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Abstract

Combining two classical notions in extremal combinatorics, the study of Ramsey-Turán
theory seeks to determine, for integers m ≤ n and p ≤ q, the number RTp(n,Kq,m), which
is the maximum size of an n-vertex Kq-free graph in which every set of at least m vertices
contains a Kp.

Two major open problems in this area from the 80s ask: (1) whether the asymptotic
extremal structure for the general case exhibits certain periodic behaviour, resembling that
of the special case when p = 2; (2) constructing analogues of Bollobás-Erdős graphs with
densities other than 1/2.

We refute the first conjecture by witnessing asymptotic extremal structures that are
drastically different from the p = 2 case, and address the second problem by construct-
ing Bollobás-Erdős-type graphs using high dimensional complex spheres with all rational
densities. Some matching upper bounds are also provided.

1 Introduction

Ramsey graphs for cliques are believed to be random-like; while on the other hand, the Turán
graphs from extremal graph theory are highly structured. Initiated in 1969 by Sós, and later
generalised by Erdős, Hajnal, Sós and Szemerédi [14], Ramsey-Turán theory combines flavours of
graph Ramsey and Turán problems. The Ramsey-Turán number RTp(n,Kq,m) is the maximum
number of edges in an n-vertex Kq-free graph G with αp(G) ≤ m, where αp(G) = max{|U | :
U ⊆ V (G) and G[U ] is Kp-free} is the p-independence number of G. Notice that when p = 2
and m = n, we recover the Turán number of Kq; and as we consider large graphs, that is n→∞,
by Ramsey’s theorem, m should be taken as a function of n.

Aside from its close connection to Ramsey theory, e.g. the seminal result of Ajtai, Komlós
and Szemerédi [1] on the independence number of triangle-free graphs with given size, results in
Ramsey-Turán theory have been applied, for instance, to construct dense infinite Sidon sets [2]
in additive number theory, and to refute Heilbronn’s conjecture [21] in discrete geometry. For
more details, we refer the reader to the comprehensive survey of Simonovits and Sós [33].

In this paper, we consider the most classical setting RTp(n,Kq, o(n)), when the independence
number is sublinear.
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1.1 Background

The classical setting of sublinear independence number is defined as follows. Let %p(q) be the
Ramsey-Turán density :

%p(q) := lim
ε→0

lim
n→∞

RTp(n,Kq, εn)(
n
2

) .

The existence of the limit was shown by Erdős, Hajnal, Simonovits, Sós and Szemerédi [13].
Then RTp(n,Kq, o(n)) := %p(q)

(
n
2

)
+ o(n2).

For p = 2, the problem is now well-understood. First, in 1970, Erdős and Sós [15] proved
that %2(2t + 1) = t−1

t , for all t ≥ 1. The case of even cliques turned out to be much harder.
Applying a proto-regularity lemma, Szemerédi [35] showed in 1973 that %2(4) ≤ 1

4 . It was
suspected by many that perhaps dense K4-free graphs with sublinear independence number do
not exist, i.e. %2(4) = 0. Then, surprisingly, a matching lower bound was given by Bollobás
and Erdős in 1976; their ingenious construction – now called the Bollobás-Erdős graph – was
based on high dimensional spheres. Eventually in 1983, Erdős, Hajnal, Sós and Szemerédi [14]
completed the p = 2 case, proving that %2(2t) = 3t−5

3t−2 for all t ≥ 2. Furthermore, they showed
that %2(q) exhibits the following periodical behaviour:

(?) Let G be an asymptotic extremal graph for %2(2t+ r+ 2) with r ∈ {0, 1}. Then the vertex
set V (G) can be partitioned into V0 ∪ V1 ∪ . . . ∪ Vt, such that

– each G[Vi] has o(1) edge-density;

– G[V0, V1] has density r+1
2 − o(1);

– every other G[Vi, Vj ] has density 1− o(1).

In other words, the asymptotic extremal structure depends on the residue of q modulo p and
evolves as follows: the density of the pair G[V0, V1] increases as r, the residue of q mod p = 2,
increases; and whenever q increases by p = 2, a new part is added and joined completely to
previous parts.

The general problem %p(q) for p > 2 has been notoriously difficult and remained largely
open. Indeed, apart from the trivial case %p(p + 1) = 0, the next simplest case %3(5) remained
open before this work. Quoting Erdős, Hajnal, Simonovits, Sós and Szemerédi [13], “One of the
most intriguing problems is to determine the values and some asymptotically extremal graphs
for RT3(n,K5, o(n)) and RT3(n,K6, o(n)). Unfortunately, this task seems to be too difficult.”
Despite this, in the same paper, they proposed the following bold conjecture, predicting that
similarly to %2(q) in (?), the general problem %p(q) also has similar periodic asymptotic extremal
structures. In particular, the value of %p(q) depends on the residue of q mod p (see Figure 1).

Conjecture A ([13], Conjecture 2.9). The asymptotic extremal graphs G for %p(q) have the
following structure. Let q = pt + r + 2 where t ∈ N and 0 ≤ r < p. Then there is a partition
V (G) = V0 ∪ V1 ∪ . . . ∪ Vt such that

• e(G[Vi]) = o(n2) for all 0 ≤ i ≤ t;

• dG(V0, V1) = r+1
p − o(1), and degrees in G[V0, V1] differ by o(n);

• dG(Vi, Vj) = 1− o(1) for all pairs {i, j} 6= {0, 1}.

In particular,

%p(q) = %∗p(q) :=
(t− 1)(2p− r − 1) + r + 1

t(2p− r − 1) + r + 1
. (1)

In the final assertion, %∗p(q) is obtained by optimising the sizes of the vertex classes in the
graph predicted by the conjecture. Towards this major conjecture, in [13], an upper bound of
%p(q) ≤ q−1−p

q−1 was proven, which is optimal when q ≡ 1 mod p, verifying (1) for this special case;

2



V0

V1

1
2

1
2

1
3

q = 5

V0

V1

1
2

1
2

2
3

q = 6

V0

V1

1
2

1
2

1

q = 7

V0

V1

V2

3
12

3
12

6
12

1
3 1

q = 8

V0

V1

V2

3
11

3
11

5
11

2
3 1

q = 9

V0

V1

V2

3
10

3
10

4
101 1

q = 10

V0

V1

V2

V3

3
18

3
18

6
18

6
18

1
3 1 1

q = 11

V0

V1

V2

V3

3
16

3
16

5
16

5
16

2
3 1 1

q = 12

V0

V1

V2

V3

3
14

3
14

4
14

4
14

1 1 1

q = 13

r

=

0 1 2

t =

1

2

3

Figure 1: An illustration for p = 3.

and for sporadic cases when q = p+`, ` ≤ min{5, p}, it was shown that %p(p+`) ≤ %∗p(p+`) = `−1
2p .

Conjecture A remains wide open for q 6≡ 1 mod p.
As in many other extremal problems, when determining the Ramsey-Turán density %p(q),

obtaining explicit constructions for the lower bound is the most challenging aspect. In this
direction, even the simplest subproblem of determining whether %3(K5) > 0 was only confirmed
in 2011 by a breakthrough of Balogh and Lenz [5] using an elegant construction. The best
general lower bound [6] when ` ≤ p is %p(p+ `) ≥ 1

2k+1 , where d p
2k
e < `, which provides the state

of the art for %3(5):
1

8
≤ %3(5) ≤ 1

6
.

It was stated in the work of Erdős, Hajnal, Sós and Szemerédi [14] that, for %3(K5), “an
analogue of the Bollobás-Erdős graph would be needed which we think will be extremely hard to
find.” This motivates another main open problem in this area:

Problem B ([5, 14]). Construct an analogue of the Bollobás-Erdős graph with density other
than 1

2 .

The only progress towards Problem B was the aforementioned results of Balogh and Lenz [5,
6], taking a certain product construction utilising Bollobas-Erdős graphs to get variations with
densities equal to powers of 1/2. Several other problems were also raised whose solution would
make progress on Conjecture A; we refer the reader to [6, 13].

In this paper, we address all of these problems, revealing some unexpected phenomena of
Ramsey-Turán graphs.

1.2 Complex Bollobás-Erdős graphs with rational densities

Our first main result answers Problem B. Inspired by the Bollobás-Erdős graph, we use iso-
perimetry and concentration of measure on the high dimensional complex sphere to achieve all
rational densities.
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Theorem 1.1 (Complex Bollobás-Erdős graph). Let p, ` be integers with 1 ≤ ` < p. Then for
all sufficiently large n, there exists a graph G with vertex partition W ∪Z, where |W | = |Z| = n,
such that αp(G) = o(n), e(G[W ]), e(G[Z]) = o(n2), and eG(W,Z) = `/p − o(1). If additionally
` ≤ p/2, then G is Kp+`+1-free, and consequently,

%p(p+ `+ 1) ≥ `

2p
= %∗p(p+ `+ 1).

An immediate corollary of this result is that there is a construction as in Conjecture A for
just over half of all cases: we let G[V0 ∪ V1] be the graph in Theorem 1.1.

Corollary 1.2. Let q = pt+ `+ 1. Then for all 0 ≤ ` ≤ p/2,

%p(q) ≥ %∗p(q).

This in particular determines, after about 40 years, that %3(5) = 1
6 .

1.3 Non-periodicity of Ramsey-Turán graphs

Our second main result, much to our own surprise, disproves Conjecture A for infinitely many
cases, all having densities strictly larger than the predicted %∗p(q).

For instance, Conjecture A claims %m(m + 11) = %∗m(m + 11) = 5
m for every m ≥ 10, with

equality being achieved by an almost bipartite graph having density 10
m between the vertex

classes. Our results show, however, that at least if m = 2` is a power of 2 with exponent ` ≥ 9,
then %m(m+11) = 6

m , where almost 4-partite graphs with density 8
m between their vertex classes

are extremal. The lower bound can be seen by plugging p = 3 and q = 4 into the statement
that follows.

Theorem 1.3. Let `, p, q ∈ N with q even, ` ≥ p(q − 1), p? := 2` and q? := 2` + 2p + q − 1.
Then for all sufficiently large n, there exists an n-vertex Kq?-free graph G with αp?(G) = o(n)
and an equipartition V (G) = V1 ∪ . . . ∪ Vq such that

• e(G[Vi]) = o(n2) for each i ∈ [q];

• dG(Vi, Vj) = 1
2`−p − o(1) for all ij ∈

(
[q]
2

)
.

In particular,

%p?(q?) ≥ 1

2`−p

(
1− 1

q

)
, (2)

where equality holds when q(q − 2) ≤ 2p ≤ q2; and whenever q > 2,

%p?(q?) > %∗p?(q?).

