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Abstract. A recent result of Condon, Kim, Kühn and Osthus implies that for any r ≥
( 1
2

+ o(1))n, an n-vertex almost r-regular graph G has an approximate decomposition into
any collections of n-vertex bounded degree trees. In this paper, we prove that a similar result
holds for an almost αn-regular graph G with any α > 0 and a collection of bounded degree
trees on at most (1 − o(1))n vertices if G does not contain large bipartite holes. This result is
sharp in the sense that it is necessary to exclude large bipartite holes and we cannot hope for
an approximate decomposition into n-vertex trees.

Moreover, this implies that for any α > 0 and an n-vertex almost αn-regular graph G, with
high probability, the randomly perturbed graph G ∪G(n,O( 1

n
)) has an approximate decom-

position into all collections of bounded degree trees of size at most (1− o(1))n simultaneously.
This is the first result considering an approximate decomposition problem in the context of
Ramsey-Turán theory and the randomly perturbed graph model.

1. Introduction

Finding sufficient conditions for the existence of a subgraph of G isomorphic to a specific graph
H is a central theme in extremal graph theory. The earliest results of this type are Mantel’s
theorem [32] and Turán’s theorem [39] stating that an n-vertex graph G contains a complete
graph Kr on r vertices whenever G contains at least (1− 1

r−1)
(
n
2

)
edges. Erdős-Stone-Simonovits

theorem [17, 18] further generalises this into any small graph H.
On the other hand, the nature of problems changes if we consider a ‘large’ graph H whose

number of vertices is comparable (or equal) to that of G. One important cornerstone in this
direction is Dirac’s theorem [16] which shows that whenever we have δ(G) ≥ n

2 , the n-vertex
graph G contains a Hamilton cycle. Komlós, Sárközy and Szemerédi [27] proved that the
condition of δ(G) ≥ (1

2 + o(1))n ensures the containment of every n-vertex bounded degree
tree as a subgraph, and in [28], they extended this result to the trees with maximum degree
o( n

logn). Furthermore, Böttcher, Schacht and Taraz [11] found a minimum degree condition

guaranteeing the containment of an n-vertex graph H with sublinear bandwidth and bounded
maximum degree.

Another important research direction in extremal graph theory concerns with decomposition
of graphs. We say that a collection H = {H1, . . . ,Hs} of graphs packs into G if G contains
pairwise edge-disjoint copies of H1, . . . ,Hs as a subgraph. If H packs into G and e(H) = e(G)
(where e(H) =

∑
H∈H e(H)), then we say that the graph G has a decomposition into H. If

a packing covers almost all edges of the host graph G, then we informally say that G has an
approximate decomposition. The history of graph decomposition problems dates back to 19th
century when Kirkman characterised all n such that Kn decomposes into triangles and when
Walecki characterised all n such that Kn decomposes into Hamilton cycles. The latter was
extended to Hamilton decompositions of regular graphs G of high degree in a seminal work of
Csaba, Kühn, Lo, Osthus and Treglown [14]. Yet another generalisation, the famous Oberwolfach
conjecture states that for any n-vertex graph F consisting of vertex-disjoint cycles, Kn has a
decomposition into F , except a finitely many values of n. After many partial results, this was
finally resolved very recently for all large n by Glock, Joos, Kim, Kühn and Osthus [20].
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Further famous open problems in the area are the tree packing conjecture of Gyárfás and
Lehel, which says that for any collection T = {T1, . . . , Tn} of trees with |V (Ti)| = i, the complete
graph Kn has a decomposition into T , and Ringel’s conjecture which says that for any (n+ 1)-
vertex tree T , the complete graph K2n+1 has a decomposition into 2n + 1 copies of T . Lots of
research has been done regarding these conjectures, [9, 19, 26, 35]. Recently, Joos, Kim, Kühn
and Osthus [25] proved both conjectures for trees with bounded degree and larger n. A key
ingredient of their proof is a blow-up lemma for approximate decompositions of ε-regular graphs
G developed by Kim, Kühn, Osthus and Tyomkyn [26]. Allen, Böttcher, Hladkỳ and Piguet [1]
later proved a generalisation of this into graphs with bounded degeneracy and maximum degree
o( n

logn) in the context of approximate decomposition. Montgomery, Pokrovskiy and Sudakov

[36] found an approximate decomposition of K2n+1 into any (1− o(1))n-vertex tree T , proving
an approximate version of Ringel’s conjecture.

In [12], Condon, Kim, Kühn and Osthus determined the degree threshold for an almost
regular graph to have an approximate decomposition into a collection H of separable graphs
with bounded degree. In particular, one corollary of their result is that for any collection T
of n-vertex bounded degree trees, any almost-regular n-vertex graph G with degree at least
(1

2 + o(1))n has an approximate decomposition into T .
Most of the aforementioned results are sharp as there are graphs which do not satisfy the

conditions and do not have a desired subgraph or a desired (approximate)-decomposition. For
example, regarding the corollary on approximate tree decomposition, a complete balanced bi-
partite graph Kn

2
,n
2

or disjoint union of two complete graphs 2Kn
2

shows that the degrees of

G has to be at least (1
2 + o(1))n to contain a single copy of an n-vertex tree with unbalanced

bipartition, let alone an approximate decomposition. However, such examples have very special
structures. Hence it is natural to ask how the degree conditions change if we exclude graphs
with such special structures.

Another active line of research is to study these changes on the degree conditions when we
exclude a large independent set. Balogh, Molla and Sharifzadeh [3] initiated this by proving
that if an n-vertex G does not contain any linear-sized independent set and δ(G) ≥ (1

2 + o(1))n,

then G contains a triangle-factor. This weakens the bound δ(G) ≥ 2
3n from the Corrádi-Hajnal

theorem [13]. Nenadov and Pehova [37] further generalised this into a Kr-factor.
However, excluding large independent sets is not sufficient to guarantee a large connected

subgraph, e.g. 2Kn
2

does not contain an independent set of size three, and clearly it does not

contain any tree with more than n
2 vertices. This example suggests that it is necessary to exclude

large bipartite holes, rather than independent sets. An (s, t)-bipartite hole in a graph G consists
of two disjoint vertex sets S, T ⊆ V (G) with |S| = s, |T | = t such that there are no edges between
S and T in G. The bi-independence number α̃(G) of a graph G denotes the largest number r
such that G contains an (s, t)-bipartite hole for every pair of non-negative integers s and t with
s + t = r. Note that α̃(G) ≤ r implies that there is at least one edge between any two disjoint
vertex sets of size r, i.e. Kr,r * G. McDiarmid and Yolov [33] proved the existence of Hamilton
cycle on a graph G satisfying δ(G) ≥ α̃(G).

Our main theorem states that if G has sublinear bi-independence number and T consists
of bounded degree trees with at most (1 − o(1))n vertices, then the degree threshold for an
approximate tree-decomposition of Condon, Kim, Kühn and Osthus can be significantly lowered.
There is an obvious analogy between this theme and the Ramsey-Turán theory in which one
studies Turán type problmes for graphs with sublinear independence number. See e.g. [38] for
more of Ramsey-Turán theory. Here we replace a Turán-type conclusion with one along the lines
of approximate decomposition of G into large graphs.

Theorem 1.1. For all ∆ ∈ N, 0 < α, ν < 1, there exist ξ, η > 0 and n0 ∈ N such that the
following holds for all n ≥ n0. Suppose that G is an n-vertex graph such that dG(v) = (α± ξ)n
for all vertices v ∈ V (G) except at most ξn vertices and α̃(G) ≤ ηn. Then any collection T of
trees T satisfying the following conditions packs into G.

