n, Sp+1
k ) = ex(n,Kp+1) +

{
k2 − k if k is odd,
k2 − 3

2
k if k is even.

Given two vertex-disjoint graphs H and G, denote by H
⊗

G the graph obtained by
joining each vertex of H to each vertex of G. Let H(n, p, s) be Ks−1

⊗
Tn−s+1,p (see Fig-

ure 1(b)) and H ′(n, p, s) be any of the graphs obtained by putting one extra edge in any
class of Tn−s+1,p in H(n, p, s).

(a)

Ks−1

Tn−s+1,p

(b) (c)

Figure 1: (a) C4
4 ; (b) H(n, p, s); (c) H∗(n).

Recently, Glebov [7] determined, for sufficiently large n, the extremal number and the
extremal graphs for the blow-up of paths. More history of this topic are given in Section 2.

Theorem 2. [7] For any p ≥ 2 and k ≥ 1, and for any n > 16k11(p+1)8, H(n, p, bk−1
2
c+1)

(H ′(n, p, bk−1
2
c+ 1) resp.) is the unique extremal graph for P p+1

k+1 when k is odd (even resp.).

The main motivation for this note is that [2], [3] and [7] give sporadic results about
problems of the same flavor. We unite these extremal problems for blow-ups of graphs and
look at the general theory behind these results by investigating the decomposition families of
the forbidden graphs. Using the method in [10] (see also [9], [11]), we determine the extremal
number and found all extremal graphs for all blow-ups of cycles. Somewhat surprisingly, the
result for blow-ups of cycles is not much different from blow-ups of paths except for C3

3 .
Before stating our results, we need a definition. Let H∗(n) be graphs obtained by putting
(almost) perfect matchings in both classes in Kdn/2e,bn/2c (see Figure 1(c)).
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Theorem 3. For any p ≥ 2 and k ≥ 3, when n is sufficiently large, we have the following
results:

(i) For any Cp+1
k 6= C3

3 , H(n, p, bk−1
2
c + 1) (H ′(n, p, bk−1

2
c + 1) resp.) is the unique

extremal graph for Cp+1
k when k is odd (even resp.).

(ii) For C3
3 , if 4|n, H∗(n) is the unique extremal graph; otherwise both H∗(n) and

H(n, 2, 2) are extremal graphs.

(a) (b) (c)

Figure 2: (a) C3
3 ; (b) H∗(n); (c) H(n, 2, 2).

Remark 4. Both H ′(n, p, s) and H∗(n) might contain non-isomorphic graphs. However
graphs in the same family are similar in the sense that they have the same number of edges.
Since their difference does not matter in this note, we will treat each of them as a “unique”
graph instead of families of graphs.

In addition, for a large class of trees, we determined the extremal number for their blow-
up graphs and found their unique extremal graph.

Theorem 5. Given a tree T , denote by A and B its two color classes with |A| ≤ |B|. For
any p ≥ 3, when n is sufficiently large, we have that

(i) if T has a leaf in A and α(T ) = |B|, then H(n, p, |A|) is the unique extremal graph
for T p+1.

(ii) if the minimum degree in A is 2, then H ′(n, p, |A|) is the unique extremal graph for
T p+1.

Remark 6. Trees considered in Theorem 5 (i) include even paths and those in (ii) include
odd path. Hence it implies Theorem 2 when p ≥ 3. For p = 2, the technique in the proof
of Theorem 3 (see Appendix) works for blow-ups of paths. It is not difficult to see that
in a proper subdivision of any star, its smaller color class either has minimum degree 2 or
has a leaf and its independence number equals to the size of the larger color class, thus
Theorem 5 can be applied to blow-ups of a proper subdivision of stars, which is an extention
of Theorem 1.

The rest of this paper is organized as follows: in Section 2 we provide more motivation
and the key lemma. Section 3 gives a proof for Theorem 3 when p ≥ 3 and Section 4 is
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devoted to proof of Theorem 5 (i). The proof for Theorem 5 (ii) is similar, we include a
sketch of its proof in Appendix together with a proof for Theorem 3 when p = 2.

We finish this section with a few more definitions that will be used later. We denote the
degree of a vertex v by d(v) and write N(v) for the set of its neighbors and for S ⊆ V (G),
let N(S) be the set of vertices that have some neighbors in S. Denote by K−t the graph
obtained from deleting an edge from a complete graph on t vertices. A dominating vertex
in G is a vertex that is adjacent to all other vertices in G. A linear forest is a forest whose
connected components are paths. Two disjoint vertex sets U and W are completely joined
in G if uw ∈ E(G) for all u ∈ U,w ∈ W . Write kH for the vertex disjoint union of k copies
of H. For two vertex-disjoint graphs H and G, denote by H ∪G the disjoint union of H and
G.