It is worth noting that Theorem 1.3 in fact refutes Conjecture A in a strong sense. It reveals
that the asymptotic extremal structure for %p(q) is much more intricate. Indeed, the graph
predicted in Conjecture A remains almost bipartite when q ≤ 2p + 1, in this range the cross
density increases by 1/p when q increases by one; and after this point, for each increment of q
by p, an additional part is added and joined completely to previous parts. Theorem 1.3 shows
that already when q ≤ 2p + 1, the asymptotic extremal structure could be almost t-partite for
infinitely many choices of t.
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1.4 Some matching upper bounds

Our remaining results concern upper bounds. Combined with our constructions in Theorem 1.1,
they show that %∗p(pt + 2) in Conjecture A is the correct value for the Ramsey-Turán densities
%p(pt+ 2) for p = 3, 4. Our proof translates proving these upper bounds to an extremal problem
for certain weighted graphs, which is interesting in its own right. We believe our method for
this weighted graph problem may be useful in systematically proving further upper bounds. So
far, many of the existing upper bound proofs have followed a similar approach but in a rather
ad hoc way.

Theorem 1.4. Let t ∈ N. Then

%3(3t+ 2) =
5t− 4

5t+ 1
and %4(4t+ 2) =

7t− 6

7t+ 1
.

Our last upper bound shows that the bound (2) in Theorem 1.3 is optimal for infinitely many
cases.

Theorem 1.5. Let p, s, t ∈ N with t(t− 2) ≤ s ≤ t2 and s+ t− 1 ≤ p. Then

%p(p+ s+ t− 1) ≤ s

p

(
1− 1

t

)
.

1.5 Related work

Aside from the determination of %p(q), many other directions and extensions in Ramsey-Turán
theory have been studied. The 2001 survey of Simonovits and Sós [33] is an excellent resource
for background on the area; here we confine ourselves to a brief discussion focusing on more
recent developments.

This paper concerns the Ramsey-Turán number RTp(n,Kq,m) for m = εn and ε → 0. For
the case p = 2 in particular, there has been a great deal of interest in other functions m(n) of
n. Let us write

exq(n,m) := RT2(n,Kq,m) and exq(ε) := lim
n→∞

exq(n, εn)(
n
2

) ,

and recall that the value of %2(q) = limε→0 exq(ε) is known [14, 15]. Fox, Loh and Zhao [18]
showed that ex4(ε) = %2(4) + Θ(ε). Lüders and Reiher [25] extended this to obtain a formula
for all q: they showed that exq(ε) = %2(q) + ε for odd q and exq(ε) = %2(q) + ε− ε2 for even q,
whenever ε(q) is sufficiently small. For larger ε, the situation is complicated even for the first
non-trivial case q = 3. Mantel’s theorem and an early result of Andrásfai [3] determine ex3(ε)
for ε ≥ 2

5 ; and the regime ε ∈ (0, 13 ] follows from work of Brandt [11]. Very recently,  Luczak,
Polcyn and Reiher determined ex3(ε) for ε ∈ [38 ,

2
5 ] [23] and certain intervals in the remaining

range (13 ,
3
8) [24] where they have a conjecture.

Determining exq(n,m) for functions m(n) growing slower than linear has also attracted a
lot of attention, in particular determining the phase transitions where decreasing m(n) causes
a large decrease in exq(n,m) (for a precise definition see [4]). For example, ex5(n, n) = b34

(
n
2

)
c

by Turán’s theorem, while ex5(n, o(n)) = 1
2

(
n
2

)
+ o(n2), so we may say there is ‘a phase trans-

ition at n’. Answering a question of Erdős and Sós, Balogh, Hu and Simonovits [4] showed
that ex5(n, o(

√
n log n)) = o(n2), while ex5(n, c

√
n log n) ≥ 1

2

(
n
2

)
+ o(n2) for infinitely many

n and any c > 1, so there is another phase transition at
√
n log n. Sudakov [34] showed that

ex4(n, e
−ω(n)

√
lognn) = o(n2), while Fox, Loh and Zhao [18] showed that ex4(n, e

−o(
√

logn/ log logn)n) =
1
4

(
n
2

)
+ o(n2). So for q = 4, there is a phase transition somewhere between these functions. See

also [9, 20] for other results of this type.
Ramsey-Turán type problems have also been studied for graphs other than cliques [8, 14,

28, 34], in hypergraphs [5, 16, 19, 26, 27, 32], in the multicolour setting [12, 20, 22, 30] and in a
‘counting’ setting [7]. A particular tantalising open problem concerns the octahedron graph.
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Problem C ([12, 14, 33, 34]). Is RT2(n,K2,2,2, o(n)) = o(n2)?

Organisation. The constructions for Theorems 1.1 and 1.3 will be given in Sections 3 and 4
respectively. The proofs for Theorems 1.4 and 1.5 are in Section 5. In Section 6, we give some
concluding remarks.

Notation. We write [a, b] := {a, . . . , b} ⊆ Z, for all a, b ∈ Z with a ≤ b. Whenever a = 1, then
we use [b] instead of [a, b].

We will use bold face lower case symbols, e.g. w,x,y, z, for vectors in Ck, equipped with
the standard inner product 〈w, z〉 =

∑
i∈[k]wiz̄i. We write |z| =

√
〈z, z〉 for its `2-norm.

2 Properties of high dimensional spheres

In this section, we list some useful properties of high dimensional spheres, which will be used
for our constructions throughout Sections 3 and 4.

For k ∈ N, let Sk−1(R) ⊆ Rk denote the standard (k − 1)-dimensional real unit sphere, and
write

Sk−1(C) =

{
(z1, . . . , zk) ∈ Ck :

k∑
i=1

|zi|2 = 1

}
for the (k − 1)-dimensional complex unit sphere. As the map

ϕ : (x1 + iy1, . . . , xk + iyk) 7−→ (x1, y1, x2, y2 . . . , xk, yk) (3)

from Sk−1(C) to S2k−1(R) is an invertible isometry, various properties of high dimensional real
spheres extend naturally to the complex ones.

Throughout the paper, when given a high dimensional unit sphere, we will write λ for the
Lebesgue measure, normalised so that the unit sphere has measure 1. For two subsets of a unit
sphere A and B, denote by dmax(A,B) := sup{|a − b| : a ∈ A, b ∈ B} the Euclidean distance
between them. In the case A = B, write diam(A) := dmax(A,A) for the diameter of A.

A spherical cap is the smaller intersection of the unit sphere with a half-space. Given a
spherical cap C bounded by some hyperplane H, we call the point in C with maximum Euclidean
distance to H the centre of the spherical cap. The distance from the centre to H is the height
of the spherical cap. Note that diam(C) is just the diameter of the intersection of C and H.

We will use the following lower and upper bounds on the measure of spherical caps. They
follow from the known results of the real sphere and the use of the isometry ϕ in (3).

Lemma 2.1 ([5]). For all δ > 0 and integers k ≥ 3 , let B ⊆ Sk−1(C) be the spherical cap
consisting of all points with distance at most

√
2− δ/

√
2k from a fixed point in Sk−1(C). Then

λ(B) ≥ 1/2−
√

2δ.

Lemma 2.2 ([36]). Let α ∈ [0, 1) and C ⊆ Sk−1(C) be a spherical cap with height 1− α. Then
λ(C) ≤ e−kα2

.

Recall that a spherical cap with height 1 − α has diameter 2
√

1− α2. It is a simple con-
sequence (see [5]) of the isoperimetric inequality for spheres [31], that for any sets A,B,C ⊆
Sk−1(C) of equal measure, if C is a spherical cap, then dmax(A,B) ≥ diam(C). Altogether, we
have the following 2-set version of Lemma 2.2.

Lemma 2.3. Let ν ∈ (0, 1) and A,B ⊆ Sk−1(C) with λ(A), λ(B) > e−kν/2, then dmax(A,B) ≥
2− ν.

The following folklore result partitions the sphere into small pieces of equal measure (see
e.g. [17]).
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Lemma 2.4. There exists C > 0 such that the following holds. Let 0 < δ < 1 and n ≥ (C/δ)k.
Then Sk−1(R) can be partitioned into n pieces of equal measure, each of diameter at most δ.

We also need the following geometric result, which lies at the heart of the original construction
of the Bollobás-Erdős graph [10].

Theorem 2.5 (Bollobás-Erdős Rhombus lemma). For all k ∈ N and all 0 < µ < 1/4, there
do not exist four points p1, p2, q1, q2 ∈ Sk(R) such that d(p1, p2) ≥ 2− µ, d(q1, q2) ≥ 2− µ, and
d(pi, qj) ≤

√
2− µ for all i, j ∈ [2].

3 Complex Bollobás-Erdős graph

Fix integers 1 ≤ ` < p. For Theorem 1.1, we will construct a graph G with vertex partition
W ∪ Z where |W | = |Z| = n, satisfying the following:

A1 αp(G) = o(n);

A2 e(G[W ]), e(G[Z]) = o(n2);

A3 e(G) =
(
`
p − o(1)

)
n2;

A4 if ` ≤ p/2, then G is Kp+`+1-free.

Corollary 1.2 then follows readily by joining completely a suitable number of graphs of appro-
priate sizes with sublinear p-independence number to the above graph G.

3.1 Construction

Choose constants

0 < 1/k � ε� 1/K � 1/p, µ := ε/
√

2k, and n ≥
(

4C2.4

µ

)2k

, (4)

where C2.4 is the constant obtained from Lemma 2.4. Using the isometry ϕ in (3) and Lemma 2.4,
we can partition Sk−1(C) into n domains D1, . . . , Dn with equal measure and diameter at most
µ
4 . Next, for all i ∈ [n], choose two arbitrary points wi, zi ∈ Di, and let W := {w1, . . . ,wn} and
Z := {z1, . . . ,zn}. Set ρ := cos(2π/p) + i sin(2π/p) to be the primitive p-th root of unity. Note
that w 7→ ρw rotates Sk−1(C). The edge set of G is defined as follows (see also Figure 2).

B1 Two vertices w,w′ ∈W form an edge if and only if there exists h ∈ [p− 1] such that∣∣w − ρhw′∣∣ ≤ √µ.
Define E(G[Z]) similarly. For such a pair, we say w is an h-rotation of w′.

B2 A cross pair (w, z) ∈W × Z forms an edge if and only if the following hold.

(i) For all h ∈ Zp, ∣∣Im(ρh〈wi, zj〉)
∣∣ ≥ Kµ.

(ii) There exists α ∈ [0, 2π`p ] such that

e−iα〈wi, zj〉 ∈ [0, 1].
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Figure 2: An illustration for p = 3. The pink stripes are the ones excluded in B2(i); while the
dark regions correspond to B2(ii).

3.2 Structure of the inner graphs

In this subsection, using isoperimetry and concentration of measure, we shall derive that the in-
ner graphs G[W ], G[Z] are Kp+1-free graphs (Lemma 3.1) with sublinear p-independence number
(Lemma 3.2) and zero edge density (Lemma 3.4), thus verifying A1 and A2.

Lemma 3.1. Let wi,wj ,wt ∈W span a triangle in G. If wi,wj are an hi- and hj-rotation of
wt respectively, then wi is an (hi − hj)-rotation of wj and hi 6= hj.

Consequently, G[W ] is Kp+1-free. The same holds for Z.