(i) |T | ≤ (1− ν)n and ∆(T ) ≤ ∆ for all T ∈ T ,
(ii) e(T ) ≤ (1− ν)e(G).
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Note that by considering a collection of paths of length (1− o(1))n, it is easy to see that the
almost regular degree condition on G is necessary. Theorem 1.1 is sharp in several point of views.
First, the condition on α̃(G) is necessary as embedding even a single copy of (1− o(1))n-vertex
tree into 2Kn

2
is impossible. Hence, α̃(G) is the correct parameter to consider. Second, the

trees in T having at most (1 − o(1))n vertices is also best possible. To see this, we consider a
copy of slightly unbalanced complete bipartite graph with parts X1 of size 1

2(1 − ξ)n and X2

of size 1
2(1 + ξ)n. We put a copy of random graphs G( (1−ξ)n

2 , ξ2),G( (1+ξ)n
2 , ξ2) in X1 and X2,

respectively. Let G be the resulting graph and let T be a collection of 1
2(1 − ν)n copies of

n-vertex paths. Then G satisfies all the conditions in Theorem 1.1 except that the trees are
now spanning. Even more, it satisfies a stronger condition that α̃(G) = O(log n) and all vertices
in G has degree (1

2 ± ξ)n. However, as each path has the unique bipartition which is almost
balanced, each path uses at least ξn− 2 edges inside the bigger part X2. Thus, we need at least

(ξn − 2) (1−ν)n
2 edges inside the bigger part in order to pack T into G. Since G( (1+ξ)n

2 , ξ2) only

contains at most ξn2

3 edges, T does not pack into G if ν < 1
3 .

As the last example contains two vertices u, v with degree difference at least ξn
2 , one might

speculate that it is plausible to obtain a packing of spanning trees into G if one additionally
assume that G is much closer to being regular. However, the following example shows that
we still need more conditions. Consider a graph G obtained from Kn

2
,n
2

by putting a copy of

G(n2 , o(
logn
n )) in each part X1, X2, respectively. It is easy to see that α̃(G) = o( n√

logn
). Let

T be the collection of 1
4(1− ν)n copies of n-vertex complete ternary tree T of height O(log n).

Csaba, Levitt, Nagy-Győrgy and Szemerédi [15] showed that any embedding of such complete
ternary tree T must use at least 1

17 log n non-crossing edges inside parts Xi of G. Thus, we

need at least 1
68(1 − ν)n log n non-crossing edges to obtain a packing of T into G. However, G

contains at most o(n log n) non-crossing edges. Hence, this shows that it is necessary that the
trees in T have at most (1− o(1))n vertices. It is not difficult to modify the above example to
obtain a regular graph G (rather than just close to being regular) with α̃(G) = o(n) which does
not admit an approximate decomposition into complete ternary trees.

Our theorem has a corollary in randomly perturbed graph model which combines extremal
and probabilistic aspects in one graph model. Bohman, Frieze and Martin [7] introduced the
concept of randomly perturbed graph model by proving that given any fixed α > 0 there exists a
constant C such that for any n-vertex graph G with δ(G) ≥ αn, the graph G∪G(n, Cn ) contains
a Hamilton cycle with high probability. This sparks numerous research see e.g. [4, 5, 6, 8, 10,
21, 24, 29, 30, 31, 34].

The following corollary is a direct consequence of Theorem 1.1. It is easy to see that for large
constant C, the random graph G(n, Cn ) does not contain a (C−1/3n,C−1/3n)-bipartite hole,

hence α̃(G ∪G(n, Cn )) ≤ 2C−1/3n.

Corollary 1.2. For all ∆ ∈ N, 0 < α, ν < 1, there exist ξ0 > 0 and n0, C ∈ N such that
the following holds for all ξ ≤ ξ0 and n ≥ n0. Suppose that G is an n-vertex graph such that
dG(v) = (α± ξ)n for all vertices v ∈ V (G) except at most ξn vertices and G(n, Cn ) is a binomial
random graph on the vertex set V (G). Then the following holds with high probability. Any
collection T of trees T satisfying the following conditions packs into G ∪G(n, Cn ).

(i) |T | ≤ (1− ν)n and ∆(T ) ≤ ∆ for all T ∈ T ,
(ii) e(T ) ≤ (1− ν)e(G).

Note that the above statement is universal in the sense that with high probability, this holds for
every collection T simultaneously. Corollary 1.2 is sharp in the following senses. By considering
a disconnected graph G, it is easy to see that the probability O( 1

n) is best possible. Also the trees
having size (1−o(1))n is best possible. The above first example obtained from slightly unbalanced
complete bipartite graph show that we need G(n,Ω(1)) in order to obtain an approximate
decomposition of almost (α ± ξ)n-regular graphs into spanning trees with bounded maximum

degree, and the second example with complete ternary trees shows that at least G(n,Ω( logn
n ))
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is required for obtaining an approximate decomposition of regular graphs into spanning trees.
Motivated by this second example, we ask the following question.

Question 1.3. Determine the optimal function f satisfying the following. For given α, ν > 0, if
G is an n-vertex bαnc-regular graph and α̃(G) ≤ o(f(n)). Let T be a collection trees T satisfying
the following conditions.

(i) |T | ≤ n and ∆(T ) ≤ ∆ for all T ∈ T ,
(ii) e(T ) ≤ (1− ν)e(G).

Then T pack into G.

We can consider the same question of finding the optimal function g(n) by replacing the graph
G with G′∪G(n, o(g(n))) and an arbitrary n-vertex bαnc-regular graph G′. Since the regularity
lemma does not distinguish between an (α± o(1))n-regular graph and an αn-regular graph, the
example we obtained from K(1−ξ)n,(1+ξ)n shows that Question 1.3 may not be proved by the
approach in this paper which is based on the regularity lemma.

Our theorem also has further applications on tree packing conjectures, such as Ringel’s con-
jecture in the setting of almost regular graphs. It implies that if α > 0 and G is an almost
αn-regular (2n + 1)-vertex graph with α̃(G) = o(n), and T is an n-vertex tree with bounded
maximum degree, then G has an approximate decomposition into (1−o(1))αn copies of T . Same
statement also holds for G ∪G(n, Cn ) with any almost αn-regular (2n+ 1)-vertex graph G.

2. Preliminaries

Denote [t] := {1, . . . , t}. If we claim that a result holds for 1/n� a� b� 1, this mean that
there exist non-decreasing functions f : (0, 1]→ (0, 1] and g : (0, 1]→ (0, 1] such that the result
holds for all 0 ≤ a, b ≤ 1 and all n ∈ N with a ≤ f(b) and 1/n ≤ g(a). We may omit floors and
ceilings when they are not essential. In this paper, graphs are simple undirected finite graphs
and multigraphs are graphs with potentially parallel edges without loops.

Given collection of trees T , denote by |T | the number of trees in T and e(T ) :=
∑

T∈T e(T ).
Let G = (V,E) be a graph and A,B ⊆ V (G) satisfying A ∩ B = ∅. Denote by EG(A,B) the
set of edges in G between A and B. Let eG(A,B) := |EG(A,B)|. For sets X,A ⊆ V (G), we
define NG,A(X) := {w ∈ A : uw ∈ E(G) for all u ∈ X}. In particular, we have NG,A(∅) = A,
and let NG(X) := NG,V (G)(X). Let dG,A(X) = |NG,A(X)|. We write dG,A(v1, . . . , vi) for

dG,A({v1, . . . , vi}). Denoted by Nd
G(X) ⊆ V (G)\X the set of vertices of distance at most d

from a vertex in a set X ⊆ V (G). Note that, in this definition, NG(X) and N1
G(X) are in

general different for |X| > 1. For a tree T and a vertex x, let (AT (x), BT (x)) be the unique
vertex partition into two independent sets satisfying x ∈ AT (x). Denote by G \ A the induced
subgraph on V (G) \ A, and by G − E the spanning subgraph with edge set E(G) − E, where
A ⊆ V (G) and E ⊆ E(G). For a graph G and two disjoint vertex subsets A and B, the density
of (A,B) is defined as

denG(A,B) :=
eG(A,B)

|A||B|
.