2 Motivation and History

Given a graph H, a vertex split on some vertex v ∈ V (H) is defined as follows: replace v
by an independent set of size d(v) in which each vertex is adjacent to exactly one distinct
vertex in NH(v). Given a vertex subset U ⊆ V (H), a vertex split on U means applying
vertex split on the vertices in U one by one. It is not difficult to see that the order of
vertices we apply vertex split does not matter. Denote by H(H) the family of graphs that
can be obtained from H by applying vertex split on some U ⊆ V (H). Note that U could be
empty, therefore H ∈ H(H). For example, H(Pk+1) is the family of all linear forests with k
edges and H(Ck) consists of Ck and all linear forests with k edges. Given a family L, define
p = p(L) = min

L∈L
χ(L)− 1.

Definition 7. Denote by Iv the v-vertex graph with no edges. Given a family L, let M :=
M(L) be the family of minimal graphs M for which there exist an L ∈ L and a t = t(L) such
that L ⊆M ′⊗Kp−1(t, . . . , t), where M ′ = M ∪ It. We call M the decomposition family of
L.

Thus, a graph M is in M if the graph obtained from putting M into a class of a large
Tn,p contains some L ∈ L. If L ∈ L with minimum chromatic number p + 1, then L ⊆
Kp+1(t, . . . , t) for some t ≥ 1, therefore the decomposition family M always contains some
bipartite graphs.

Example 8. Denote by O6 the edge-graph of the octahedron, namely O6 = K2,2,2. Since
O6 = C4

⊗
I2, we have thatM(O6) = {C4}. For any ` > 1,M(C2`+1) = {P2}. For blow-ups

of stars, M(Sp+1
k ) = {Sk,Mk} for p ≥ 2 and k ≥ 1; for blow-ups of paths M(P p+1

k+1 ) = {all

linear forests with k edges} = H(Pk+1) and for cyclesM(Cp+1
k ) = {Ck, all linear forests with

k edges} = H(Ck) for p ≥ 3 and k ≥ 1.

For a family of forbidden graph L with decomposition family M, we have

e(Tn,p) + ex(
n

p
,M) ≤ ex(n,L) ≤ e(Tn,p) + (1 + o(1))p · ex(

n

p
,M), (1)
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where the lower bound is obtained from putting an M-extremal graph in one of the classes
in Tn,p (see [1]).

The Erdős-Stone-Simonovits Theorem determines asymptotically the extremal functions
of non-bipartite graphs, while the decomposition family governs the finer error terms as
shown in (1), thus it helps to give sharper bounds on the extremal number.

There are examples where the upper bound in (1) holds. Let Q(r, p) be the graph
consisting of a dominating vertex and a p-class Turán graph on rp vertices, namely Q(r, p) =
Trp,p

⊗
I1. Notice that M(Q(r, p)) = {Sr}, thus an M(Q(r, p))-free graph has maximum

degree r − 1. Simonovits [8] showed that a Q(r, p)-extremal graph can be obtained from
putting (almost) (r − 1)-regular triangle-free graphs into each class of a Tn,p.

We recall the Octahedron Theorem by Erdős and Simonovits [5], which gives an example
where neither the upper bound nor the lower bound in (1) is true.

Theorem 9. For sufficiently large n, every O6-extremal graph Sn can be obtained as Sn =
Um

⊗
Zn−m, for some m-vertex C4-extremal graph Um and some (n−m)-vertex P3-extremal

graph Zn−m, where m = n/2 + o(n).

A graph L is weakly edge-color-critical, or shortly weakly-critical, if there is an edge
e ∈ E(L) for which χ(L − e) < χ(L). Simonovits [8] proved that the Turán graph is the
unique extremal graph for weakly-critical graphs when n is sufficiently large. In the same
paper, he also proved when the forbidden graph is L = sH, where H is weakly-critical, and
χ(H) = p + 1 ≥ 3, then for sufficiently large n, the unique L-extremal graph is H(n, p, s).
Later in [10], he further generalized this result to the following theorem.

Theorem 10. Let L be the family of forbidden graphs and p = p(L) = min
L∈L

χ(L) − 1. If

by omitting any s − 1 vertices of any L ∈ L we obtain a graph with chromatic number at
least p + 1, but by omitting s suitable edges of some L ∈ L we get a p-colorable graph, then
H(n, p, s) is the unique extremal graph for n sufficiently large.

Simonovits [12] asked the following question.