Proof. For any m ∈ [p− 1], we have

|1− ρm|2 = 2− 2 cos (2πm/p) ≥ 2− 2 cos (2π/p) = 4 sin2 (π/p) ≥ (4/p)2 , (5)

as sinx ≥ 2x
π for all x ∈ [0, π2 ] by concavity. By B1, there is h ∈ [p − 1] such that wi is an

h-rotation of wj . Recall that vertices of G, viewed as points in Sk−1(C), all have modulus 1. So

|1− ρhi−hj−h| = |ρhwj − ρhi−hjwj | ≤ |wi − ρhwj |+ |wi − ρhiwt|+ |ρhiwt − ρhi−hjwj |
= |wi − ρhwj |+ |wi − ρhiwt|+ |wj − ρhjwt| ≤ 3

√
µ,

which together with (4) and (5) implies h = hi − hj . Since h 6= 0, we have that hi 6= hj .
Suppose that w0,w1, . . . ,wp span a clique in G[W ]. Then by B1 there are h1, . . . , hp ∈ [p−1]

such that wi is an hi-rotation of w0 for all i ∈ [p]. By the Pigeonhole Principle, there are distinct
i, j ∈ [p] such that hi = hj , contradicting the first part.

Lemma 3.2. Every set X ⊆W with |X| ≥ pe−µk/40 · |W | contains a copy of Kp. In particular,

αp(G) ≤ 2pe−µk/40n.

For its proof, we need the following consequence of concentration of measure.

Lemma 3.3. Let p ≥ 2 be an integer, ν ≤ min{16
p2
, 1} and A ⊆ Sk−1(C) with λ(A) > pe−νk/32.

Then there are distinct points a0, . . . ,ap−1 ∈ A such that, for all h,m ∈ Zp,∣∣ρhah − ρmam∣∣ < √ν.
8



Proof. For all h ∈ [p− 1], define

Ah :=
{
a ∈ A : ∀a′ ∈ A,

∣∣a + ρha′
∣∣ < 2− ν/16

}
.

Note that λ(Ah) ≤ e−νk/32 as otherwise, the sets Ah and −ρhA violate Lemma 2.3. Therefore,
A 6= A1 ∪ · · · ∪Ap−1, and we can pick a point a0 ∈ A \ (A1 ∪ · · · ∪Ap−1).

For all h ∈ [p− 1], since a0 /∈ Ah, there exists a point ah ∈ A with |a0 + ρhah| ≥ 2− ν/16.
We claim that |a0 − ρhah| <

√
ν/2, for all h ∈ Zp. The inequality is trivial for h = 0. For

h ∈ [p− 1], it follows from the parallelogram law:

|a0 − ρhah|2 = 2(|a0|2 + |ρhah|2)− |a0 + ρhah|2 ≤ 4− (2− ν/16)2 < ν/4.

Thus, for all h,m ∈ Zp, by the triangle inequality, we obtain

|ρhah − ρmam| ≤ |ρhah − a0|+ |a0 − ρmam| <
√
ν. (6)

We are left to show that all points a0, . . . ,ap−1 are distinct. Suppose to the contrary that
for some distinct h,m ∈ Zp, ah = am. Then, as in (5),

|ρhah − ρmam| = |ρh − ρm| = |ρh−m − 1| ≥ 4/p ≥
√
ν,

a contradiction to (6).

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let X ⊆W with |X| ≥ pe−µk/40 · |W | and let A :=
⋃
{Di : wi ∈ X}; then

λ(A) = |X|/|W | ≥ pe−µk/40. By Lemma 3.3, there exist distinct a0, . . . ,ap−1 ∈ A such that
|ρhah − ρmam| ≤

√
4µ/5 for all h,m ∈ Zp. For each h ∈ Zp, let xh ∈ X be the vertex lying in

the same domain Di as ah, i.e. |xh − ah| ≤ µ/4.
Now, for distinct integers h,m ∈ Zp, by triangle inequality and (4), we get

|xh − ρm−hxm| = |ρhxh − ρmxm| ≤ |ρhxh − ρhah|+ |ρhah − ρmam|+ |ρmam − ρmxm| ≤
√
µ.

Thus xhxm ∈ E(G[W ]) and x0, . . . ,xp−1 induce a copy of Kp, finishing the proof.

The fact that the inner graphs G[W ], G[Z] have zero edge density follows already from their
being Kp+1-free and having sublinear p-independence number, as then their maximum degree is

at most αp(G[W ]) = e−Θ(
√
k)n by Lemma 3.2. We can in fact give a tighter bound via a direct

estimation.

Lemma 3.4. The maximum degree of G[W ], G[Z] is at most pe−k(1−µ)
2
n ≤ e−k/2n.

Proof. By the construction of G, in particular B1 and that each domain Di has diameter at
most µ/4, we see that in G[W ] every vertex has degree n(p−1) times the measure of a spherical
cap whose points are within distance d =

√
µ±µ/4 from its centre. As the height of such a cap

is precisely d2/2, the conclusion follows from Lemma 2.2.

3.3 Angle decides cross density

In this subsection, we verify A3.

Lemma 3.5. Every vertex in W has ( `p ±
1√
K

)n neighbours in Z, and vice versa.
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Proof. For each point x ∈ Sk−1(C), define sets

J(x) :=
{
y ∈ Sk−1(C) :

∣∣Im〈x, ρhy〉∣∣ > (K + 1
4

)
µ, for all h ∈ Zp

}
, and

I(x) :=
{
y ∈ J(x) : arg〈x,y〉 ∈

[
1/
√
K, 2π`/p− 1/

√
K
]}

.

We shall show that for each vertex w ∈W , vertices whose domains intersect the associated set
I(w) are adjacent to w. That is,

Zw := {zj ∈ Z : Dj ∩ I(w) 6= ∅} ⊆ NG(w). (7)

We first bound the measure of this associated set.

Claim 3.6. For any x ∈ Sk−1(C), we have λ(I(x)) ≥ `
p −

1√
K

.

Proof of claim. Fix an arbitrary x ∈ Sk−1(C). Define

L :=
{
y ∈ Sk−1(C) : | − xi− y| ≤

√
2−Kµ

}
.

By Lemma 2.1 (with δ = εK), we see that λ(L) ≥ 1
2 −
√

2εK. For each y ∈ L, using (4),

2− 2 Im〈x,y〉 = 2− 2 Re〈−xi,y〉 = | − xi− y|2 ≤ (
√

2−Kµ)2 < 2− 2
(
K + 1

4

)
µ,

and so Im〈x,y〉 > (K + 1
4)µ. Thus, by symmetry, the measure of the set{

y ∈ Sk−1(C) :
∣∣Im〈x,y〉∣∣ ≤ (K + 1

4

)
µ
}

is at most 1 − 2λ(L) ≤ 1 − 2
(
1
2 −
√

2εK
)

= 2
√

2εK. Since 〈x, ρhy〉 = 〈ρ−hx,y〉, we can take

the union bound of such sets over x, ρx,. . ., ρp−1x to deduce that λ(J(x)) ≤ 2
√

2εKp, where
J(x) := Sk−1(C) \ J(x). Therefore, by (4), we get

λ(I(x)) ≥ 1

2π

(
2π`

p
− 2√

K

)
− λ(J(x)) ≥ `

p
− 1√

K
.

�

Fix a vertex w ∈W and let Zw be as in (7). As each domain Dj has measure 1
n , the above

claim entails

|Zw| ≥ n
∑

zj∈Zw

λ(Dj ∩ I(w)) = n · λ(I(w)) ≥
(
`

p
− 1√

K

)
n.

We are left to show Zw ⊆ NG(w) and that the upper bound on the degrees can be obtained
similarly.

Fix a vertex zj ∈ Zw and take a point z∗ ∈ Dj ∩ I(w). As zj , z
∗ ∈ Dj , |z∗− zj | ≤ µ/4. For

any h ∈ Zp, using the triangle inequality, that z∗ ∈ I(w), and the Cauchy–Schwarz inequality,
we see that

|Im(ρh〈w, zj〉)| = |Im〈w, ρ−hzj〉| ≥ |Im〈w, ρ−hz∗〉| − |Im〈w, ρ−hz∗〉 − Im〈w, ρ−hzj〉|
≥ (K + 1

4)µ− |〈w, ρ−hz∗〉 − 〈w, ρ−hzj〉|
≥ (K + 1

4)µ− |w| · |ρ−hz∗ − ρ−hzj |
= (K + 1

4)µ− |z∗ − zj | ≥ Kµ,

verifying B2(i).
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For B2(ii), let x := 〈w, zj〉 and y := 〈w, z∗〉. Then as above we have |y| ≥ |Im〈w, z∗〉| ≥
(K + 1

4)µ, |x − y| ≤ |w||z∗ − zj | ≤ µ/4 and so |x| ≥ |y| − |x − y| ≥ Kµ. Consider the triangle
in the complex plane with vertices 0, x, y and let α be its angle at 0. Then the law of cosines
implies that

cosα =
|x|2 + |y|2 − |x− y|2

2|x||y|
≥

(1− 1
8K )(|x|2 + |y|2)

2|x||y|
≥ 1− 1

8K
.

As cos θ ≤ 1 − θ2

4 when θ ∈ (0, 1), we get | arg〈w, zj〉 − arg〈w, z∗〉| = α ≤ 1/
√

2K. Therefore
arg〈w, zj〉 ∈ [0, 2π`/p] as z∗ ∈ I(w), implying B2(ii).

We omit the proof of the upper bound on degrees since it is very similar but easier, noting
that the upper bound corresponding to Claim 3.6 is clear as the set of y ∈ Sk−1(C) with
arg〈x,y〉 ∈ [s, t] trivially has measure at most t−s

2π .

3.4 Clique number of G

Finally, we verify A4. We will need the following lemma.

Lemma 3.7. Let U be a subset of W or Z such that G[U ] is a clique. Then there exists a pair
of vertices u,u′ ∈ U such that u is an h-rotation of u′ with min{|U | − 1, bp/2c} ≤ h ≤ bp/2c.

Proof. Note that the upper bound is trivial, as in every pair of adjacent vertices, taking the
smaller angle we see that one is an h-rotation of the other for some h ≤ bp/2c. For the lower
bound, set u := |U |. We will prove the case when u− 1 ≤ bp/2c. The other case can be reduced
to this case by taking a subset of U of size bp/2c+ 1.

Fix a vertex u0 ∈ U . By B1, every vertex u ∈ U \ {u0} is an h-rotation of u0, for some
h ∈ [p− 1]. We may assume that h ∈ {−u+ 2, . . . , u− 2} \ {0}, for otherwise, u0,u is the pair
we seek. Pair up all elements in {−u + 2, . . . , u − 2} \ {0} such that their difference is u − 1,
that is, partition it into pairs {−u + 1 + j, j}, for all j ∈ [u − 2]. We say a vertex in U \ {u0}
belongs to the j-th pair if it is either a (−u + 1 + j)-rotation or a j-rotation of u0. By the
Pigeonhole Principle, there exists a pair of vertices u,u′ ∈ U \ {u0} that form the j-th pair for
some j ∈ [u− 2]. By Lemma 3.1, they are not the same rotation of u0. Therefore, without loss
of generality, we can assume that u is a j-rotation of u0 and u′ is a (−u+ 1 + j)-rotation of u0.
Thus, by Lemma 3.1, u is a (u− 1)-rotation of u′.