For a rooted tree (T, r) with the root r, let T (u) be the subtree of T consisting of all vertices
v such that the path between r and v contains u. For a vertex x ∈ V (T ), denoted by aT (x)
the parent of x. Denoted by Dk

T (x) the set of all descendents y of x with distance exactly k in

the tree T , and by D≤kT (x) be the set of descendents y of x with distance at most k. We write
DT (x) := D1

T (x). For two functions φ : A → B and φ′ : A′ → B′ with A ∩ A′ = ∅, we define
φ ∪ φ′ as a function from A ∪A′ to B ∪B′ such that for each x ∈ A ∪A′,

(φ ∪ φ′)(x) :=

{
φ(x) if x ∈ A
φ′(x) if x ∈ A′.

We will use well-known Chernoff’s inequality and Azuma’s inequality. As our applications
are very simple and standard, we will omit the detailed computation. See [2, 22, 23] for the
statements of Chernoff’s inequality and Azuma’s inequality. The concept of (ε, d)-regularity and
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Szemerédi’s regularity lemma will be useful for us. A bipartite graph G with vertex partition
(A,B) is (ε, d)-regular if for all sets A′ ⊆ A, B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have

|denG(A′, B′)− d| < ε.

A bipartite graph G is ε-regular if G is (ε, d)-regular for some d. Additionally, a bipartite
graph G is (ε, d)-super-regular if G is (ε, d)-regular with dG(a) = (d ± ε)|B| for a ∈ A and
dG(b) = (d ± ε)|A| for b ∈ B. The following three well-known lemmas will be useful when we
modify a given ε-regular partition.

Proposition 2.1. Let 0 < ε � d ≤ 1. Suppose that G is an (ε, d)-regular bipartite graph with

vertex partition (A,B). Let B′ ⊆ B be a set with |B′| ≥ ε1/3|B|. Then A contains at least

(1− ε1/2)|A| vertices u satisfying dG,B′(u) ≥ (d− ε1/2)|B′|.

Proposition 2.2. Let 0 < ε � d ≤ 1. Suppose that G is an (ε, d)-regular bipartite graph
with vertex partition (A,B). Then, there exists sets A′ ⊆ A,B′ ⊆ B with |A′| ≥ (1 − 2ε)|A|
and |B′| ≥ (1− 2ε)|B| such that G[A′, B′] is an (3ε, d)-super-regular bipartite graph with vertex
partition (A′, B′).

Proposition 2.3. Let 0 < ε � d ≤ 1. Suppose that G is an (ε, d)-regular bipartite graph
with vertex partition (A,B). Let E be a set of edges with |E| ≤ ε10|A||B|. Then G − E is

(ε1/2, d)-regular.

The following two lemmas will be useful for finding some edge/vertex partition of graphs. We
omit the proofs as they easily follow from a standard random splitting argument.

Lemma 2.4. Let 0 < 1/n � ε � d, 1/s, 1/t < 1. Suppose that G is an (ε, d)-regular bipartite
graph with vertex partition (A,B) satisfying |A|, |B| ≥ n. Let p1, . . . , ps ∈ [0, 1] be values such
that p1 + · · · + ps ≤ 1. Then there exist edge-disjoint spanning subgraphs G1, . . . , Gs of G such
that Gi[A,B] is (2ε, dpi)-regular for each i ∈ [s].

Proposition 2.5. Let 0 < 1/n� ε ≤ d ≤ 1. Suppose that G is an (ε, d)-super-regular bipartite
graph with vertex partition (A,B) satisfying |A|, |B| ≤ n. Let a1, a2, b1, b2 ∈ N be numbers such
that a1, a2, b1, b2 ≥ εn, a1 + a2 = |A|, and b1 + b2 = |B|. Then there exists a partition A1, A2

of A and B1, B2 of B such that for any i, j ∈ [2], we have |Ai| = ai, |Bj | = bj and the graph

G[Ai, Bj ] is (ε1/2, d)-super-regular.

The following is a version of well-known Szemerédi’s regularity lemma.

Lemma 2.6 (Szemerédi’s regularity lemma). Let M,M ′, n ∈ N and 0 < 1/n � 1/M �
1/M ′, ε ≤ 1. Then for any n-vertex graph G, there exists a partition of V (G) into V0, V1, ..., Vr
and a spanning subgraph G′ ⊆ G satisfying the following:

(i) M ′ ≤ r ≤M,
(ii) |V0| ≤ εn,

(iii) |Vi| = |Vj | for all i, j ∈ [r],
(iv) dG′(v) > dG(v)− (d+ ε)n for all v ∈ V (G),
(v) e(G′[Vi]) = 0 for all i ∈ [r],

(vi) For all i, j with 1 ≤ i ≤ j ≤ r, the graph G′[Vi, Vj ] is either empty or (ε, di,j)-regular for
some di,j ∈ [d, 1].

The following two lemmas will be useful to utilise the assumption on bi-independence number.

Lemma 2.7. Let 0 < 1/n � η � 1. Suppose G is an n-vertex graph with α̃(G) ≤ ηn. If W

and W ′ are two (not necessarily disjoint) subsets of V (G) with size at least 2η1/3n, then all but

at most 2ηn vertices w in W satisfies dG,W ′(w) ≥ η−1/2.

Proof. Suppose that the lemma does not hold, then there exists a set Z ⊆ W of exactly 2ηn
vertices w satisfying dG,W ′(w) < η−1/2. Then the set Z ′ := W ′ \ (Z ∪N1

G(Z)) contains at least

η1/3n − (η−1/2 + 1) · 2ηn ≥ 2ηn vertices. Hence eG(Z,Z ′) = 0, contradicting α̃(G) ≤ ηn. This
proves the lemma. �
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Lemma 2.8. Let 0 < 1/n� η � ξ � 1. Suppose that G is an n-vertex graph with α̃(G) ≤ ηn.

Then there exists a spanning subgraph H of G with α̃(H) ≤ 2η1/3n and ∆(H) ≤ ξn.

Proof. For each edge e of G, we include it in H independently at random with probability ξ/2. A
standard application of Chernoff’s inequality implies that, with probability at least 0.9, we have
dH(v) ≤ ξn for all v ∈ V (G). We consider two disjoint sets A,B ⊆ V (G) with |A| = |B| = η1/3n.
By lemma 2.7, we have

E[eH(A,B)] =
ξ

2
· eG(A,B) ≥ ξ

2
· η−1/2 · (η1/3n− 2ηn) ≥ η−1/7n.

A standard application of Chernoff’s inequality implies that with probability at least 1 −
exp(−η−1/10n), we have eH(A,B) > 0. By a union bound, with probability at least 1 −
22n · exp(−η−1/10n) ≥ 0.9, we have that eH(A,B) > 0 for all disjoint sets A,B ⊆ V (G) with

|A| = |B| = η1/3n. This implies that α̃(H) ≤ 2η1/3n. Hence, with probability at least 0.8, H
has the desired properties. �

The following proposition from [25] provides a useful partition of a tree.

Proposition 2.9. [25] Let n,∆ ∈ N\{1} and n ≥ t ≥ 1. Then for any rooted tree (T, r) on
n vertices with ∆(T ) ≤ ∆, there exists a collection S of pairwise vertex-disjoint rooted subtrees
such that the following holds.