Question 11. Characterize graphs whose unique extremal graph is of the form H(n, p, s).

We make a step towards answering Question 11: notice that the blow-ups of cycles and
trees does not satisfy the hypothesis in Theorem 10, hence Theorem 3 and 5 provides an
additional family of forbidden graphs whose unique extremal graph is H(n, p, s) for suitable
p and s.

On the other hand, the results in [2], [3], [7], [8] and [10] show that for blow-ups of stars,
paths and many other families of graphs, the lower bound construction is optimal. Our
results show that for blow-ups of cycles and a large class of trees, this is also the case. It
would be interesting to describe all decomposition familiesM where the lower bound in (1)
is sharp. Here we make the first attempt towards this direction.

The following lemma shows that the decomposition family of blow-ups of some graphs
(in particular bipartite graphs) is actually the family obtained from splitting its vertices.
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Lemma 12. Given p ≥ 3 and any graph H with χ(H) ≤ p − 1, M(Hp+1) = H(H). In
particular, a matching of size e(H) is in M(Hp+1).

Proof. Note that χ(Hp+1) = p+ 1, by the definition of decomposition family, any graph M
inM(Hp+1) is a minimal graph under the condition that there exists a copy of M in H, such
that removing the vertex set of M together with a suitable independent set Iv results in a
(p− 1)-colorable graph. Since Iv is an independent set, it can have at most one vertex from
each (p+1)-clique in Hp+1. Recall the removal of M ∪Iv decreases the chromatic number by
at least two, this implies M should have at least one vertex from each (p+1)-clique in Hp+1.
Since a vertex from M and a vertex from Iv in the same (p + 1)-clique would be adjacent,
which contradicts the minimality of M , thus Iv is empty and M includes exactly two vertices
from each (p + 1)-clique in Hp+1. Locally, for each v ∈ H, NH(v) ∪ {v} spans a Sp+1

dH(v) in

Hp+1. If the center of that Sp+1
dH(v) is in M , then M also contains exactly one other vertex

from each of the (p + 1)-cliques in this Sp+1
dH(v). This implies v is not a split vertex in M .

Otherwise, M contains two vertices from each (p + 1)-cliques of Sp+1
dH(v), which implies that

v was split into dH(v) leaves in M . Hence M(Hp+1) = H(H). In particular, by splitting all
vertices of H, we obtain a matching of size e(H).

The following definition was introduced in [10].

Definition 13. Denote by D(n, p, r) the family of n-vertex graphs Gn satisfying the following
symmetry condition:

(i) It is possible to omit at most r vertices of Gn so that the remaining graph G′ is a

product of graphs of almost equal order: G′ =
∏
i≤p

Gi, where |V (Gi)| = ni and |ni − n
p
| ≤ r,

for every i ≤ p.
(ii) For every i ≤ p, there exist connected graphs Hi such that Gi = kiHi, where ki =

ni

|V (Hi)| and any two copies Hj
i , H

`
i in Gi (1 ≤ j < ` ≤ ki), are symmetric subgraphs of Gn:

there exists an isomorphism ω : Hj
i → H`

i such that for every x ∈ Hj
i , u ∈ Gn −Hj

i −H`
i ,

xu ∈ E(Gn) if and only if ω(x)u ∈ E(Gn).

The graphs Hi will be called the blocks, the vertices in Gn−G′ will be called exceptional
vertices (see Figure 3).

We will need the following two results of Simonovits ([10, 11]).

Theorem 14. [10] Assume that a finite family L of forbidden graphs with p(L) = p is given.
If for some L ∈ L and ` := |V (L)|,

L ⊆ P`

⊗
Kp−1(`, `, . . . , `), (2)

then there exist r = r(L) and n0 = n0(r) such that D(n, p, r) contains an L-extremal graph
for every n > n0. Furthermore, if this is the only extremal graph in D(n, p, r), then it is the
unique extremal graph for every sufficiently large n.
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Figure 3: Symmetric subgraphs: blocks here are K−4 , K3 and P2 respectively.

Theorem 15. [11] Assume that a finite family L of forbidden graphs with p(L) = p is given.
If for some L ∈ L and ` := |V (L)|,

L ⊆ `P2

⊗
Kp−1(2`, 2`, . . . , 2`), (3)

then there exist r = r(L) and n0 = n0(r) such that D(n, p, r) contains an L-extremal graph
for every n > n0. Furthermore for any L-extremal graph G ∈ D(n, p, r), we have that

(i) all blocks of G will consist of isolated vertices: the product graph G′ will be a Turán
graph Tn′,p.