Take ` ≤ p/2. Suppose to the contrary that G contains a copy of Kp+`+1 on vertex set
X ∪ Y , with, say, X ⊆ W , Y ⊆ Z and |X| ≥ |Y |. So p

2 < |X| ≤ p (since X is Kp+1-free) and
hence |Y | ≥ `+ 1. Let x0 ∈ X be arbitrary, set

A := {h ∈ Zp : X contains an h-rotation of x0} and B := {ρh : h ∈ A} ⊆ {z ∈ C : |z| = 1}.

If the closed convex hull of B fails to contain 0, then B is contained in an open half-plane of C
bounded by a line passing through 0, so we have |X| = |B| ≤ p

2 , a contradiction. Thus 0 lies in
the closed convex hull of B. Consequently, by Carathéodory’s theorem, there are h1, h2, h3 ∈ A
such that 0 is in the closed triangle with vertices ρh1 , ρh2 , ρh3 . In other words, there are reals
λ1, λ2, λ3 ∈ [0, 1] such that λ1 +λ2 +λ3 = 1 and λ1ρ

h1 +λ2ρ
h2 +λ3ρ

h3 = 0. Pick x1,x2,x3 ∈ X
such that |xi − ρhix0| ≤

√
µ for all i ∈ [3]. By the triangle inequality

x := λ1x1 + λ2x2 + λ3x3 = λ1(x1 − ρh1x0) + λ2(x2 − ρh2x0) + λ3(x3 − ρh3x0)

satisfies |x| ≤ √µ. By Lemma 3.7, there exist a pair of vertices y,y′ ∈ Y and an integer m such
that ` ≤ m ≤ p

2 and |y − ρmy′| ≤ √µ. Now,

Im〈x,y − ρmy′〉 ≤ |〈x,y − ρmy′〉| ≤ |x||y − ρmy′| ≤ µ. (8)
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On the other hand, B2(ii) implies that 0 ≤ arg〈xi,y〉, arg〈xi,y′〉 ≤ 2π`
p . So

0 ≤ arg(−ρ−m〈xi,y′〉) ≤ 2π

(
`

p
+
p/2−m

p

)
≤ π

since ` ≤ m. So the imaginary parts of 〈xi,y〉,−ρ−m〈xi,y′〉 are positive, and B2(i) yields

Im〈xi,y〉, Im(−ρ−m〈xi,y′〉) ≥ Kµ for all i ∈ [3],

whence Im〈x,y − ρmy′〉 ≥ 2Kµ. This contradiction to (8) concludes the proof of A4.

4 Multipartite Bollobás-Erdős graph

In this section, we prove Theorem 1.3. Let `, p, q be positive integers where q is even and
` ≥ p(q − 1). We will construct an n-vertex graph G satisfying the following:

C1 α2`(G) = o(n);

C2 G can be made q-partite by removing o(n2) edges;

C3 e(G) =
(
2p(q−1)
2`+1q

− o(1)
)
n2;

C4 G is K2`+2p+q−1-free.

This will show that %2`(2
` + 2p + q − 1) ≥ 2p(q−1)

2`q
.

4.1 Construction

Choose constants

0 < 1/m� 1/k � ε� 1/`, 1/p, 1/q and µ := ε/
√
k. (9)

Partition Sk(R) into m domains D1, . . . , Dm with equal measure and diameter at most µ
4 . Next,

let P ⊆ Sk(R) be an arbitrary set of m points with exactly one point from each domain.
We will construct a multipartite analogue G of the Bollobás-Erdős graph in two stages. Our

construction is inspired by ideas from [5, 6, 29], which themselves build on the Bollobás-Erdős
graph. The graph G will be built on vertex set V1 ∪ . . . ∪ Vq. For the inner edges, each G[Vi],
i ∈ [q], will be isomorphic to a high dimensional Borsuk graph B(`), which is defined via a certain
auxiliary hypergraph B encoding geometric information about cliques in B(`); see Section 4.1.1.
The adjacencies between Vi and Vj are more involved; roughly speaking, cross edges are set up
with certain geometric constraints on their endpoints (depending on (i, j)); see Section 4.1.2.
These geometric constraints will be used in the rest of this section, together with the properties
of the high dimensional Borsuk graph, to bound the clique number and prove various other
properties of G.

4.1.1 High dimensional Borsuk graph

We describe the `-dimensional Borsuk graph B(`) with vertex set V (B(`)) ⊆
∏
h∈[`] Sh, where

each Sh is a copy of Sk(R). We will define B(`) via a sequence of auxiliary (hyper)graphs

{Qh}h∈[`] −→ B −→ B′ −→ B(`).

This part of the construction follows [6]. First, let

r := 2` and ζ := exp

(
− kµ

3 · 22`

)
, (10)
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chosen so that a spherical cap of diameter at most 2− ε/(2
√
k) has measure at most ζ.

Step 1: {Qh}h∈[`]. Let Q0 be a copy of Kr with V (Q0) := {b(1), . . . , b(r)}, where each b(i) is a
distinct binary string of length `. For each h ∈ [`], let Qh ∼= Kr/2,r/2 be the spanning subgraph
of Q0 in which the two partite sets consist of vertices with 0 and 1 respectively in the i-th
coordinate. Thus Q0 =

⋃
h∈[`]Qh (note that this union is not edge-disjoint).

Step 2: B. Next, we construct an r-uniform hypergraph B on vertex set

V (B) := P ` ⊆
∏
h∈[`]

Sh.

We write each vertex v ∈ P ` as v = (v1, . . . , v`), where vh ∈ Sh is the projection of v on Sh.
Then

{v(1), . . . ,v(r)} ∈ E(B) ⇐⇒ for all h ∈ [`] and i, j ∈ [r], whenever b(i)b(j) ∈ E(Qh),

we have
∣∣v(i)h − v(j)h ∣∣ ≥ 2− µ. (11)

In other words, the projections of v(i) and v(j) onto Sh are almost antipodal. Note that the
definition depends on the labelling of the vertices within the hyperedge.

Step 3: B′. To construct the hypergraph B′, we apply a theorem of Balogh and Lenz [5,
Theorem 16]. Rather than state the theorem in its fully generality, we only state its conclusion
when applied to B (with their (γ, t) being our (ζ, t1/`) here):

There exist t ∈ N and an r-uniform hypergraph B′ such that the following holds. Given
v ∈ P , let R(v) be a set of t1/` distinct points from the same domain Di as v which are
arbitrarily close to v. We say that u = (u1, . . . , u`) corresponds to v ∈ V (B) if uh ∈ R(vh) for
all h ∈ [`]. Then

V (B′) := {u : u corresponds to some v ∈ V (B)} ⊆
∏
h∈[`]

Sh (so |V (B′)| = m`t),

and B′ satisfies the following:

• Fix an arbitrary edge {v(1), . . . ,v(r)} ∈ E(B). For all i ∈ [r], let Ui be a set of at least
ζt vertices of B′ corresponding to v(i). Then the hypergraph B′ contains at least one
hyperedge with exactly one vertex in each Ui.

• There is no subhypergraph B′′ ⊆ B′ with |V (B′′)| ≤ r3, |E(B′′)| ≥ 1 and |V (B′′)| + (1 +
ζ − r)(|E(B′′)| − 1) < r. (Informally, all subhypergraphs of B′ are sparse.)

We remark that the proof of [5, Theorem 16] uses an idea of Rödl [29]. Essentially, the claimed
hypergraph is obtained by first blowing up the original one, then taking a random subhypergraph
of it and finally using a first moment deletion method to get rid of small configurations.

Note that B′ has the same geometric properties as B in the sense that every hyperedge
{v(1), . . . ,v(r)} ∈ E(B′) maintains the property on the right-hand side of (11).

Step 4: B(`). The high dimensional Borsuk graph B(`) is defined to be the shadow graph of
B′, that is,

V (B(`)) := V (B′) and

uv ∈ E(B(`)) ⇐⇒ {u,v} is contained in some hyperedge of B′.

Note that the standard Borsuk graph is precisely B(1).
It was proved in [6, Lemmas 6, 14] (using the second bullet point above) that

every set A of vertices that spans a clique in B(`) lies in some hyperedge of B′, (12)

implying that B(`) is K2`+1-free; and furthermore, B(`) has sublinear 2`-independence number:
α2`(B(`)) ≤ r`2`+r+1ζ · |B(`)|.
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4.1.2 The final graph G

Let n := m`tq (where t was defined in Step 3). We are now ready to construct the n-vertex
multipartite Bollobás-Erdős graph G. We let

V (G) := V1 ∪ . . . ∪ Vq where G[Vi] is a copy of B(`) for all i ∈ [q].

For cross edges, recall that each vertex v = (v1, . . . , v`) ∈ V (G) is a length-` vector where
vh ∈ Sh, for all h ∈ [`]. The adjacencies of pairs of vertices in G between partite classes are
determined by the distances of their projections onto certain blocks of coordinates. The relevant
blocks for each pair (Vi, Vi′), {i, i′} ∈

(
[q]
2

)
, come from an edge-colouring, as follows. Let χ be a

proper (q−1)-edge colouring of the q-clique on {V1, . . . , Vq}, with colours {1, . . . , q−1} (so each
colour class is a perfect matching, and χ exists since q is even). For brevity, let cij := χ(ViVj)

for all {i, j} ∈
(
[q]
2

)
.

For h, h′ ∈ [`] and {i, i′} ∈
(
[q]
2

)
, we say that coordinates (h, h′) are (i, i′)-related if there exist

j ∈ [q] \ {i, i′} and s ∈ [p] such that

• either (h, h′) = ((cij − 1)p+ s, (ci′j − 1)p+ s),

• or h = h′ > p(q − 1).

Finally, given u ∈ Vi and v ∈ Vi′ , we define

uv ∈ E(G[Vi, Vi′ ]) ⇐⇒ |uh − vh′ | ≤
√

2− µ whenever (h, h′) are (i, i′)-related.

Informally, the projection uh is in the hemisphere centred at vh′ , and vice versa.

This completes the construction of G.

By construction, α2`(G) ≤ q · α2`(B`). Recall that B(`) is K2`+1-free and has sublinear 2`-
independence number, thus verifying C1. Note that C2 then follows immediately as ∆(B(`)) ≤
α2`(B(`)) = o(|B`|) due to K2`+1-freeness.

We will spend the rest of the section verifying C3 and C4.

4.2 Cross density

In this subsection, we verify C3. We will use the following easy observation about how coordin-
ates are related between different Vi’s.

Observation 4.1. Let i, i′ ∈ [q] be distinct. For all h ∈ [`], there is at most one h′ ∈ [`] such
that (h, h′) are (i, i′)-related. Furthermore, for all but exactly p values of h ∈ [`], there exists a
unique h′ ∈ [`] such that (h, h′) are (i, i′)-related.

Proof. Suppose that (h, h′) and (h, h′′) are both (i, i′)-related, where h′ 6= h′′. Then there exist
j, j′ ∈ [q] \ {i, i′} and s ∈ [p] such that (cij − 1)p+ s = h = (cij′ − 1)p+ s. Thus cij = cij′ . Since
χ is a proper edge-colouring, we have j = j′. Then h′ = (ci′j − 1)p+ s = h′′, a contradiction.