(1) S ⊆ T (x) for every (S, x) ∈ S.
(2) t ≤ |S| ≤ 2∆t for every (S, x) ∈ S.
(3)

⋃
(S,x)∈S V (S) = V (T ).

The following two results are from [26]. The first lemma is a special case of Lemma 7.1 in
[26].

Lemma 2.10. [26] Let n,∆, k, s ∈ N and 0 < 1/n � ε, 1/k � 1. Suppose that 0 < ζ < 1 with

s2/3 ≤ ζk. Let G be an 2n-vertex balanced complete bipartite graph with the vertex partition

V1 and V2. Suppose that the graph Lj is a subgraph of G with the vertex partition Xj
1 and Xj

2
such that ∆(Lj) ≤ ∆ for each j ∈ [s]. Suppose that we have

∑s
j=1 e(Lj) ≤ (1− 2ζ)kn and sets

W j
i ⊆ Xj

i satisfies |W j
i | ≤ εn for all j ∈ [s] and i ∈ [2]. Then there exists a k-regular spanning

subgraph H of G and a function φ which packs L := {L1, . . . , Ls} into H such that φ(Xj
i ) ⊆ Vi

and φ(W j
i ) ∩ φ(W j′

i ) = ∅ for distinct j, j′ ∈ [s] and i ∈ [2].

Theorem 2.11 (Blow-up lemma for approximate decompositions [26]). Let n, k ∈ N and 0 <
1/n� ε� α, d, d0, 1/k ≤ 1. Let s ∈ N be a number such that s ≤ (1− α

2 )dnk . Suppose that the
following properties hold.

(A1)2.11 G is a (ε, d)-super-regular graph with the vertex partition V1 and V2.
(A2)2.11 H = {H1, . . . ,Hs}, where each Hi is an k-regular bipartite graph with the vertex partition

X1 and X2.
(A3)2.11 For all j ∈ [s] and i ∈ [2], there is a set Y j

i ⊆ Xi with |Y j
i | ≤ εn and for each y ∈ Y j

i ,
there is a set Aiy ⊆ Vi with |Aiy| ≥ d0n.

(A4)2.11 Γ is a graph with V (Γ) ⊆ [s]× V (G) and ∆(Γ) ≤ (1− α)d0n such that for each (i, x) ∈
V (Γ) and i′ ∈ [s], we have |{x′ ∈ V (G) : (i′, x′) ∈ NΓ(i, x)}| ≤ k2. Moreover, for each
i ∈ [s] and j ∈ [2], we have |{(i, x) ∈ V (Γ) : x ∈ Xj}| ≤ εn.

Then there exists a function φ packing H into G such that for all j, j′ ∈ [s] and i ∈ [2]

(B1)2.11 φ(V (Hj) ∩Xi) ⊆ Vi.
(B2)2.11 φ(y) ∈ Aiy for all y ∈

⋃
j∈[s] Y

j
i .

(B3)2.11 For all (j, x)(j′, y) ∈ E(Γ), we have φ(x) 6= φ(y).

3. Proof of Theorem 1.1

In this section, we prove our main theorem assuming the following lemma which will be
proved in Section 4. This lemma states that if G admits a certain ε-super-regularity partition
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and α̃(G) = o(|V (G)|), then we can find an approximate decomposition of G into arbitrary
bounded degree (1− o(1))|V (G)|-vertex trees. Here, G consists of sets Vs,i and Us,i which form
an ε-super-regular matching structure. The reduced graph for this ε-regular partition is not
connected, but the condition on α̃(G[U ]) provides a connection necessary to embed trees.

Lemma 3.1. Suppose 0 < 1/n � 1/M � 1/r, ε � d � ν, 1/∆ < 1. Let G be a graph with a
vertex partition U ∪ V and let {Us,i : (s, i) ∈ [r] × [2]} be a partition of U and {Vs,i : (s, i) ∈
[r]× [2]} be a partition of V . Let T be a collection of trees on at most 2(1− ν)rn vertices with
maximum degree at most ∆. Assume that the following properties hold.

(A1)3.1 For each s ∈ [r], each of four graphs G[Vs,1, Vs,2], G[Us,1, Us,2], G[Us,1, Vs,2] and G[Vs,1, Us,2]
are (ε, d)-super-regular with |Vs,1| = |Vs,2| = n and |Us,1|, |Us,2| ≥ εn.

(A2)3.1 α̃(G[U ]) ≤M−6n.
(A3)3.1 e(T ) ≤ (1− ν)rdn2.

Then there exists a map φ packing T into G such that dφ(T )(u) ≤ ∆M for each u ∈ U .

We start the proof of Theorem 1.1. For given ν and α, we choose constants n0, η, ξ, ε, t such
that

0 <
1

n0
� η � ε� ξ � 1

t
� ν, α < 1. (3.1)

Let n ≥ n0. By deleting exactly ξn vertices with degree furthest from αn, we can assume that
G is an (1− ξ)n-vertex graph such that every vertex v ∈ V (G) satisfies dG(v) = (α± 2ξ)n. By

Lemma 2.8, we can find a spanning subgraph H of G with α̃(H) ≤ 2η1/3n and ∆(H) ≤ ξn. By
replacing G with G− E(H), assume that G and H are edge-disjoint graphs and

α̃(H) ≤ 2η1/3n and dG(v) = (α± 3ξ)n for all v ∈ V (G). (3.2)

Suppose that T is a collection of trees satisfying (i) and (ii). Now we aim to construct (not
disjoint) sets U1, . . . , Uκ, V 1, . . . , V κ and edge-disjoint subgraphs G1, . . . , Gκ of G. We will also
partition T into κ subcollections of trees T1, . . . , Tκ, and pack the trees of Ti into Gi ∪H[U i].

Step 1. Partitioning G. First, we will partition G into graphs with appropriate structure
which are suitable for applications of Lemma 3.1. We apply Szemerédi’s regularity lemma
(Lemma 2.6) with (ε, 1

t , ε
−1, η−1/100) playing the role of (ε, d,M ′,M) to obtain a partition

V ′0 , . . . , V
′
r of V (G) and a spanning subgraph G′ ⊆ G satisfying the following.

(R1) η1/100 ≤ 1
r ≤ ε,

(R2) |V ′0 | ≤ εn,
(R3) |V ′i | = |V ′j | = (1± ε)nr for all i, j ∈ [r],

(R4) dG′(v) > dG(v)− 2n
t for all v ∈ V (G)

(R5) e(G′[V ′i ]) = 0 for all i ∈ [r],
(R6) for any i, j ∈ [r], the graph G′[V ′i , V

′
j ] is either empty or (ε, di,j)-regular for some di,j =

dj,i ∈ [1
t , 1].

Let R be a reduced graph with

V (R) = [r] and E(R) := {ij : eG′(V
′
i , V

′
j ) > 0}.

As ij ∈ E(R) if and only if G′[V ′i , V
′
j ] is (ε, di,j)-regular with di,j ≥ 1/t, for each i ∈ [r], we have∑

j∈NR(i)

di,j =
∑

j∈NR(i)

(
eG′(V

′
i , V

′
j )

|V ′i ||V ′j |
± ε

)
(R5)
=

∑
v∈V ′i

dG′,V (G)\V0(v)

|V ′i |2
± εr

(R2),(R4)
=

1

|V ′i |2
∑
v∈V ′i

(
dG(v)± 3n

t

)
± εr (3.2)

=
(α± 3ξ ± 3

t )n

|V ′i |
± εr (R3)

=

(
α± 5

t

)
r(3.3)

Now we will find edge-disjoint subgraphs of G′ each of which admits ε-regular matching struc-
ture. For each ij ∈ E(R), letting ti,j := bdi,j ·tc, we use Lemma 2.4 with G[V ′i , V

′
j ], ti,j ,

1
di,jt

play-

ing the roles of G, s, p1 = · · · = ps, respectively, to obtain edge-disjoint subgraphs E1
i,j , . . . , E

ti,j
i,j
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of G′[V ′i , V
′
j ]. For each ij ∈ E(R) and ` ∈ [ti,j ],

E`i,j is

(
2ε,

1

t

)
-regular. (3.4)

We will take an appropriate unions of these graphs E`i,j to form ε-regular matching structures.