(ii) each exceptional vertex in G − G′ is joined either to all the vertices of G′ or to all
the vertices of p− 1 classes of G′ and to no vertex of the remaining class.

The key idea of the proof of Theorem 3 is using Theorem 15 to get a good vertex partition
of an extremal graph of Cp+1

k . Then show that in this partition, there are t exceptional
vertices, where t = bk−1

2
c, and the remaining of the graph is a Turán graph (with one

extra edge if k is even). This together with G being extremal imply G ' H(n, p, t + 1)
(H ′(n, p, t+ 1) if k is even).

Remark 16. Assume first k is odd. Notice that H(n, p, t + 1) is Cp+1
k -free. Indeed the

set of t dominating vertices in H(n, p, t + 1) together with one class of Tn−t,p is H(Ck)-
free. By Lemma 12, M(Cp+1

k ) = H(Ck) when p ≥ 3, and observe that when p = 2,
M(C3

k) ⊆ M(Cp+1
k ). Thus H(n, p, t + 1) is the product of p − 1 empty graphs and one

M(Cp+1
k )-free graph, which is the lower bound construction in (1). Hence H(n, p, t + 1) is

Cp+1
k -free. Similarly when k is even, H ′(n, p, t+ 1) is Cp+1

k -free.

3 Proof of Theorem 3

Proof. We prove Theorem 3 for p ≥ 3. A crucial observation is that (2) is equivalent to
M(Cp+1

k ) containing some linear forest of size at most ` and (3) is equivalent to M(Cp+1
k )
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containing a matching of size at most `. Since Pk+1 ∈ M(Cp+1
k ), (2) is satisfied with

L = Cp+1
k , ` = k+ 1. Thus by Theorem 14, there exists an extremal graph G in D(n, p, r) of

Cp+1
k for some r. It suffices to prove that G ' H(n, p, t+ 1) (H ′(n, p, t+ 1) resp.) when k is

odd (even resp.). Then Theorem 14 implies it would be the unique extremal graph. Since
Mk ∈ M(Cp+1

k ), (3) is also satisfied with L = Cp+1
k , ` = k. We can apply Theorem 15 to

get a vertex partition of G. Let A1, . . . , Ap be the p classes in Tn′,p. Let W be the set of
vertices in G − Tn′,p that are joined to all vertices in Tn′,p and let Bi be the set of vertices
in G− Tn′,p −W that are joined to all the vertices in Tn′,p but Ai (see Figure 4(a)). Define
Ci = Ai ∪Bi, for all i. Note that in G all the cross-edges between Ai and Cj with i 6= j are
present, there might be some missing edges between some Bi and Bj. Let Di ⊆ Ci consist
of vertices with no neighbor in W . Recall that M(Cp+1

k ) = {Ck, all linear forests with k
edges}. We will frequently use the following fact.

Claim 17. For any i ≤ p, G[W ∪ Ci] is M(Cp+1
k )-free.

Proof. Notice that W ∪ Ci is completely joined to
⋃
j 6=i

Aj. If for some M ∈M(Cp+1
k ), M ⊆

G[W ∪ Ci], then M ′⊗Kp−1(n′/p, . . . , n′/p) ⊆ G. This, by the definition of decomposition
family, implies Cp+1

k ⊆ G, a contradiction.

W

A1

A2

Ap

B1

B2

Bp

(a)

W

Ai

P2|W |+1

(b)

Figure 4: (a): a partition of G; (b): If |W | > t, then 2|W |+ 1 ≥ k + 1, Pk+1 ⊆ G[W ∪ Ai].

Claim 18. |W | = t = bk−1
2
c.

Proof. First of all, |W | ≤ t. Indeed, by Claim 17, G[W ∪ Ci] is M(Cp+1
k )-free. Since W

and Ai are completely joined, if |W | > t, then Pk+1 ⊆ G[W ∪ Ai] (see Figure 4(b)). But
Pk+1 ∈M(Cp+1

k ), a contradiction.
On the other hand, suppose |W | ≤ t− 1, then some simple calculation shows

e(G) ≤ e(Tn,p) +
t− 1

p
n+ o(n).
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However since Cp+1
k 6⊆ H(n, p, t+ 1), we have

e(G) ≥ e(H(n, p, t+ 1)) ≥ e(Tn,p) +
t

p
n+ o(n),

a contradiction.

Case 1: k is odd. Then t = k−1
2

. We shall show that for each i ≤ p, G[Ci] has no edge.
Then by Claim 18 and the maximality of G, G ' H(n, p, t + 1). Indeed, any edge xy ∈ Ci

together with a P2|W |+1 = Pk in G[W ∪Ai] avoiding {x, y} form a linear forest with k edges,
which is in M(Ck). This contradicts Claim 17.