To prove the second part, note that, by definition, we have {cij : j ∈ [q] \ {i, i′}} = [q − 1] \
{cii′}. Therefore, if some h ∈ [`] is not (i, i′)-related to any other h′ ∈ [`], then h = (cii′−1)p+s
for some s ∈ [p].

Fix arbitrary distinct i, i′ ∈ [q] and a vertex v = (v1, . . . , v`) ∈ Vi. We will compute the
degree of v to Vi′ . By Observation 4.1, there are exactly ` − p pairs (h, h′) ∈ [`]2 which are
(i, i′)-related. Fix an arbitrary such pair (h, h′). Define

I :=
{
j ∈ [m] : dmax(Dj , vh) ≤

√
2− µ

}
, and

L :=

{
y ∈ Sk(R) : |y − vh| ≤

√
2− 3

4
µ

}
.
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Recall that µ = ε/
√
k and 1/k � ε (so kµ is very large while

√
kµ is very small). By Lemma 2.1,

we have λ(L) ≥ 1
2 − 2ε. Since all domains have equal measure and diameter at most µ

4 , we have
|I| ≥

(
1
2 − 2ε

)
m. Recall that V (B′) is a subset of

∏
h∈[`] Sh where for each v ∈ V (B), there are

t vertices of B′ where the h-th coordinate of each one is a distinct point of Dh, for all h ∈ [`].
Also, Vi′ is a copy of V (B(`)) = V (B′). As there are exactly `− p many (i, i′)-related pairs, the
number of vertices u ∈ Vi′ such that |vh − uh′ | ≤

√
2− µ is at least

(
1
2 − 2ε

)
m`t and clearly at

most 1
2m

`t. Thus there are
(
1
2 ± 2ε

)`−p
m`t vertices u ∈ Vi′ that are adjacent to v. Hence

e(G) =

(
1

2
± 2ε

)`−p
· m

`t(q − 1)

2
· n =

(
1

2
± 2ε

)`−p
· q − 1

2q
· n2 =

(
q − 1

2q
· 2p−` ± 4(`− p)ε

)
n2,

thus verifying C3.

4.3 Clique number of G

In this subsection, we verify C4. We will use the following simple fact about the graphs Qh.

Observation 4.2. For all I ⊆ [`], α
(⋃

h∈I Qh
)

= 2`−|I|.

Proof. Let T :=
⋃
h∈I Qh. If bb′ /∈ E(Qh), then bh = b′h. So the set {b : bh = 1 for all h ∈ I} is

an independent set in T of size 2`−|I|. On the other hand, choose an arbitrary subset X ⊆ V (T )
with |X| ≥ 2`−|I| + 1. Then there are vertices bb′ ∈ X which differ at some coordinate h ∈ I,
and so bb′ ∈ E(T ).

Definition 4.3. A coordinate h ∈ [`] is lengthy for a vertex subset A ⊆ V (B(`)) if there exist
two vertices v,v′ ∈ A with |vh−v′h| ≥ 2−µ (i.e. whose projections onto Sh are almost antipodal).

For the rest of this subsection, fix a set A of vertices which span a clique in G. Given X ⊆ [`],
define Li(X) to be the set of lengthy coordinates h ∈ X for Vi ∩A. The following lemma helps
us relate the number of lengthy coordinates for a clique to its size.

Lemma 4.4. For all i ∈ [q], we have |Vi ∩A| ≤ 2|Li([`])|.

Proof. Write s := |Vi ∩A|. Since G[Vi ∩A] ⊆ B(`) is a clique, by (12), the vertex subset Vi ∩A
lies in some hyperedge of B′. Recall that hyperedges of B′ satisfy the right-hand side of (11).
Write Vi ∩ A =: {v(1), . . . ,v(s)}. Then for all h ∈ [`] and i, j ∈ [s], whenever b(i)b(j) ∈ E(Qh),

we have |v(i)h − v
(j)
h | ≥ 2− µ. Define

T :=
⋃

h∈[`]\Li([`])

Qh.

We claim that s ≤ α(T ). Indeed, if not, the graph T [{b(1), . . . , b(s)}] contains at least one edge

b(j)b(j
′), which lies in Qh for some h ∈ [`] \ Li([`]). Thus |v(j)h − v

(j′)
h | ≥ 2 − µ, whence h is a

lengthy coordinate for Vi ∩A, a contradiction. Therefore Observation 4.2 implies that

s ≤ α (T ) = 2`−(`−|Li([`])|) = 2|Li([`])|,

finishing the proof of the lemma.

To bound the clique number of G, we need one last lemma bounding the number of lengthy
coordinates for Vi ∩A, for all i ∈ [q].

Lemma 4.5.
∑

i∈[q] |Li([`])| ≤ `+ p.
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Proof. We claim that∑
i∈[q]

|Li([`])| =
∑
j∈[q]

∑
i∈[q]\{j}

|Li([(cij − 1)p+ 1, cijp])|+
∑
i∈[q]

|Li([p(q − 1) + 1, `])|.

Indeed, note that for each i ∈ [q],
⋃
j∈[q]\{i}[(cij − 1)p + 1, cijp] is a partition of [p(q − 1)], as

χ is a proper (q − 1)-edge-colouring of a q-clique. Thus the contribution to the left-hand side
from [p(q − 1)] is

∑
i∈[q]

∑
j∈[q]\{i} |Li([(cij − 1)p + 1, cijp])|. Swapping the summations proves

the claim.
Suppose for the sake of contradiction that at least one of the following holds:

•
∑

i∈[q]\{j} |Li([(cij − 1)p+ 1, cijp])| ≥ p+ 1, for some j ∈ [q];

•
∑

i∈[q] |Li([p(q − 1) + 1, `])| ≥ `− p(q − 1) + 1.

We claim that, in both cases, there are distinct i, i′ ∈ [q] and (not necessarily distinct) h, h′ ∈ [`]
such that

(i) h ∈ Li([`]) and h′ ∈ Li′([`]);

(ii) (h, h′) are (i, i′)-related.

To see this, in the first case, by the Pigeonhole Principle, there are distinct i, i′ ∈ [q] \ {j}
and s ∈ [p] such that h := (cij − 1)p + s and h′ := (ci′j − 1)p + s are lengthy for Vi ∩ A and
Vi′ ∩A respectively. By definition, (h, h′) are (i, i′)-related.

In the second, again by the Pigeonhole Principle, some h ∈ [p(q − 1) + 1, `] falls in Li([`])
and Li′([`]) for some distinct i, i′. It remains to recall that for any h in this interval, (h, h) is
(i, i′)-related for any distinct i, i′.

Due to (i) above, there exist two pairs of vertices v(1),v(2) ∈ Vi ∩ A and u(1),u(2) ∈ Vi′ ∩ A
such that |v(1)h − v

(2)
h | ≥ 2 − µ and |u(1)h′ − u

(2)
h′ | ≥ 2 − µ. At the same time, by (ii) and that

u(`)v(`′) ∈ E(G) whenever `, `′ ∈ [2], we see that |v(`)h − u
(`′)
h′ | ≤

√
2− µ for `, `′ ∈ [2]. Therefore,

we have four points v
(1)
h , v

(2)
h , u

(1)
h′ , u

(2)
h′ ∈ Sk(R) which contradict Theorem 2.5.

Thus the required sum is at most pq + `− p(q − 1) = `+ p.

Let xi := |Li([`])| for each i ∈ [q]. By Lemmas 4.4 and 4.5, we have that

|A| ≤
∑
i∈[q]

2xi subject to x1 + . . .+ xq ≤ `+ p and every xi ≤ `.

Optimising, we see that the maximum is attained by setting xi := ` and xi′ := p for some
distinct i, i′ ∈ [q], and setting all others equal to 0. Thus the clique number of G is

ω(G) ≤ 2` + 2p + q − 2.

This completes the proof of C4 and hence of Theorem 1.3.

5 Upper bounds

In this section we will show that one can find upper bounds for %p(q) by considering a cleaner
problem on weighted graphs. First, in Section 5.1, we introduce a family of weighted graphs
G̃p(q) and show that a certain weighted Turán-type density π(G̃p(q)) bounds %p(q) from above;

see Lemma 5.3. In order to bound π(G̃p(q)), we prove in Section 5.2 an embedding lemma to

study the structure of the edge weights of weighted graphs in a simpler subfamily Gp(q) ⊆ G̃p(q);
see Lemma 5.6. From this structural information, Theorem 1.5 then follows fairly easily; see
Section 5.3. The bulk of the work then is devoted to deriving the upper bound for π(G̃p(q))
when p = {3, 4}; see Section 5.4.
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5.1 Reduction to weighted graphs

Given p ∈ N, a p-weighted graph is a pair G = (V,w) consisting of a vertex set V and a
symmetric function w : V 2 → {0, 1, . . . , p} such that w(x, x) = 0 for all x ∈ V . Given x ∈ V ,
let dG(x) :=

∑
y∈V−xw(x, y) and δ(G) := minx∈V dG(x). A p-weighted graph is positive if all

its pairs x 6= y receive strictly positive weights. Given a family G of p-weighted graphs and a
p-weighted graph G = (V,w), we say that G is G-free if there is no U ⊆ V such that G[U ] ∈ G,
where G[U ] := (U,w|U2).

We will use Szemerédi’s regularity lemma so need to define the associated notions. Given
ε > 0, a bipartite graph with vertex bipartition A,B (or the pair (A,B)) is said to be ε-regular if,
for all A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have |dG(A′, B′)−dG(A,B)| ≤ ε.
If additionally dG(A,B) ≥ d, then we say that G is (ε,≥d)-regular.

Theorem 5.1 (Regularity lemma). For every ε > 0 and integer M ′ there exist integers M,n0
such that if G is a graph on n ≥ n0 vertices, then there is a partition of V (G) into V0, V1, . . . , Vm
for some M ′ ≤ m ≤M so that |V0| ≤ εn; |V1| = . . . = |Vm| =: n′ and for each i ∈ [m], G[Vi, Vj ]
is ε-regular for all but at most εm pairs (i, j).

We first define a family G̃p(q) of p-weighted graphs which arise from regularity partitions.

Informally, G̃p(q) contains all positive p-weighted graphs such that any of their pseudorandom
blow-ups with sublinear p-independence number contain a Kq.

Definition 5.2.

• Given a positive p-weighted graph G = (V,w) and γ, ζ, η > 0, we say that an extension
of w to V 2 ∪ V (i.e. to also include a vertex weighting {w(v) : v ∈ V }) taking values in
{1, . . . , p} is valid wrt γ, ζ, η if there exists n0(γ, ζ, η) > 0 such that the following holds for
all integers n ≥ n0:

Let H = (W,E) be an n-vertex graph such that there is a vertex partition W =⋃
v∈V Wv with |Wv| ≥ ηn and αp(H[Wv]) ≤ γ|Wv| for all v ∈ V , and H[Wu,Wv]

is (ζ,≥ w(u,v)−1
p + η)-regular for all uv ∈

(
V
2

)
. Then H contains a clique of size∑

v∈V w(v).

• Let G̃p(q) be the class of positive p-weighted graphs (V,w) with |V | ≤ q such that for all
η > 0 there exist ζ, γ > 0 and a valid vertex weighting wrt γ, ζ, η with

∑
v∈V w(v) ≥ q.