Let R∗ be a multi-graph obtained by replacing each edge ij of R with ti,j edges e1
i,j , . . . , e

ti,j
i,j

between the vertices i and j. Let Φ be a map from E(R∗) to {E`i,j : ` ∈ [ti,j ], ij ∈ E(R)} such

that Φ(e`i,j) = E`i,j . For each i ∈ [r], we have

dR∗(i) =
∑

j∈NR(i)

ti,j =
∑

j∈NR(i)

(di,jt± 1)
(3.3)
=

(
α± 6

t

)
tr. (3.5)

Let

κ := (α− t−1/3)tr. (3.6)

By applying Vizing’s theorem to R∗, we obtain (α + 6
t )tr + t edge-disjoint (possibly empty)

matchings covering all edges of R∗. By (3.5) and the pigeonhole principle, at least κ matchings

contain at least (1− t−1/3) r2 edges. Let M1, . . . ,Mκ be edge-disjoint matchings of R∗ of size at

least (1− t−1/3) r2 , thus for each i ∈ [κ],

(1− t−1/3)
r

2
≤ |E(Mk)| ≤

r

2
. (3.7)

For k ∈ [κ], we write ij ∈ E(Mk) if Mk contains one of e1
i,j , . . . , e

ti,j
i,j . For each k ∈ [κ], we

define a graph Gk with

V (Gk) :=
⋃

i∈V (Mk)

V ′i and E(Gk) :=
⋃

e∈E(Mk)

Φ(e).

For each k ∈ [κ] and ij ∈ E(Mk), apply Proposition 2.2 to obtain sets W k
i ⊆ V ′i and W k

j ⊆ V ′j
such that both W k

i and W k
j have size (1 ± 3ε)nr and Gk[W

k
i ,W

k
j ] is (3ε, 1

t )-super-regular. We

further apply Proposition 2.5 toGk[W
k
i ,W

k
j ] for each ij ∈ E(Mk) with a1 = b1 = n• := (1−ε1/20)n

r

and a2 = |W k
i | − n•, b2 = |W k

j | − n•. This yields a partition V k
i ∪ Uki of W k

i and a partition

V k
j ∪ Ukj of W k

j satisfying the following.

For each ij ∈ E(Mk), the graphs Gk[V
k
i , V

k
j ], Gk[V

k
i , U

k
j ], Gk[U

k
i , V

k
j ] and Gk[U

k
i , U

k
j ]

are all (ε1/3, 1
t )-super-regular and |V k

i | = |V k
j | = n•.

(3.8)

As Mk is a matching, V k
i , U

k
i are well-defined for each i ∈ V (Mk), and we further have

|Uki | ≥ (1− 3ε)
n

r
− n• ≥

ε1/20n

2r
. (3.9)

Note that the two sets V k
i and V k′

i (and similarly Uki and Uk
′

i ) are in general different for k 6= k′.
Let V k :=

⋃
i∈V (Mk) V

k
i and Uk :=

⋃
i∈V (Mk) U

k
i .

Step 2. Applications of Lemma 3.1. We arbitrarily partition T into κ collections T1, . . . , Tκ
such that for all k ∈ [κ], we have

e(Tk) <
1

κ
(1− 2ν

3
)e(G) ≤ 1

2rt
(1− ν

2
)n2. (3.10)

We are ready to construct a desired embedding using Lemma 3.1. For each k ∈ [κ], we will
pack Tk into Gk ∪H[Uk]. Since G1, . . . , Gκ are edge-disjoint, we only have to be careful about
disjointness of edges whose images are in H. Suppose that for some k ∈ [κ], we have constructed

a function φk−1 packing
⋃
k′∈[k−1] Tk′ into

⋃
k′∈[k−1]

(
Gk′ ∪H[Uk

′
]
)

satisfying the following,

(G1)k−1 ∆(Hk−1) ≤ η−1/70(k − 1), where E(Hk−1) :=
⋃
k′∈[k−1] φk−1(Tk′) ∩ E(H).
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Note that Hk−1 is the graph consisting of all edges of H which are already used for previous
packing. Observe that (G1)0 trivially holds with an empty packing φ0. Let m := |Mk| ≥
(1− t−1/3) r2 and E(Mk) =: {js,1js,2 : s ∈ [m]}. For each (s, i) ∈ [m]× [2], for brevity, let

V k
s,i := V k

js,i and Uks,i := Ukjs,i .

Let

G∗k := Gk[U
k ∪ V k] ∪

(
E(H[Uk])− E(Hk−1)

)
.

We apply Lemma 3.1 with the following objects and parameters to pack trees in Tk into G∗k.

object/parameter G∗k V k
s,i Uks,i m n• ε1/6 Tk ∆ 1

t
ν
4 η−1/80

playing the role of G Vs,i Us,i r n ε T ∆ d ν M

For this application, we need to check the conditions of Lemma 3.1 hold. By (3.1) and (R1),
we have the hierarchy of constants required in Lemma 3.1 and for each (s, i) ∈ [r] × [2], we

have |V k
s,i| = n• and |Uks,i| ≥ ε1/10n• by (3.9). Moreover, each tree T in Tk contains at most

(1− ν)n ≤ 2(1− ν
3 )mn• vertices by (3.7) since 1

t � ν.
Now we show that (A1)3.1-(A3)3.1 hold. Using (G1)k−1 and the fact that k ≤ κ, we have

∆(Hk−1) ≤ η−1/70k
(3.6)

≤ η−1/60. (3.11)

Then Proposition 2.3 together with (3.8) and (3.11) implies that G∗k[U
k
s,1, U

k
s,2], G∗k[V

k
s,1, U

k
s,2]

and G∗k[U
k
s,1, V

k
s,2] are all (ε1/6, 1

t )-super-regular. Since Hk−1 is edge-disjoint from Gk, and Uk

is disjoint from V k, we have G∗k[V
k
s,1, V

k
s,2] = Gk[V

k
s,1, V

k
s,2], thus it is (ε1/3, 1

t )-super-regular by

3.8. We conclude that (A1)3.1 holds. By (3.2), we have α̃(H[Uk]) ≤ α̃(H) ≤ 2η1/3n. Hence

Lemma 2.7 implies that for any sets W,W ′ ⊆ Uk with |W |, |W ′| ≥ η1/10n, at least half of vertices

w in W satisfies dH[Uk],W ′(w) ≥ η−1/6. By (3.11), we have dG∗k,W ′(w) ≥ η−1/6 − η−1/60 > 0.

Hence, G∗k does not contain any (η1/10n, η1/10n)-bipartite holes and α̃(G∗k) ≤ 2η1/10n, (A2)3.1

holds. Since (3.10) implies that

e(Tk)
(3.10)

≤ 1

2rt
(1− ν

2
)n2 ≤ 1

2rt
(1− ν

3
)(rn•)

2 ≤ r

2
(1− ν

3
)
1

t
n2
•

(3.7)

≤ (1− ν

4
)
|Mk|
t
n2
•,

we conclude that (A3)3.1 holds. Hence, Lemma 3.1 gives a map φ′ packing Tk into G∗k satisfying

dφ′(Tk)(u) ≤ ∆η−1/80 ≤ η−1/70. Let φk := φk−1 ∪ φ′, then (G1)k holds. Moreover, by the

definition of Hk−1, φk packs all graphs in
⋃k
k′=1 Tk′ into

⋃k
k′=1

(
Gk′ ∪H[Uk

′
]
)

. By repeating

this process for each k = 1, . . . , κ, we obtain a function φκ which packs all trees in T into G.
This finishes the proof of Theorem 1.1.