Case 2: k is even. Then t = k/2 − 1. It suffices to prove following claim. This together
with Claim 18 and the maximality of G implies G ' H ′(n, p, t+ 1).

Claim 19. When k is even, we have (i) each G[Ci] has at most one edge; (ii) the edge in
Ci has at least one endpoint not in Di; and (iii) there is at most one class G[Ci] having one
such edge.

Proof. (i): For contradiction suppose there are two edges in some G[Ci], say e1 and e2.
Then one can find a copy of P2|W |+1 = Pk−1 in G[W ∪ Ai] avoiding the endpoints of e1, e2,
so we get a linear forest with k edges in G[W ∪ Ci], a contradiction.

(ii): Suppose uivi ∈ E(G[Ci]) and ui, vi ∈ Di. Since k is even hence k ≥ 4, therefore W
is not empty: |W | = t = k/2 − 1 ≥ 1. Denote G0 the graph obtained by deleting the edge
uivi and adding all edges between {ui, vi} and W . There are at least two such cross-edges
since W is nonempty and ui, vi ∈ Di. Thus e(G0) > e(G). It remains to show G0 is also
Cp+1

k -free, which contradicts to the extremality of G. Notice that ui and vi is not joined to
any vertex in Ci in G0. Hence they have the same neighborhood as vertices in Ai. Also since
G and G0 only differ at ui and vi, a copy of Cp+1

k in G0 must involve ui or vi or both. But
then one can obtain a copy of Cp+1

k in G by replacing vertices from {ui, vi} by vertices from
Ai, a contradiction.

(iii): Suppose for some i 6= j, uivi ∈ E(G[Ci]) and ujvj ∈ E(G[Cj]) with ui 6∈ Di and
uj 6∈ Dj. Then we can find a copy of Pk in G[Ci ∪W ] which starts at a vertex in Ai and
whose last edge is uivi. Denote vertices of such a path x1, x2, . . . , xk−2, ui, vi with x1 ∈ Ai.
We can then extend this path to a P p+1

k in G (see Figure 5(a)).
Since p ≥ 3, there is a third class, say A` with ` 6= i, j. The last clique on this copy of

P p+1
k , namely the one containing ui and vi, intersect A` at exactly one vertex, call it u`. Then

this P p+1
k together with the (p + 1)-clique consisting of one vertex from each Aq, q 6= i, j, `,

and u`, x1, uj, vj, form a Cp+1
k (see Figure 5(b)), where x1, . . . , xk−2, ui, u`, x1 is the vertices

of Ck that was blown up. This yields a contradiction.

4 Proof of Theorem 5

In this section, unless otherwise specified, p ≥ 3 and T is a tree with two color classes
(partite sets) A and B such that |A| ≤ |B|. Let a = |A|, b = |B|. Recall that, by Lemma 12,
M(T p+1) = H(T ). In particular, T ∈M(T p+1).
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W

Ci

Cj

A`

ui vi

uj vj

u`

x1

x2

(a)

W

Ci

Cj

A`

ui vi

uj vj

u`

x1

x2

(b)

Figure 5: When k = 4: (a) Extend a Pk to a P p+1
k ; (b) Obtain a Cp+1

k from P p+1
k .

Lemma 20. If T has a leaf in A and α(T ) = b, then for any m ≥ 1, Ka−1
⊗

Km is
H(T )-free, hence M(T p+1)-free.

Proof. For simplicity, let G = Ka−1
⊗

Km with V (G) = X ∪ Y , where X is the set of
vertices in the (a − 1)-clique and Y is the remaining independent set. We may assume
|Y | = m ≥ b + 1, otherwise |V (G)| < |V (F )| for any F ∈ H(T ). First notice that T 6⊆ G.
Indeed, an embedding of T in G has at least |V (T )| − (a − 1) = b + 1 vertices in Y , which
contradicts to α(T ) = b. For contradiction, suppose that some forest F ∈ H(T ) is in G.
Recall that F is obtained from splitting vertices in some U ⊆ V (T ) to sets of leaves in F .
For any v in U , denote by L(v) ⊆ V (G) the set of leaves in F corresponding to v. We shall
get a copy of T in G from a copy of F by applying the following operation to every v ∈ U
to undo the vertex split: pick any v ∈ U , look at the corresponding L(v) in F . First discard
edges in F adjacent to L(v). Then if L(v) ⊆ Y , add in F edges from NG(L(v)) to a vertex
in Y ; otherwise add in F edges from N(L(v)) to a vertex in L(v) ∩X (see Figure 6).