• Given positive integers p ≤ q, let

π(G̃p(q)) := sup{d ∈ [0, 1] : every sufficiently large p-weighted G with

δ(G) > dp|V | is G̃p(q)-free}.

For example, it is not hard to see that any positive p-weighted graph on two vertices is in
G̃p(p+ 1). Indeed, let H be an n-vertex graph as in the definition, so H is a regular pair (A,B).
Choose a typical vertex v ∈ A; by positivity, the density of H is at least η, so dG(v,B) ≥ η|B| >
γ|B|. Now there is a copy of Kp in the neighbourhood of v in B, so Kp+1 ⊆ H. Note that G̃p(q)
is a finite family, so γ, ζ may be chosen uniformly.

The goal of this section is to prove the following lemma, which allows us to upper bound
%p(q) by π(G̃p(q)). This lemma is related to several theorems in [13] and its proof follows the
same approach, using Szemerédi’s regularity lemma.

Lemma 5.3. For all positive integers p ≤ q we have %p(q) ≤ π(G̃p(q)).

In other words: For all δ > 0 and p ≤ q ∈ N, let d ≥ π(G̃p(q)) ∈ [0, 1]. That is, for every
q ≥ p, every sufficiently large p-weighted graph G = (V,w) with δ(G) > dp|V | has a subset
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U ⊆ V such that G[U ] lies in G̃p(q). Then there exists ε > 0 such that whenever n0 = n0(ε) is
sufficiently large, every graph H on n ≥ n0 vertices with e(H) ≥ (d+δ)

(
n
2

)
edges and αp(H) ≤ εn

contains a copy of Kq.

Proof. Let δ > 0 and p ≤ q ∈ N, and d ≥ π(G̃p(q)). Let η be such that 0 < η � δ � 1/q, where
we have decreased δ if necessary (doing so will only prove a stronger result). Let ζ, γ > 0 be
such that every G ∈ G̃p(q) has a valid vertex weighting wrt γ, ζ, η with

∑
v∈V w(v) ≥ q. Since a

vertex weighting which is valid wrt γ, ζ, η is also valid wrt γ′, ζ ′, η whenever γ′ ≤ γ and ζ ′ ≤ ζ,
by decreasing γ, ζ if necessary, we may assume that 0 < γ � ζ � η. Choose an additional
parameter M ′ such that 0 < γ � 1/M ′ � ζ � η � δ, and any p-weighted graph on at least M ′

vertices is sufficiently large in the sense of the definition of π(G̃p(q)). Apply Theorem 5.1 (the
Regularity Lemma) to ζ,M ′ to obtain M,n1. By increasing M,n1 and decreasing γ if necessary,
we may assume that 1/n1 � γ � 1/M � 1/M ′ and that n1 ≥ (n0(γ, ζ, η))2 from Definition 5.2.
Altogether we have

0 < 1/n1 � γ � 1/M � 1/M ′ � ζ � η � δ � 1/q ≤ 1/p.

The choice of d implies that for every sufficiently large p-weighted graph G = (V,w) with
δ(G) > dp|V |, there exists U ⊆ V such that G[U ] is positive and a valid vertex weighting wrt

γ, ζ, η of U with
∑

u∈U w(u) ≥ q. Let H ′ be a graph on n′ ≥ n1 vertices with e(H ′) ≥ (d+δ)
(
n′

2

)
and αp(H

′) ≤ γ2n′. To prove the lemma, we will show that H ′ ⊇ Kq (so ε := γ2). Using a
standard trick of repeatedly removing low degree vertices, we can pass from H ′ to an n-vertex
subgraph H with n ≥ δ1/4n′ ≥ n0(γ, ζ, η) and δ(H) ≥ (d+ δ

2)n.
Apply the Regularity Lemma to H with parameters ζ,M ′ to obtain a partition V0 ∪ V1 ∪

. . . ∪ Vm of its vertex set where M ′ ≤ m ≤ M satisfying the conclusions of Theorem 5.1. Let
A = (aii′) be the symmetric m×m matrix in which

aii′ :=

{
bp(dH(Vi, Vi′)− η)c+ 1, if H[Vi, Vi′ ] is (ζ,≥ δ

4)-regular;

0, otherwise.

So A has entries in {0, . . . , p}. Let G = (V,w) be the p-weighted graph with V = {v1, . . . , vm}
and w(vi, vi′) := aii′ . Write dii′ := dH(Vi, Vi′). Note that if aii′ is positive, then aii′ equals k+ 1
if and only if k

p + η ≤ dii′ <
k+1
p + η. Thus aii′ ≥ p(dii′ − η) ≥ (1 − √η)pdii′ , since dii′ ≥ δ

4 .
Standard results on the ‘reduced graph’ of H imply that for every i ∈ [m], the sum of dii′ over
all Vi′ such that (Vi, Vi′) is (ζ,≥ δ

4)-regular is at least δ(H) · mn −
δ
4 ·m. Thus for all vi ∈ V ,

dG(vi) =
∑

i′∈[m]\{i}

aii′ ≥ (1−√η)
∑

i′∈[m]\{i}

pdii′ ≥ (1−√η)pm

(
d+

δ

4

)
≥ p

(
d+

δ

5

)
m. (13)

So by our choice of d, there exists U ⊆ V such that G[U ] is positive and a valid vertex weighting
wrt γ, ζ, η of U with

∑
v∈U w(v) ≥ q. Let I ⊆ [m] be such that U = {vi : i ∈ I} and let HI be

the subgraph of H induced by {Vi : i ∈ I}. Then for all i ∈ I we have αp(HI [Vi]) ≤ αp(H
′) ≤

γ2n′ ≤ (γ2δ−1/4 · 2M) n
2M ≤ γ|Vi|. Moreover, for distinct i, i′ ∈ I, HI [Vi, Vi′ ] = H[Vi, Vi′ ] is

(ζ,≥ δ
4)-regular (since aii′ > 0). Also, w(vi, vi′) = aii′ = bp(dii′ − η)c+ 1 so dii′ ≥

w(vi,vi′ )−1
p + η.

By the definition of a valid vertex weighting, Kq ⊆ HI ⊆ H ′.
Thus RTp(n,Kq, γ

2n′) ≤ (d+ δ)
(
n′

2

)
for all n′ ≥ n1 and it follows that %p(q) ≤ π(G̃p(q)).

5.2 An embedding lemma via dominating extensions

To upper bound π(G̃p(q)), we will consider only valid vertex weightings with a particular prop-
erty.
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Definition 5.4. Let G = (V,w) be a positive p-weighted graph and {v1, . . . , vm} be an enu-
meration of V . An extension of w to V 2 ∪ V is dominating if for all j ∈ {2, . . . ,m}, writing
a := w(vj), the multiset of backwards edge weights {w(vi, vj) : i ∈ [j − 1]} dominates{

p(a−1)
a + 1, . . . , p(a−1)a + 1︸ ︷︷ ︸

j−2

, a
}

as ordered multisets. The size of an extension of w to V 2 ∪ V is
∑

v∈V w(v). Let Gp(q) be the
set of positive p-weighted graphs G = (V,w) with dominating extension of size at least q.

For example, {3, 4, 4} dominates {3, 3, 4} but not {2, 2, 5}. There is no constraint on the
weight of v1, so we can always choose w(v1) = p. Note that, writing t := maxuv∈(V2)w(u, v),

we have that {p, t, 1, . . . , 1} is dominating. Indeed, enumerate V so that w(v1, v2) = t is max-
imal and write aj := w(vj) for all j ∈ [m]. The multisets of backwards edge weights are
{t}, {w(v1, v3), w(v2, v3)}, {w(v1, v4), w(v2, v4), w(v3, v4)} . . ., which, respectively, dominate

{a2},
{
p(a3 − 1)

a3
+ 1, a3

}
,

{
p(a4 − 1)

a4
+ 1,

p(a4 − 1)

a4
+ 1, a4

}
, . . . = {t}, {1, 1}, {1, 1, 1}, . . . ,

as required. Thus we have

G ∈ Gp(p+ t+m− 2), ∀ positive p-weighted m-vertex G with an edge of weight ≥ t. (14)

We consider dominating extensions due to the following averaging claim.

Claim 5.5. Let a ≤ p be positive integers, let η > 0 and let Y be a set. Given sets A1, . . . , Ap ⊆ Y
with |Ai| ≥ (a−1p + η)|Y |, there is some I ⊆ [p] with |I| = a such that |

⋂
i∈I Ai| ≥ p−aη|Y |.

This will imply that among p typical vertices in one part A of a regular pair (A,B) of density
at least a−1

p + η, there are a of them which share a large common neighbourhood in B. We will
use this to extend a clique by a vertices in a new regularity cluster.

Proof of claim. Note that the following lower bound for a-wise intersections holds:

(p− (a− 1))
∣∣∣⋃I⊆[p]:|I|=a

⋂
i∈I Ai

∣∣∣ ≥∑i∈[p] |Ai| − (a− 1)|
⋃
i∈[p]Ai|.

Indeed, the left-hand side counts every element in an `-wise intersection 0 times for ` ≤ a−1 and
p−(a−1) times for ` ≥ a, while the right-hand side counts every element in an `-wise intersection
`−(a−1) times. As the right-hand side is at least p(a−1p +η)|Y |−(a−1)|Y | = pη|Y |, we see that

there is some I ⊆ [p] with |I| = a such that |
⋂
i∈I Ai| ≥

(
p
a

)−1
(p−(a−1))−1pη|Y | ≥ p−aη|Y |. �

Lemma 5.6. For all positive integers p ≤ q, Gp(q) ⊆ G̃p(q).

This is a consequence of the following statement: Let p,m be integers and let G = (V,w) be
a positive p-weighted graph with enumeration V := {v1, . . . , vm} and let 0 < γ � ζ � η � 1/m.
Then any dominating extension of w is valid wrt γ, ζ, η.

Proof. To see why the first statement follows from the second, let p ≤ q be positive integers and
let G ∈ Gp(q). So G is a positive p-weighted graph with a dominating extension of size at least
q. Let 0 < γ � ζ � η � 1/q, 1/m, where |V | = m. By the second statement, the dominating
extension is valid wrt γ, ζ, η. So G ∈ G̃p(q).

It remains to prove the second statement. Let 0 < γ � ζ � η � 1/m and let H = (W,E)
be an n-vertex graph such that there is a vertex partition W =

⋃
v∈V Wv with |Wv| ≥ ηn and

αp(H[Wv]) ≤ γ|Wv| for all v ∈ V , and H[Wu,Wv] is (ζ,≥ w(u,v)−1
p + η)-regular for all uv ∈

(
V
2

)
.
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Suppose that w has a dominating extension. To prove the lemma, we need to find Kq ⊆ H
where q :=

∑
v∈V w(v).

We will find a clique that contains w(vi) vertices in Wi := Wvi , in the reverse order i =
m,m − 1, . . . , 1. Suppose for some 1 ≤ r ≤ m that for every j > r we have found vertices
xj1, . . . , x

j
w(vj)

in Wj such that, writing Xr+1 for their union, we have H[Xr+1] is a clique and,

for all i ∈ [r], W r+1
i :=

⋂
x∈Xr+1

NH(x,Wi) satisfies |W r+1
i | ≥ (η/4pp)m−r|Wi|. We will extend

this clique by adding w(vr) vertices from W r+1
r . Note that m− r ≤ |Xr+1| < q.