4. Proof of Lemma 3.1

We assume that G[V ] =
⋃
s∈[r]G[Vs,1, Vs,2] as we will not use any other edges in V . However,

we will use some edges between Us,i and Us′,i′ with s 6= s′ which are guaranteed by (A2)3.1.

We may assume that ν < 1/3 and ∆ ≥ 2. By combining two trees of order at most 2
3rn with

maximum degree at most ∆ into a tree with maximum degree at most ∆ if necessary, we can
assume that all trees in T has at least 2

3rn vertices except possibly one. By adding some edges

to at most one tree, we may assume that all trees in T have at least 2
3rn vertices and we have

|T | ≤ (1− ν)rdn2 + 2rn/3

2rn/3
+ 1 ≤ 3n. (4.1)

Step 1. Preparation of trees. First, we want to partition each tree T ∈ T into two forests,
so that we can later embed each forest into G in different ways. For each T ∈ T , we choose
an arbitrary vertex rT ∈ V (T ) as a root. After applying Proposition 2.9 with T, rT , n,∆ and

M−1/3n playing the roles of T, r, n,∆ and t, respectively, we obtain a collection ST of pairwise
vertex-disjoint rooted subtrees such that the followings hold.
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(S1) S ⊆ T (x) for every (S, x) ∈ ST .
(S2) M−1/3n ≤ |S| ≤ 2∆M−1/3n for every (S, x) ∈ ST . Moreover 1

3∆M
1/3r ≤ |ST | ≤ 2rM1/3.

(S3)
⋃

(S,x)∈ST V (S) = V (T ).

Now we will partition each T ∈ T into a small forest CT and a large forest FT and embed CT
into G[U ] and FT into G[V ]. For all T ∈ T and i ∈ [2], we let

C0
T := {x : (S, x) ∈ ST }, CiT :=

⋃
x∈C0

T

Di
S(x), CT := T [C0

T ∪ C1
T ∪ C2

T ] and FT := T \ V (CT ).

Since V (CT ) consists of roots of (S, x) ∈ ST and their children and grandchildren in S, a vertex
x in C0

T has neighbour y in V (FT ) only when y is a parent of x in T and the vertices in C1
T

has no neighbours in V (FT ). Now we will partition FT into forests F 1
T , . . . , F

r
T such that each

component of FT lies entirely in one of F 1
T , . . . , F

r
T and for each s ∈ [r], each F sT has a vertex

partition XT,s
1 ∪XT,s

2 satisfying the following.

(S4) For all T ∈ T , s ∈ [r] and i ∈ [2], we have |XT,s
i | =

1
2r |V (T )| ± εn ≤ (1− 3ν/4)n.

(S5) For each (S, x) ∈ ST , there exists (s, i) ∈ [r]× [2] such that AS(x) \ V (CT ) ⊆ XT,s
i and

BS(x) \ V (CT ) ⊆ XT,s
3−i.

To see that such a partition exists, we choose (s, i) ∈ [r] × [2] independently and uniformly at

random for each (S, x) ∈ ST , and add AS(x) \ V (CT ) into XT,s
i and BS(x) \ V (CT ) into XT,s

3−i.
Then a simple application of Azuma’s inequality shows that (S4) holds with probability at least
0.9. Additionally, for each (S, x) ∈ ST , it is clear that (S5) holds. Thus, there exists a vertex
partition satisfying both (S4) and (S5).

Step 2. Packing small forests CT into G[U ]. We aim to later embed the vertices in XT,s
i

into Vs,i. For this, we first embed CT into G[U ] accordingly. Let (S1, x1), . . . , (Sp, xp) be an
ordering of

⋃
T∈T ST such that for each T ∈ T , all elements of ST appear consecutive in the

ordering and (S, x) comes before (S′, x′) if x is an ancestor of x′ and (S, x), (S′, x′) ∈ ST for a
T ∈ T . For each q ∈ [p], let

Cq := Sq[D
≤2
Sq

(xq)] and Wq :=
⋃
j∈[q]

V (Cj).

We embed trees Cq into G[U ] using the following claim.

Claim 1. For each q ∈ [p] ∪ {0}, there exists a function φq packing {Cj : j ∈ [q]} into G[U ]
satisfying the following for all T ∈ T and (s, i) ∈ [r]× [2].

(Φ1)q For all y ∈ XT,s
i and x ∈ NT (y) ∩Wq, we have φq(x) ∈ Us,3−i.

(Φ2)q For each y ∈ XT,s
i with NT (y)∩Wq = {y1, . . . , yb} 6= ∅, we have dG,Vs,i(φq(y1), . . . , φq(yb)) ≥

(d− ε1/2)bn.
(Φ3)q For each vertex u ∈ U , we have |{x ∈Wq : φq(x) = u}| ≤M .

Proof. We use induction on q. The statement is trivial if q = 0. Assume q ≥ 0 and assume we
have φq satisfying (Φ1)q–(Φ3)q. Let (S, x) := (Sq+1, xq+1). Let T ∈ T be the tree containing S

and let t ∈ [2M1/3r]∪{0} be the largest number such that (Sq−t+1, xq−t+1), . . . , (Sq+1, xq+1) all
belong to ST . By (S5), we let (s, i) ∈ [r]× [2] be the index such that

BS(x) \ V (Cq+1) ⊆ XT,s
i . (4.2)

Let y := aT (x), if exists. Note that, by the choice of the ordering (S1, x1), . . . , (Sp, xp), the
vertex y (if exists) belongs to one of Sq−t+1, . . . , Sq, thus either y ∈Wq or V (FT ).

If y ∈Wq, then let b := 0. If y ∈ V (FT ), then we let

{y1, . . . , yb} := NT (y) ∩Wq.
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In other words, yi is either a child of y which is a root of some (Sj , xj) with j ∈ [q] or the parent
aT (y) of y if aT (y) is in Wq ∩ C2

T . Note that b could be zero. Let

E :=
⋃
j∈[q]

φq(E(Cj)) and G′ := G− E.

In other words, E is the set of all edges in G which have already been used. Since each tree in
T has maximum degree at most ∆, (Φ3)q implies that every vertex of G is incident to at most
∆M edges of E. Note that (4.1) and (S2) imply that

|E| ≤
∑
T∈T

∑
(S′,x′)∈ST

|S′| ≤ 3n · 2rM1/3 · 2∆2 = 12M1/3∆2rn.

Let

U ′ := {u ∈ U : |{x ∈Wq : φq(x) = u}| = M} and U ′′ :=
⋃

j∈[q]\[q−t]

φj(V (Cj)).

So U ′ is a collection of vertices that are “fully-used” and U ′′ is a collection of the vertices which
is an image of a vertex of the current tree T . In order to obtain (Φ3)q+1 as well as to eventually
make φq+1 injective on each forest FT , we want to avoid embedding any vertices in Cq+1 into

U ′ ∪ U ′′. As every vertex u ∈ U ′ is incident to M edges in E, so we have |U ′| ≤ |E|
M . As

|Cj | ≤ 2∆2, (S2) implies |U ′′| ≤ 4∆2M1/3r. Hence,

|U ′ ∪ U ′′| ≤ |E|
M

+ 4∆2M1/3r ≤ 12M1/3∆2rn

M
+ 4∆2M1/3r ≤M−1/2n. (4.3)

We define (s∗, i∗) ∈ [r] × [2] as follows, and we aim to embed x into Us∗,3−i∗ . This will later
ensure (Φ1)q+1.