⇒
X

Y

X

Y

(a)

⇒
X

Y

X

Y

(b)

Figure 6: Circled vertices are in L(v). (a): L(v) ⊆ Y ; (b): L(v) ∩X 6= ∅.

From Lemma 20, we immediately get the following.

Proposition 21. H(n, p, a) is T p+1-free.
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Proof. Since H(n, p, a) is the product of p−1 independent sets and oneM(T p+1)-free graph
(obtained from combining the set of a−1 dominating vertices with the remaining independent
set). This is the lower bound construction in (1). Hence H(n, p, a) is T p+1-free.

Proof of Theorem 5 (i). Since a matching of size e(T ) is in M(T p+1), we can proceed
as in the proof of Theorem 3 and define W,Ai, Bi, Ci in the same way. If |W | ≥ a, then
T ⊆ G[W ∪Ci] for any i. However T ∈M(T p+1), this implies T p+1 ⊆ G, a contradiction. If
|W | ≤ a− 2, then

e(G) = e(Tn,p) +
a− 2

p
n+ o(n) < e(Tn,p) +

a− 1

p
n+ o(n) = e(H(n, p, a)),

a contradiction. Thus |W | = a − 1. Also we may assume that W is non-empty. Indeed, if
W = ∅, then a = 1. Since T has a leaf in A, it implies T is P2, then T p+1 is Kp+1 and its
unique extremal graph is H(n, p, 1) = Tn,p.

It remains to show that e(G[Ci]) = 0 for all 1 ≤ i ≤ p. Let u be a leaf of T in A, and v
be its neighbor in B. Let T ′ = T −u and let F and F ′ be the forests obtained from splitting
v in T and T ′ respectively. Notice that F = F ′ ∪K2. Indeed, v has one more neighbor (leaf
u) in T , which becomes a K2 after splitting. Suppose there is an edge xy in G[Ci] for some
i. Since u ∈ A and |W | = a − 1, T ′ has an embedding in G[W ∪ Ci − {x, y}] with v in Ci.
Splitting v in this copy of T ′ (not using x or y), we get a copy of F ′ in W ∪ Ci − {x, y}.
Note that for any i ≤ p, G[W ∪ Ci] is M(T p+1)-free, since W ∪ Ci is completely joined to
Aj, ∀j 6= i. Thus edge xy together with this F ′ yields a copy of F in G[W ∪ Ci]. However
F ∈ H(T ) =M(T p+1), a contradiction.
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Appendix

Proof of Theorem 3 for p = 2. Given C3
k , notice that Pk+1 ∈ M(C3

k) (See Figure 7(a)).
Thus by Theorem 14, there is an extremal graph G ∈ D(n, 2, r) for C3

k and removing a few
exceptional vertices from G results in G′ = A1

⊗
A2, where A1 and A2 are disjoint unions

of symmetric subgraphs (blocks) H1 and H2 respectively.

(a) (b)

Figure 7: (a): Pk+1 ∈M(C3
k) when k = 5; (b): C3

k ⊆ (Pk ∪ Ik)
⊗

(P2 ∪ Ik) when k = 7.
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Claim 22. For any k ≥ 4, each block Hi, i = 1, 2, is an isolated vertex. For C3
3 , Hi can

be an isolated vertex or P2, and H∗(n) is the unique extremal graph when 4|n, otherwise
H(n, 2, 2) is also an extremal graph.

We first show how Claim 22 implies Theorem 3 for p = 2. When k ≥ 4, since H1 and
H2 are symmetric with respect to G, Claim 22 implies the exceptional vertices are adjacent
either to all the vertices in G′ or to all the vertices in one class of G′ and none of the other
class. Similarly let W be the set of vertices adjacent to all vertices of G′, and B1, B2 be the
sets of vertices joining only vertices in A2 and A1 respectively. Let Ci = Ai∪Bi, for i = 1, 2.
Claim 18 is still true, namely |W | = t.