For each i ∈ [r− 1], let dir := w(vi,vr)−1
p . By standard results (the Slicing Lemma for regular

pairs), the pair (W r+1
r ,W r+1

i ) is (ζ2/3,≥dir + η/2)-regular for all i ∈ [r− 1], as ζ � η, 1/q, 1/p.
By further standard results (on superregular pairs), for each i ∈ [r − 1], there is Wr,i ⊆ W r+1

r

with |Wr,i| ≥ (1−
√
ζ)|W r+1

r | such that

|NH(x,W r+1
i )| ≥ (dir + η/3)|W r+1

i |

for every x ∈Wr,i. Letting W ∗r = ∩i∈[r−1]Wr,i ⊆W r+1
r , we have |W ∗r | ≥ (1−r

√
ζ)|W r+1

r |. Next,
let a := w(vr). Since w is a dominating extension, there is s ∈ [r − 1] such that w(vs, vr) ≥ a,

whence dsr ≥ a−1
p , and, for all i ∈ [r − 1] \ {s}, w(vi, vr) ≥ p(a−1)

a + 1, whence dir ≥ a−1
a .

Now, since αp(H) ≤ γn ≤ (1− r
√
ζ)(η/4pp)m−rηn ≤ |W ∗r |, H induces a copy of Kp on some

Q ⊆ W ∗r . Since each x ∈ Q is adjacent to at least dsr + η/3 proportion of the vertices in W r+1
s

and dsr = a−1
p , Claim 5.5 yields an a-subset I ⊆ Q such that, letting W r

i :=
⋂
x∈I NH(x,W r+1

i )
for all i ∈ [r − 1], we have

|W r
s | ≥ p−a · η/3 · |W r+1

s | ≥ (η/4pp)m−r+1|Ws|.

Let I =: {xr1, . . . , xra} and Xr := Xr+1 ∪ I. By construction, H[Xr] is a clique. Recall that for
all i ∈ [r − 1] \ {s}, we have dir ≥ (a− 1)/a, thus by inclusion-exclusion,

|W r
i | ≥ a(dir + η/3)|W r+1

i | − (a− 1)|W r+1
i | ≥ η|W r+1

i |/4 ≥ (η/4pp)m−r+1|Wi|.

Therefore we can complete the embedding sequentially to obtain a vertex set X1 of size
q =

∑p
i=1w(vi) upon which H spans a clique.

Remark 5.7. It is worth noting that dominating extensions are not always the best ones to take.
Consider for example integers p, s, t with 2s − 1 ≤ p ≤ s(s − 1) and let G = ({v1, . . . , vt}, w),
where w(vi, vj) = s for all ij ∈

(
[t]
2

)
. As p

2 + 1 > s, in any dominating extension, at most
two vertices can have weight at least 2, offering at best (w(v1), . . . , w(vt)) = (p, s, 1, . . . , 1).
But in fact there is a valid vertex weighting of larger size, namely (p, s, 2, 1, . . . , 1) and so
G ∈ G̃p(p + s + t − 1). Indeed, as in the proof of Lemma 5.6, we can put one vertex in each of
Wt, . . . ,W4, whose common neighbourhood W 4

i in each Wi with i ∈ [3] is linear. As the Wi’s
are pairwise (ζ,≥ s−1

p + η)-regular, Claim 5.5 implies that among the vertices of a Kp in W 4
3 ,

there are s with linear common neighbourhood in W 4
2 . It suffices to find an edge in this Ks

whose common neighbourhood in W 4
1 is linear. Since ( s−1p + η)s > 1, averaging (or Claim 5.5

again) yields such an edge.

To prove Theorems 1.4 and 1.5 we will consider weighted graphs (and will not require any-
thing to do with regularity). Indeed, Lemmas 5.3 and 5.6 imply the following.

Lemma 5.8. Let p ≤ q be positive integers. Suppose that for all p-weighted graphs G = (V,w)
with δ(G) > dp|V |, there is J ⊆ V such that G[J ] ∈ Gp(q). Then %p(q) ≤ d.
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5.3 Proof of Theorem 1.5

Given an m×m matrix A, define

g(A) := max
{
uᵀAu : u = (u1, . . . , um)ᵀ;

∑
i∈[m] ui = 1; ui ≥ 0

}
(where the maximum is attained since it is taken over a compact set). Say that any u which
attains the maximum is optimal for A. We say that A is dense if A has zero diagonal and,
for any i ∈ [m], the submatrix A′ obtained by deleting the i-th row and i-th column satisfies
g(A′) < g(A). The following properties of dense matrices and their optimal vectors will be
useful.

Lemma 5.9. Let m ∈ N and let A = (aij) be a dense symmetric m×m matrix with entries in
{0, 1, . . . , p} and let u be optimal for A. Then

(i) A is positive, that is, aij > 0 for all 1 ≤ i < j ≤ m;

(ii) ui > 0 for all i ∈ [m];

(iii)
∑

i∈[m]\{j} aijui = g(A) for all j ∈ [m].

Proof. Part (i) is Lemma 3.3 in [13] and follows from a version of Zykov’s symmetrisation and
that A is dense. For (ii), one can easily see that every ui is positive (otherwise the matrix A′

obtained by deleting the i-th row and i-th column of A satisfies g(A′) = g(A)). Part (iii) follows
from (ii) and the method of Lagrange multipliers (and the fact that A has zero diagonal).

The following lemma together with Lemma 5.8 implies Theorem 1.5.

Lemma 5.10. Let p, s, t be positive integers satisfying t(t− 2) ≤ s ≤ t2 and s+ t− 1 ≤ p. Then

for every p-weighted n-vertex graph G = (V,w) with δ(G) > s(t−1)
t · n, there is J ⊆ V such that

G[J ] ∈ Gp(p+ s+ t− 1).

Proof. Write q := p + s + t − 1. Let G = (V,w) be a p-weighted graph on n vertices such that

δ(G) > s(t−1)
t · n. Let V = {v1, . . . , vn} be an enumeration and let A = (aij) be the symmetric

m × m matrix with aij = w(vi, vj) for i 6= j and 0 otherwise. Choose J ⊆ [m] such that
the submatrix A′ obtained by retaining the rows and columns of A with indices in J satisfies
g(A′) ≥ g(A), and |J | is minimal. Then A′ is dense (and non-empty since g is 0 on the empty
matrix). Lemma 5.9(i) implies that A′ is positive. Let m := |J | and let u be optimal for A′

(so u has length m). Writing un = ( 1
n , . . . ,

1
n)ᵀ of length n, Lemma 5.9(iii) implies that for all

j ∈ [m],∑
i∈J\{j}

w(vi, vj)ui = g(A′) ≥ g(A) ≥ uᵀnAun =
1

n2

∑
ij∈(n2)

2w(vi, vj) ≥
1

n
δ(G) >

s(t− 1)

t
.

Let G′ := G[J ], so G is a positive p-weighted graph on m ≥ 2 vertices.
If m ≥ q − p+ 1 or there are distinct i, j ∈ J with w(vi, vj) ≥ q − p−m+ 2, then by (14),

G′ ∈ Gp(q) (note q − p−m+ 2 ≤ p).
Thus we may assume that m ≤ q−p and w(vi, vj) ≤ q−p−m+1 = s+ t−m for all distinct

i, j ∈ J . Let i ∈ J be such that ui ≥ uj for all i ∈ J . So ui ≥ 1
m and

s(t− 1)

t
<

∑
i∈J\{j}

w(vi, vj)ui ≤ (s+ t−m) · (m− 1)

m
. (15)

Multiplying by m, we have (m− t)(m− s+t
t ) < 0, which by t− 1 ≤ s+t

t ≤ t+ 1 and m ∈ N is a
contradiction.
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5.4 Proof of Theorem 1.4

Throughout this section, we always assume p ∈ {3, 4}. Given a p-weighted graph G = (V,w)
and a J ⊆ V with J = {v1, . . . , vm}, the “maximal” dominating extension w of G[J ] is, by
definition, such that, for each j ∈ [m], we have

• w(vj) = p if and only if w(vi, vj) = p for all i ∈ [j − 1];

• w(vj) ≥ a, for every 2 ≤ a ≤ p − 1, if and only if w(vi, vj) ≥ a for all i ∈ [j − 1] with
equality at most once;

• w(vj) ≥ 1 if and only if w(vi, vj) ≥ 1 for all i ∈ [j − 1].

We will find it convenient to write w̃(x, y) := p− w(x, y); and given K ⊆ V , to let

w̃(K) :=
∑

xy∈(K2 )

w̃(x, y) and γK(x) :=
∑

y∈K\{x}

w̃(x, y) for all x ∈ V.

Proposition 5.11. For every p-weighted graph G = (V,w), there exists a set K ⊆ V such that

(i) G[K] ∈ Gp(p|K| − w̃(K));

(ii) we have γK(y) ≤ p− 1 for all y ∈ K and γK(x) ≥ p for all x ∈ V \K;

(iii) if x ∈ V \K and y ∈ K, we have γK\{y}(x) ≥ γK(y).

Proof. We say a non-empty set K is heroic if, for all ∅ 6= L ⊆ K we have G[L] ∈ Gp(p|L|−w̃(L)).
Observe that every singleton in V is heroic, as it can be given weight p, and subsets of heroic
sets are heroic.

Claim 5.12. If K is heroic and x ∈ V \K with γK(x) ≤ p− 1, then K ∪ {x} is heroic.

Proof of claim. As any singleton is heroic, it suffices to check that for any ∅ 6= L ⊆ K, G[L ∪
{x}] ∈ Gp(p|L ∪ {x}| − w̃(L ∪ {x})). To see this, add x to the end of the enumeration of L with
dominating extension of maximal size. We claim that setting w(x) := p− γL(x) extends it to a
dominating extension of L ∪ {x}. Indeed, for each v ∈ L,

w(v, x) = p− w̃(v, x) = p− γL(x) +
∑

u∈L\{v}

w̃(u, x) ≥ p− γL(x),

where equality holds only when w(u, x) = p for each u ∈ L \ {v}. We need to check the
dominating properties. Note first that every w(v, x) ≥ 1 (as γL(x) ≤ p − 1), and so we may
assume w(x) ≥ 2, i.e. γL(x) ≤ p− 2. If 1 ≤ γL(x) ≤ p− 2, 2 ≤ w(x) ≤ p− 1 and w(v, x) ≥ w(x)
with equality at most once, since if w(v, x) = w(x) then w(u, x) = p > w(x) for all u ∈ L \ {v}.
If γL(x) = 0, then w(x) = p and w(v, x) = p for all v ∈ L. So the extension to L ∪ {x} is
dominating. As L is heroic, we have∑

v∈L∪{x}

w(v) ≥ p|L| − w̃(L) + p− γL(x) = p|L ∪ {v}| − w̃(L ∪ {v}),

as required. �

A heroic set K is herculean if

• p|K| − w̃(K) is maximal;

• subject to the above, |K| is minimal.
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We claim that we can take any herculean K for the required set. Indeed, K satisfies (i).
Now we prove (ii). Let K ′ := K \ {y} and suppose γK(y) ≥ p. Note that K ′ 6= ∅, since

otherwise γK(y) = 0. Then, using that K is herculean, p|K ′| − w̃(K ′) < p|K| − w̃(K), entailing
γK(y) = w̃(K)− w̃(K ′) < p, a contradiction.