(s∗, i∗) :=


(s′, i′) if y ∈ V (CT ) and φq(y) ∈ Us′,i′ ,
(s′, i′) if y ∈ XT,s′

i′ ,

(s′, i′) if x = rT and D3
S(x) ⊆ Xs′

i′ .

Note that (S5) ensures that (s′, i′) exists in the third case when x = rT and y is not defined.
Recall that the vertex x has at most one neighbour in V (FT ) (its parent y = aT (x) if belongs to
FT ) since all of children of x are either non-root vertex in S or a root of some other (S′, x′) ∈ ST .
We now define φq+1(x) depending on where y lies. We consider the following three cases.

Case 1. If y ∈ V (CT ), then let φq+1(x) be an arbitrary vertex u in NG′,Us∗,3−i∗ (φq(y))\(U ′∪U ′′).
By (A1)3.1, we have

|NG′,Us∗,3−i∗ (y) \ (U ′ ∪ U ′′)|
(4.3)

≥ (d− ε) · εn−∆M −M−1/2n ≥ 1,

hence such a vertex u exists. Here, we obtain the penultimate inequality from (Φ3).

Case 2. If x = rT and y does not exists, then let φq+1(x) be an arbitrary vertex u in Us∗,3−i∗ \
(U ′ ∪ U ′′). Similar argument as Case 1 shows that such a vertex u exists.

Case 3. If y ∈ V (FT ), then let

U∗ := Us∗,3−i∗ \ (U ′ ∪ U ′′) and V∗ := NG,Vs∗,i∗ (φq(y1), . . . , φq(yb)).

Recall that NG,Vs∗,i∗ (∅) = Vs∗,i∗ . Then we have |U∗| ≥ |Us∗,3−i∗ | −M−1/2n ≥ |Us∗,3−i∗ |/2. As

y1, . . . , yb ∈Wq, the property (Φ2)q implies |V∗| ≥ (d− ε1/2)bn. Since G[Us∗,3−i∗ , Vs∗,i∗ ] is (ε, d)-

regular, Proposition 2.1 implies that at least |U∗| − ε1/2|Us∗,3−i∗ | ≥ |Us∗,3−i∗ |/3 vertices u in U∗
satisfy dG,V∗(u) ≥ (d − ε1/2)b+1n. We define φq+1(x) to be one of such vertices, then (Φ2)q+1

holds for the vertex y ∈ XT,s∗

i∗ .

Now, we want to map vertices in DS(x) to Us∗,i∗ . Recall the definition of s and i from 4.2.
Let

W := NG′,Us∗,i∗ (φq+1(x)) \ (U ′ ∪ U ′′) and W ′ := Us,3−i \ (U ′ ∪ U ′′).
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Note that, in any of three cases, (A1)3.1 implies dG,Vs∗,i∗ (φq+1(x)) ≥ (d − ε1/2)n. Thus (Φ3)q
implies that

|W | ≥ dG,Us∗,i∗ (φq+1(x))−∆M ≥ (d− 2ε1/2)|Us∗,i∗ | ≥
1

2
εdn,

and we have |W ′| ≥ εn −M−1/2n ≥ 1
2εn. Lemma 2.7 with (A2)3.1 implies that at least 1

3εdn

vertices w in W satisfy dG,W ′(w) ≥ M2. We extend φq+1 in such a way that φq+1 maps the
vertices in DS(x) into distinct vertices in W each having at least M2 neighbours in W ′ in the
graph G. Since φq satisfies (Φ3)q and G′ = G− E, for each z ∈ DS(x), we have

dG′,W ′(z) ≥ dG,W ′(z)−∆M ≥M2 −∆M ≥M.

For each z ∈ DS(x), we define φq+1 on DS(z) in such a ways that φq+1 maps the vertices in DS(z)
into different vertices in NG′,W ′(z) and φq+1 is still injective on vertices in S. This is possible
as |Cq+1| ≤ ∆2 < M ≤ dG′,W ′(z). By our construction, φq+1 embeds Cq+1 into G[U ]− E, thus
φq+1 packs C1, . . . , Cq+1 into G[U ].

Now we check that φq+1 satisfies (Φ1)q+1–(Φ3)q+1. Note that any vertex in V (FT )∩N1
T (Cq+1)

is either y or vertices in D3
S(x). If y ∈ V (FT ), our choice of φq+1 and the definition of (s∗, i∗)

ensure that (Φ1)q+1 holds for the vertex y. As D3
S(x) ⊆ BS(x)\D≤2

S ⊆ X
T,s
i and φq+1(D2

S(x)) ⊆
W ′ ⊆ Us,3−i, (Φ1)q+1 holds for the vertices in D3

S(x). For all vertices outside N1
T (Cq+1), (Φ1)q

implies (Φ1)q+1. Hence (Φ1)q+1 holds. Note that the definition of φq+1(x) in Case 3 ensures that
(Φ2)q+1 holds for y, if y ∈ V (FT ). For vertices in D3

S(x), by the definition of W ′ and (A1)3.1,
(Φ2)q+1 holds for the vertices in D3

S(x) with b = 1. Again, for all vertices outside N1
T (Cq+1),

(Φ2)q implies (Φ2)q+1, hence (Φ2)q+1 holds. Since we have not mapped any vertices into U ′ and

every vertex in D≤2
S (x) is injectively mapped, (Φ3)q+1 holds. This finishes the induction and

the proof of the claim. �

Step 3. Packing forests F sT ⊆ FT into G[Vs,1, Vs,2]. Let φ := φp given by the above claim.
From now on, (Φ1)–(Φ3) denote (Φ1)p–(Φ3)p. We wish to pack each forest FT into G[V ] by

using Theorem 2.11 in such a way that the vertices in XT,s
i embed into Vs,i, then all edges of

FT lie in
⋃
s∈[r]G[Vs,1, Vs,2]. To use Theorem 2.11, we first pack trees into internally regular

bipartite graphs. Since F 1
T , . . . , F

r
T are vertex-disjoint subforests of tree T , the property (Φ1)

ensures that we can consider F sT for each s ∈ [r] separately to pack into G[Vs,1, Vs,2].
Moreover, we want the obtained packing of FT to be consistent with φ, so the neighbours of

already embedded vertex x of T are also embedded to a neighbour of φ(x) in G. We will define

sets WF
i and Y s′

i for this purpose, and we will use (Φ2) together with (A3)2.11 to obtain this
consistency.

We choose a new integer q and a constant ζ satisfying ε� 1/q � ζ � d, ν. We fix a number
s ∈ [r] throughout Step 3, and let

Fs := {F sT : T ∈ T }.

Because a forest contains less edges than vertices, (S4) and (A3)3.1 imply that

e(Fs) ≤
∑
T∈T

(
1

r
|V (T )|+ 2εn

)
≤ (1− 2ν

3
)dn2. (4.4)

For all F = F sT ∈ Fs and i ∈ [2], let XF
i := XT,s

i , then XF
1 ∪XF

2 is a vertex partition of F into

two independent sets. By (S4), for all F ∈ Fs and i ∈ [r], we have |XF
i | ≤ (1− 3ν/4)n. Let

w :=
e(Fs)

(1− 4ζ)qn

(4.4)

≤ (1− 2ν/3)dn2

(1− 4ζ)qn
≤ d

q
(1− ν

2
)n. (4.5)

We partition Fs into collections F1, . . . ,Fw so that we have the following for each s′ ∈ [w].

e(Fs′) =
∑
F∈Fs′

e(F ) =
e(F s)

w
± 4n ≤ (1− 3ζ)qn. (4.6)
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Note that this is possible because e(F ) ≤ 2n for each F ∈ Fs. Since each T ∈ T has at least
2
3rn vertices, (S4) implies that for each s′ ∈ [w]

|Fs′ | ≤
e(Fs′)

1
2r · (2rn/3)− εn

≤ qn

n/4
= 4q ≤ (qζ)3/2. (4.7)

For each i ∈ [2] and F = F sT ∈ F , we define

WF
i := N1

T (V (CT )) ∩XF
i .