When k is odd, t = k−1
2

. It suffices to show e(Ci) = 0 for i = 1, 2. Indeed, the 2-
coloring in Figure 7(b) shows that C3

k ⊆ (Pk ∪ Ik)
⊗

(P2∪ Ik). Suppose Ci has an edge, since
P2|W |+1 = Pk ⊆ W ∪ A3−i, we have C3

k ⊆ (W ∪ A3−i)
⊗

Ci ⊆ G, a contradiction.
When k is even, t = k/2 − 1. It suffices to show only one class Ci has at most one

edge. First notice that each Ci is P3-free, since (P3 ∪ Pk−1) ∈ M(C3
k) (see Figure 8(a)) and

P2|W |+1 = Pk−1 ⊆ W ∪ Ai. Suppose some Ci has two isolated edges, say x1y1 and x2y2.
Then each edge xiyi has at least one endpoint adjacent to some vertices in W , w.l.o.g. let
them be x1, x2, since otherwise deleting xiyi and adding all edges between W and {xi, yi}
(at least two such edges) results in a C3

k -free graph with more edges than G, a contradiction.
If x1, x2 are adjacent to the same vertex u ∈ W , then y1, x1, u, x2, y2 form a P5, and Pk−3 ∈

(a) (b)

Figure 8: (a): (P3 ∪ Pk−1) ∈M(C3
k) when k = 4; (b): (P5 ∪ Pk−3) ∈M(C3

k) when k = 6.

(W − u) ∪ (Ai − {x1, x2, y1, y2}). Thus (P5 ∪ Pk−3) ⊆ (W ∪ Ci), a contradiction since
(P5 ∪ Pk−3) ∈ M(C3

k) (see Figure 8(b)). If x1, x2 are adjacent to different vertices in W ,
then a copy of Pk+1 can be obtained in W ∪ Ci by prolonging a Pk−1 using edges x1y1 and
x2y2. Then we get a contradiction since Pk+1 ∈M(C3

k). Thus each Ci has at most one edge.
Now suppose both Ci, i = 1, 2, contain an edge uivi with ui adjacent to some vertices in W .
Then similarly we can get a copy of Pk in G[C1 ∪W ], starting at a vertex in A1 and ending
with edge u1v1. Let the vertices on this path be x1, x2, . . . , xk−2, u1, v1 with x1 ∈ A1. We
can expand the path x1, . . . , xk−2, u1 to a copy of P 3

k−1. Since x1 ∈ A1, x1 is adjacent to all
vertices in C2. In particular, x1 is adjacent to both u2 and v2. Thus u2, v2 together with

13



that copy of P 3
k−1 form a P 3

k . Note that if there are at least three edges between {u1, v1} and
{u2, v2}, then it would complete P 3

k to a copy of C3
k . Thus there are at most two edges, then

delete u2v2 and add the missing edges between {u1, v1} and {u2, v2}. The resulting graph is
still C3

k -free but with more edges than G, a contradiction.

Proof of Claim 22. We distinguish two cases depending on the parity of k.
Case 1: k is odd. First we show that Hi, i = 1, 2, is P3-free. Suppose to the contrary
that P3 ⊆ H1, then H2 has to be an isolated vertex. Since otherwise k−1

2
P3 ∪ Ik ⊆ H1

and P2 ∪ Ik ⊆ H2. This yields a contradiction since C3
k ⊆ (k−1

2
P3 ∪ Ik)

⊗
(P2 ∪ Ik) (see

Figure 9(a)). Furthermore, since (k−3
2
P3 ∪ P4) ∈M(C3

k) (see Figure 9(b)), W is empty and
H1 is P4-free, otherwise (k−3

2
P3 ∪ P4) ⊆ W ∪ C1, a contradiction. If k = 3, then t = 1,

(a) (b)

Figure 9: (a): C3
k ⊆ (k−1

2
P3 ∪ Ik)

⊗
(P2 ∪ Ik) when k = 5; (b): (k−3

2
P3 ∪ P4) ∈M(C3

k) when
k = 5.

K3 ∈ M(C3
3), and H1 is {K3, P4}-free, which implies H1 is a star of constant order, say r.

Then

e(G) ∼ n2

4
+
r − 1

r

n

2
<
n2

4
+
nt

p
=
n2

4
+
n

2
∼ e(H(n, 2, 2)),

a contradiction. If k ≥ 5, then t ≥ 2. By Erdos-Gallai, since H1 is P4-free, the size of G is
maximized when H1 = K3, hence

e(G) ∼ n2

4
+
n

2
<
n2

4
+ n ≤ n2

4
+
nt

p
∼ e(H(n, 2, t+ 1)),

a contradiction. Thus we may assume Hi, i = 1, 2, is P3-free.
If k = 3 and one of Hi is not an isolated vertex, then W is empty, since otherwise

K3 ⊆ W ∪ Hi. This implies for i = 1, 2, either Hi = P1 and |W | = 1, or Hi = P2 and
|W | = 0, namely G ' H(n, 2, 2) or G ' H∗(n). Some calculation shows that when 4|n,
H∗(n) has one more edge, otherwise they are of the same size.