Suppose instead there is x ∈ V \ K with γK(x) ≤ p − 1. Then Claim 5.12 implies that
K ∪ {x} is heroic with

p|K ∪ {x}| − w̃(K ∪ {x}) = p|K| − w̃(K) + p− γK(x) > p|K| − w̃(K),

contradicting the fact that K is herculean.
For (iii), let x ∈ V \K and y ∈ K. Suppose that γK\{y}(x) < γK(y). Then (ii) implies that

γK\{y}(x) ≤ p − 1. As K \ {y} is heroic (as a subset of a heroic set), Claim 5.12 implies that
K ′ := (K \ {y}) ∪ {x} is heroic. But |K ′| = |K| and

p|K ′| − w̃(K ′) = p|K ′| − w̃(K) + γK(y)− γK\{y}(x) > p|K| − w̃(K),

a contradiction to K being herculean.

We are now ready to prove the final upper bound. Recall that

%∗p(pt+ 2) =
(t− 1)(2p− 1) + 1

t(2p− 1) + 1
=

{
5t−4
5t+1 if p = 3,
7t−6
7t+1 if p = 4.

The lower bounds in Theorem 1.4 follow from Corollary 1.2; for the upper bounds, using
Lemma 5.8, it suffices to prove the following lemma.

Lemma 5.13. Let p ∈ {3, 4} and let t ∈ N. Let G = (V,w) be a p-weighted n-vertex graph with

δ(G) > p · %∗p(pt+ 2) · n.

Then there is J ⊆ V such that G[J ] ∈ Gp(pt+ 2).

Proof. Let G = (V,w) be an n-vertex p-weighted graph with δ(G) > p · (t−1)(2p−1)+1
t(2p−1)+1 · n. Let

K ⊆ V be the set obtained from Proposition 5.11. We claim that

|K| ≥ t+ 1. (16)

To see this, observe first that for each y ∈ V , by Proposition 5.11(ii),∑
x∈K

w̃(x, y) = γK(y) + p · 1{y∈K} ≥ p.

Consequently,

pn ≤
∑

x∈K,y∈V
w̃(x, y) =

∑
x∈K

(
pn−

∑
y∈V

w(x, y)
)

=
∑
x∈K

(pn− dG(x)) ≤ |K|(pn− δ(G)) <
(2p− 1)pn|K|
(2p− 1)t+ 1

<
pn|K|
t

, (17)

so |K| ≥ t+ 1 as claimed.
Now let J ⊆ V be a set of vertices with enumeration

J = {x1, . . . , xk, y1, . . . , yr, z1, . . . , zs},

equipped with a dominating extension w, such that {x1, . . . , xk} = K, w|K has size pk − w̃(K)
and
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• w(yi) ≥ 2 for all i ∈ [r];

• w(zi) ≥ 1 for all i ∈ [s];

• 2r + s is maximal.

Such a pair (J,w) does exist. Indeed, taking r = s = 0, we see that J = K has a dominating
extension of size pk − w̃(K) by Proposition 5.11(i).

By choice, G[J ] ∈ Gp(pk− w̃(K) + 2r+ s). We shall argue that G[J ] is the desired subgraph
in Gp(pt + 2). Suppose otherwise, then pk − w̃(K) + 2r + s ≤ pt + 1. Together with (16), this
implies

(2p− 1)k − 2w̃(K) + 4r + 2s ≤ (2p− 1)t+ 1. (18)

In what follows, we write γ := γK . Define η : J → N as follows:

• η(xi) := 2p− 1− γ(xi), for all i ∈ [k];

• η(yi) := 4, for all i ∈ [r];

• η(zi) := 2, for all i ∈ [s].

Note that by Proposition 5.11(ii) we have

η(x) ≥ p, for all x ∈ K. (19)

Further define
H(u) :=

∑
v∈J

η(v)w̃(u, v), for all u ∈ V.

Since
∑

i∈[k] γ(xi) = 2w̃(K), we have as in (17) that∑
u∈V

H(u) =
∑
v∈J

η(v)
∑
u∈V

w̃(u, v) ≤
(∑
v∈J

η(v)
)

(pn− δ(G))

< ((2p− 1)k − 2w̃(K) + 4r + 2s) · p(2p− 1)n

(2p− 1)t+ 1

(18)

≤ p(2p− 1)n,

implying that there exists a vertex u∗ ∈ V with H(u∗) < p(2p− 1).
Suppose there is some v ∈ K with w̃(v, u∗) = p. Then

p(2p− 1) > H(u∗) ≥
∑

x′∈K\{v}

η(x′)w̃(x′, u∗) + pη(v)
(19)

≥ p · γK\{v}(u∗) + p(2p− 1− γ(v)),

implying that we in fact have γK\{v}(u∗) < γ(v). Then Proposition 5.11(iii) implies that u∗ ∈ K.
If u∗ 6= v, then γ(u∗) ≥ w̃(v, u∗) = p, contradicting Proposition 5.11(ii). So u∗ = v, and thus
γK\{v}(u∗) = γ(v), and we have obtained a contradiction. Therefore,

w(v, u∗) ≥ 1, for all v ∈ K. (20)

So u∗ /∈ K, since w(u∗, u∗) = 0. Proposition 5.11(ii) then implies that

γ(u∗) ≥ p. (21)

Consequently, recalling that η(x′) ≥ p for all x′ ∈ K,∑
x′∈K

η(x′)w̃(x′, u∗) ≥ pγ(u∗) ≥ p2. (22)
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For every y ∈ R := {y1, . . . , yr}, we have

p(2p− 1) > H(u∗) ≥ 4w̃(y, u∗) +
∑
x′∈K

η(x′)w̃(x′, u∗)
(22)

≥ 4w̃(y, u∗) + p2,

whence w̃(y, u∗) <
p(p−1)

4 < p. So

w(y, u∗) ≥ 1, for all y ∈ R. (23)

Suppose that w(z, u∗) ≥ 1 for all z ∈ S := {z1, . . . , zs}. Then u∗ /∈ S, by (20) u∗ /∈ K and
by (23), u∗ /∈ R. So u∗ /∈ J and moreover, setting w(u∗) = 1 gives a dominating extension
to include J ∪ {u∗}. Thus we can add u∗ to S, contradicting the maximality of 2r + s. So
S′ := {z ∈ S : w̃(z, u∗) = p} 6= ∅. Then we have

p(2p− 1) > H(u∗) ≥
∑
z∈S′

η(z)w̃(z, u∗) +
∑
x′∈K

η(x′)w̃(x′, u∗)
(22)

≥ 2|S′|p+ pγ(u∗),

implying together with (21) that

|S′| < 2p− 1− γ(u∗)

2
≤ p− 1

2
. (24)

If p = 3, then S′ is empty, a contradiction. So from now on assume p = 4. Then |S′| = 1,
i.e. there is a unique z∗ ∈ S with w̃(z∗, u∗) = 4, and

w(z, u∗) ≥ 1, for all z ∈ S \ {z∗}. (25)

The first inequality in (24) implies that γ(u∗) ≤ 4. Now (21) implies that in fact

γ(u∗) = 4.

Also, from

28 > H(u∗) ≥ 2w̃(z∗, u∗) + 4
∑
y∈R

w̃(y, u∗) +
∑
x′∈K

η(x′)w̃(x′, u∗)
(22)

≥ 8 + 4
∑
y∈R

w̃(y, u∗) + 16,

we deduce that
∑

y∈R w̃(y, u∗) = 0. In other words,

w(y, u∗) = 4, for all y ∈ R. (26)

Let T := {x ∈ K : w̃(x, u∗) > 0}. By definition,
∑

x∈T w̃(x, u∗) = γ(u∗) = 4, implying,
together with (20), that 2 ≤ |T | ≤ 4. If |T | ≥ 3, then the multiset {w(x, u∗) : x ∈ T} recording
the weights from u∗ to T is either {3, 3, 3, 3}, or {2, 3, 3}. In particular, by (26), w(y, u∗) ≥ 2 for
all y ∈ K ∪ R with equality at most once. Together with (25), this implies that we can delete
z∗ from S and add u∗ to R to obtain a set, J ∪ {u∗} \ {z∗}, having a dominating extension with
larger 2r + s, a contradiction.

Thus we may assume that |T | = 2. Let T =: {a, b} and α := w̃(a, u∗) and β := w̃(b, u∗). Then
α + β = γ(u∗) = 4; and Proposition 5.11(iii) implies that β = γT\{a}(u∗) = γK\{a}(u∗) ≥ γ(a)
and similarly α ≥ γ(b). We then arrive at the final contradiction:

28 > H(u∗) ≥
∑

x′∈{a,b,z∗}

η(x′)w̃(x′, u∗) ≥ α(7− γ(a)) + β(7− γ(b)) + 2 · 4

≥ α(7− β) + β(7− α) + 8 ≥ 8 + 7(α+ β)− 1

2
(α+ β)2 = 28,

completing the proof.
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6 Concluding remarks

In this paper, we construct complex Bollobás-Erdős graphs with varying rational densities,
providing, for over half of the cases, the structures predicted in Conjecture A. However, in
general, we show that Conjecture A does not hold for infinitely many cases. Several interesting
problems remain.

• We can bound the clique number of the complex Bollobás-Erdős graphs in Theorem 1.1
only when ` ≤ p/2, as the convexity of the regions (the dark ones in Figure 2) corresponding
to B2(ii) is essential for our argument. The obvious question is whether we can construct
a variant with density larger than 1

2 for which we can bound the clique number. This
would imply the existence of a graph as described in Conjecture A and hence would show
%p(q) ≥ %∗p(q) for all p ≤ q. In particular, do we have %3(6) = 1

3?

• We have shown that the conjectured Ramsey-Turán density %∗p(q) in Conjecture A falls
short for infinitely many cases. The smallest counterexample we have constructed is a
balanced almost 3-partite graph with density 1/4 between parts, showing that

%16(22) ≥ 1

6
>

5

32
= %∗16(22).

We then later found almost t-partite counterexamples for infinitely many choices of even t
in Theorem 1.3. As the above almost 3-partite construction for %16(22) differs substantially
from the ones in Theorem 1.3, we chose not to include its proof here.

Now that we know when q ≤ 2p+ 1, the asymptotic extremal graphs need not be almost
bipartite, as the next step towards understanding %p(q), it would be interesting to give a
characterisation of pairs (p, q) with q ≤ 2p+ 1 such that Conjecture A holds.

• For the upper bound, it would be nice to extend Theorem 1.4 to larger values of p.
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[19] P. Frankl and V. Rödl, Some Ramsey-Turán type results for hypergraphs, Combinatorica, 8 (4),
(1988), 323–332.

[20] J. Kim, Y. Kim and H. Liu, Two conjectures in Ramsey-Turán theory, SIAM J. Disc. Math., 33,
(2019), 564–586.
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