In other words, WF
i is the collection of the vertices which have neighbours already embedded by

φ, so we need a special care when we embed the vertices in WF
i to make sure we embed edges

of T incident to the vertices in WF
i into edges of G. For all i ∈ [2] and F ∈ Fs, we have

|WF
i | ≤ ∆|V (CT )| ≤ 2∆3|ST |

(S2)

≤ M. (4.8)

Note that we have M ≤ εn. Thus, by (4.6), (4.7) and (4.8), for each s′ ∈ [w], we can apply

Lemma 2.10 with Fs′ , XF
i ,W

F
i , q, ζ, ε and |Fs′ | playing the roles of L, Xj

i ,W
j
i , k, ζ, ε and s,

respectively. Then for each s′ ∈ [w], we obtain a function Φs′ packing forests in Fs′ into a
2n-vertex q-regular graph Hs′ with a balanced bipartition X1∪X2. Moreover, for all i ∈ [2] and
F, F ′ ∈ Fs′ ,

Φs′(W
F
i ) ∩ Φs′(W

F ′
i ) = ∅. (4.9)

For all i ∈ [2] and s′ ∈ [w], we let

Y s′
i :=

⋃
F∈Fs′

Φs′(W
F
i ) and Y s′ :=

⋃
i∈[2]

Y s′
i .

By (4.7) and (4.8), for each s′ ∈ [w] and i ∈ [2], we have

|Y s′
i | ≤ 4q ·M ≤ εn. (4.10)

We now wish to use Theorem 2.11 to pack Hs := {H1, . . . ,Hw} into G[Vs,1, Vs,2]. This packing
combined with Φs′ would give us a packing of FT into G. Moreover, we want the edges of T
between V (CT ) and V (FT ) to be edge-disjointly mapped into E(G). Note that the vertices in

Y s′
i ⊆ Xi are the images of vertices that is incident to such edges between V (CT ) and V (FT ).

For each y ∈ Y s′
i , let xy be the preimage of y, i.e. Φs′(xy) = y, and let Ty ∈ T be the tree

containing xy. Let Ny := NTy(xy) ∩ V (CTy) and

As
′
y := NG,Vs,i(φ(Ny)).

Since a vertex y is an image of xy, mapping y to a vertex v means that xy will be embedded
into v in our final packing. Since Ny is the set of already embedded neighbours of xy, the vertex

v ∈ Vs,i must be a the common neighbour (in G) of the vertices in φ(Ny). Therefore, As
′
y is the

set of vertices which we can embed y into. By (Φ2), we have

|As′y | ≥ (d− ε1/2)∆n. (4.11)

In addition, there is one more issue to consider. If there are two vertices x ∈ CT and x′ ∈ CT ′
from different trees T 6= T ′ satisfies φ(x) = φ(x′) and we have two vertices y ∈ NT (x) ∩ FT
and y′ ∈ NT ′(x

′) ∩ FT ′ , we cannot embed y and y′ into the same vertex. Note that, by (4.9),
we do not need to worry about conflicts between two vertices from different trees in the same
collection Fs′ . To deal with this overlapping issue for trees from different collections, we consider
the following auxiliary graph Γ with V (Γ) := {(s′, y) : s′ ∈ [w] and y ∈ Y s′} and

E(Γ) := {(s′, y)(s′′, y′) : s′ 6= s′′ ∈ [w], y ∈ Y s′ , y′ ∈ Y s′′ and φ(Ny) ∩ φ(Ny′) 6= ∅}.
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For a fixed pair (s′, y) ∈ V (Γ) and fixed s′′ ∈ [w] \ {s′}, we have

|{y′ ∈ Y s′′ : (s′′, y′) ∈ NΓ((s′, y))}| ≤ |{y′ : F sTy′ ∈ Fs′′ , φ(Ny) ∩ φ(Ny′) 6= ∅}|

≤
∑

u∈φ(Ny)

|{y′ : F sTy′ ∈ Fs′′ , u ∈ φ(Ny′)}| ≤
∑

u∈φ(Ny)

∑
F s
T∈Fs′′

|{x ∈ V (F sT ) : u ∈ φ(NT (x) ∩ CT )}|

≤
∑

u∈φ(Ny)

∑
F s
T∈Fs′′

|{x ∈ NT (x′) : u = φ(x′)}| ≤
∑

v∈φ(Ny)

∑
F s
T∈Fs′′

∆ ≤ ∆2|Fs′′ |
(4.7)

≤ ∆2(ζq)3/2 ≤ q2.

(4.12)

Moreover, for any (s′, y) ∈ V (Γ), we have

dΓ((s′, y)) ≤
∑

u∈φ(Ny)

|φ−1(u)|
(Φ3)

≤ ∆M ≤ εn. (4.13)

Now we apply Theorem 2.11 with the following objects and parameters.

object/parameter G[Vs,1, Vs,2] Vs,i Hs′ w q ε n d (d− ε1/2)∆ ν
10 Γ Y s′

i As
′
y

playing the role of G Vi Hj s k ε n d d0 α Γ Y j
i Ajy

Indeed, (A1)3.1 implies that (A1)2.11, and (A2)2.11 holds by the definition of Hs. Properties
(4.10) and (4.11) imply that (A3)2.11 holds, and the properties (4.10), (4.12) and (4.13) imply
that (A4)2.11 holds with the above parameters. Thus by Theorem 2.11 we obtain a function φ∗s
which packs {H1, . . . ,Hw} into G[Vs,1, Vs,2] satisfying the following for each s′ ∈ [w] and i ∈ [r].

(Φ∗1) φ∗s(y) ∈ As′y for all y ∈ Y s′
1 ∪ Y s′

2 ,
(Φ∗2) For all (s′, y)(s′′, y′) ∈ E(F ), we have φ∗s(y) 6= φ∗s(y

′).

So φs := φ∗s(
⋃
s′∈[w] Φs′) packs Fs into G[Vs,1, Vs,2].

Step 4. Combining the functions. By repeating Step 3 for all s ∈ [r], we obtain functions
φ1, . . . , φr packing all forests in F1, . . . ,Fr. Let φ′ := φ ∪

⋃
i∈[r] φ

i. Then φ′ packs every forest

in Fs into G[Vs,1, Vs,2], thus into G[V ]. Since φ′ is also an extension of φ, for all T ∈ T , φ′ packs

CT into G[U ]. Moreover, (Φ∗1), (Φ∗2) and the definitions of As
′
y and Γ imply that φ′ packs

edges in {e ∈ E(T [V (CT ), V (FT )]) : T ∈ T } into distinct edges in
⋃

(s,i)∈[r]×[2]G[Us,i, Vs,3−i].

Thus we conclude that φ′ packs T into G. Moreover, (Φ3) implies that for each u ∈ U , we have
dφ(T )(u) ≤ ∆ ·M . This finishes the proof of Lemma 3.1.
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12. P. Condon, J. Kim, D. Kühn, and D. Osthus, A bandwidth theorem for approximate decompositions,
arXiv:1712.04562 (2017).
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