If k ≥ 5, then t ≥ 2. If H1 = H2 = P2, then since C3
k ⊆ (P3 ∪ k−3

2
P2 ∪ Ik)

⊗
(k−1

2
P2)

(see Figure 10(a)), W is empty, otherwise P3 ∪ k−3
2
P2 ∪ Ik ⊆ W ∪ C1. Thus G ⊆ H∗(n),

however this implies e(G) ≤ e(H∗(n)) ∼ n2/4 + n/2 < H(n, 2, t+ 1), a contradiction. Thus
H1 and H2 can not both be P2. Suppose H1 = P2 and H2 = P1. Define W to be the set
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of exceptional vertices that have neighbors in both A1 and A2. Then |W | < t = k−1
2

, since
otherwise Pk+1 ⊆ W ∪ A1 and Pk+1 ∈M(C3

k). Then

e(G) =
n2

4
+
t− 1

2
n+

n

4
+O(1) <

n2

4
+
t

2
n+O(1) = e(H(n, 2, t+ 1)),

a contradiction. Thus H1 = H2 = P1.

(a) (b) (c)

Figure 10: (a): C3
k ⊆ (P3 ∪ k−3

2
P2 ∪ Ik)

⊗
(k−1

2
P2) when k = 5; (b): k

2
P3 ∈ M(C3

k) when
k = 6; (c): C3

k ⊆ k
2
P2

⊗
k
2
P2 when k = 4.

When k is even, since k
2
P3 ∈ M(C3

k) (see Figure 10(b)), Hi is P3-free, i = 1, 2. Also
C3

k ⊆ k
2
P2

⊗
k
2
P2 (see Figure 10(c)), hence at most one Hi has an edge. W.l.o.g. suppose

H1 = P2 and H2 = P1. Define W as before and similarly |W | < t = k
2
− 1, which implies

e(G) < e(H(n, 2, t+ 1)), a contradiction. Thus H1 = H2 = P1.

For blow-ups of paths, notice that no matter what parity k is, P p+1
k+1 ⊆ dk2eP2

⊗dk
2
eP2

and P p+1
k+1 ⊆ dk2eP3

⊗
Ik. With these two observations, the same argument works.

Proof of Theorem 5 (ii) The proof is quite similar to (i), except this time we make use of a
forest in the decomposition family obtained by splitting a vertex of degree 2 in A. We include
here only a sketch of the proof: proceed as in the proof of Theorem 5 (i), define W,Ai, Bi, Ci

in the same way. Note that still |W | = a− 1. Since otherwise either the extremal graph G
contains a forbidden graph (because some graph in the decomposition family shows up in
G[W ∪ Ci] for some i) or it has fewer edges than H ′(n, p, a). It suffices to show that:

(a) every G[Ci] can have at most one edge, and
(b) at most one G[Ci] can have one such edge.
Let F = T1∪T2 ∈M(T p+1) be the forest obtained by splitting some z ∈ A with d(z) = 2.

Let z1 and z2 be the two leaves corresponding to z after splitting it and define for i = 1, 2,
T ′i = Ti − zi.

We may assume a = 2, namely W is non-empty. Since otherwise this tree is a P3, then
for (a) two edges in some G[Ci] form a linear forest of size two which is in M(P p+1

3 ), a
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contradiction; for (b), if G[Ci] and G[Cj], i 6= j, both contains an edge, then we are also
done since P p+1

3 ⊆ (P2 ∪ Iv)
⊗

(P2 ∪ Iv)
⊗

Tn′′,p−1 for sufficiently large v and n′′.
For (a), suppose some G[Ci] contains two edges e1, e2. Similar as Claim 19 (ii), e1, e2

each has at least one endpoint adjacent to W . If e1, e2 are disjoint, then notice that one can
embed T ′1 ∪ T ′2 in G[Ci ∪W ] and get a copy of F by extending T ′1 and T ′2 using e1 and e2
respectively. This yields a contradiction since G[Ci ∪W ] is MT p+1-free. If e1, e2 share an
endpoint, namely there is a P3 = {w, x, y} in G[Ci]. It is not hard to see that there is an
embedding for T in G[Ci ∪W ], in which A−{z} is embedded in W and z is embedded to x.

For (b), suppose for i 6= j, both G[Ci] and G[Cj] contain an edge ei and ej respectively.
Then, using ei and ej, one can partition W = W1 ∪W2, s.t. T1 ⊆ G[Ci ∪W1] and T2 ⊆
G[Cj ∪W2], which yields a contradiction since T p+1 ⊆ (T1 ∪ Iv)

⊗
(T2 ∪ Iv)

⊗
Tn′′,p−1.
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